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“Die Vernunft muß mit ihren Prinzipien, nach denen allein übereinkommende

Erscheinungen für Gesetze gelten können, in einer Hand, und mit dem Experi-

ment, das sie nach jenen ausdachte, in der anderen, an die Natur gehen, zwar

um von ihr belehrt zu werden, aber nicht in der Qualität eines Schülers, der sich

alles vorsagen läßt, was der Lehrer will, sondern eines bestallten Richters, der

die Zeugen nötigt, auf die Fragen zu antworten, die er ihnen vorlegt.”

(Reason must approach nature with the view, indeed, of receiving information from it, not,

however, in the character of a pupil, who listens to all that his master chooses to tell him,

but in that of a judge, who compels the witnesses to reply to those questions which he himself

thinks fit to propose.)

Immanuel Kant 1

1Kritik der reinen Vernunft, Vorrede zur zweiten Auflage, 1787. Übersetzung ins Englische

von J. M. D. Meiklejohn.



Abstract

The present thesis studies a variety of cold atomic systems in artificial gauge fields.

In the first part we focus on fractional quantum Hall effects, asking whether in-

teresting topological states can be realized with cold atoms. We start by making

a close connection to solid-state systems and first consider fermionic atoms with

dipolar interactions. Assuming the system to be in the Laughlin state, we eval-

uate the energy gap in the thermodynamic limit as a measure for the robustness

of the state. We show that it can be increased by additionally applying a non-

Abelian gauge field squeezing the Landau levels. We then switch to bosonic sys-

tems with repulsive contact interactions. Artificial magnetic fields for cold bosons

have extensively been discussed before in the context of rotating Bose gases. We

follow a different approach where the gauge field is due to an atom-laser cou-

pling. Thus, transitions between different dressed states have to be taken into

account. They are shown to break the cylindrical symmetry of the system. Mod-

ifying the Laughlin state and the Moore-Read state accordingly, we determine

the parameter regimes where these states represent well the ground state of the

system obtained via exact diagonalization. One of the most interesting features

of fractional quantum Hall states is the anyonic behavior of their excitations. We

therefore also study quasiholes in the Laughlin state and the modified Laughlin

state. They are shown to posses anyonic properties, which become manifest even

in small systems. Moreover, the dynamics of a single quasihole causes visible

traces in the density of the system which allow to clearly distinguish the Laugh-

lin regime from less correlated phases. In the latter, a sequence of collapses and

revivals of the quasihole can be observed, which is absent in the Laughlin regime.

Extending our study to bosonic systems with a pesudospin- 12 degree of freedom,

we discuss the formation of strongly correlated spin singlets. Strikingly, at filling

ν = 4
3 , the system is described by a state with non-Abelian excitations, which is

constructed as the zero-energy ground state of repulsive three-body contact in-

teractions. Systems with internal degrees of freedom also allow for implementing

artificial spin-orbit coupling. This gives rise to a variety of incompressible states.

In the second part of the thesis, we concentrate on condensed systems. Bose-

Einstein condensates with spin-orbit coupling are shown to have a degeneracy on

the mean-field level, which is lifted by quantum and thermal fluctuations. The

system becomes experimentally feasible in three dimensions, where the conden-

sate depletion remains finite. It may thus allow for an experimental observation of

this order-by-disorder mechanism. Finally, we study the influence of Abelian and

non-Abelian gauge fields on the quantum phase transitions of bosons in a square



optical lattice. Re-entrant superfluid phases and superfluids at finite momenta

are interesting properties featured by such systems.
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Chapter 1

“Ultracold” and “artificial”

- do we still study nature?

The subject of physics, stemming from the Greek word phýsis “nature”, undoubt-

edly is supposed to be nature. The present thesis, studying “ultracold” atoms

in “artificial” gauge fields, however, might seem not to cope with this definition:

“Ultracold”, this means colder than anything in the universe - except for those

atoms which by excessive cooling have been made “ultracold” in the laboratory.

“Artificial” gauge fields, this refers to sophisticated techniques which make the

atoms feel the effect of, for instance, a magnetic field, as if they were charged

particles, while in nature an atom, being electroneutral, is not sensitive to true

magnetic fields. Due to these discrepancies between “natural” atoms and the

“manipulated” atoms considered here, it appears to be indicated to first point

out which insight to nature we may expect from the subject of this thesis.

Let us therefore briefly recall a revolutionary idea which accompanied the inven-

tion of modern age physics more than 300 years ago: In order to study the bright

and colorful nature of light, I. Newton decided to move back into a dark chamber,

where the only light entered through tiny slits. In this way, he obtained beams

of light which he was able to direct through lenses or prisms. These simple ex-

periments, described in Newton’s Opticks, defined a ground-breaking concept of

physics: the use of completely artificial setups in order to gain empirical insight to

nature. Methodically, indeed, the situation in Newton‘s dark chamber is similar

to the one in modern ultracold laboratories. Just as restricting white light to a

1



2 Chapter 1. “Ultracold” and “artificial” - do we still study nature?

narrow beam had allowed for decomposing it into its spectrum colors by using

a prism, cooling down atomic ensembles revealed the quantum-statistical nature

of atoms which at any temperature occurring naturally is hidden beyond ther-

mal fluctuations. Both setups are artificial, but they allow to study fundamental

properties of nature.

Bose-Einstein condensates as quantum simulators. Certainly the most

spectacular success achieved by cooling atoms, awarded the 2001 Nobel Prize,

dates back to 1995 when bosonic atoms have been condensed into a state of mat-

ter described by a macroscopic wave function [1, 2]. Although atoms outside the

laboratory are not in this phase of matter, its experimental realization increased

our understanding of nature, as it confirmed a phase which was predicted seven

decades earlier by A. Einstein and S. Bose, and which thus has been named

Bose-Einstein condensate (BEC). However, as the exploding amount of research

dedicated to ultracold atomic systems since 1995 clearly shows (cf. [3, 4]), the

realization of BECs has not been the final stroke to a long search for this ex-

otic phase of matter. Contrarily, it opened a new field of physics, where much,

if not most, of the research is not primarily motivated by the interest in the

behavior of cold atoms on their own. But often, studying these objects might

teach us something about the behavior of other particles - under less artificial

circumstances.

Example: Bose-Hubbard model. To illustrate this, let us consider a sem-

inal experiment which was thought of in 1998 by D. Jaksch et al. [5] and which

was accomplished successfully in 2002 by M. Greiner et al. [6]. This experi-

ment studies ultracold atoms in periodic potentials which are built up by a set

of counter-propagating laser beams and are therefore called optical lattices. The

analogy to a crystal where electrons or, taking into account the bosonic nature

of the atoms, Cooper pairs move in the potential of periodically ordered ions is

obvious. But while in any real crystal impurities and perturbations impede the

deduction from the observed behavior to the basic laws governing it, the ultra-

cold setup is free from defects. It allows to study an ideal model. Furthermore,

parameters which might hardly be controllable in a crystal can be modified in

the system of ultracold atoms by changing the design of the setup or just tuning

experimental parameters.



Chapter 1. “Ultracold” and “artificial” - do we still study nature? 3

Conceptually, this goes beyond the before-mentioned strategy, where the nature of

a physical system (e.g. white light) is revealed by deducing it from the behavior

of the same system within an abstract setup (e.g. a single light beam). But

it seems to be a natural generalization of this old concept, if we now try to

understand the behavior of a physical system by deducing it from the behavior

of an analog system. This concept of studying difficult and relevant quantum

many-body systems by realizing analog problems artificially in clean and highly

controllable environments is called quantum simulation [7].

The pioneering 2002 experiment realized the Bose-Hubbard model [8], in which

bosonic particles hop between neighboring sites of a hypercubic lattice, and in-

teract locally on each site. The model describes a competition between these

two processes, whose energies are quantified by the hopping amplitude J and

the interaction strength U . In the limit J = 0, each atom sits on a lattice site

and is described by a completely local wave function with a random phase. As

demanded by the Heisenberg uncertainty relation, the atoms have no well-defined

momentum. The system is said to be in a Mott insulating phase. In the oppo-

site limit U = 0, the system shows a superfluid behavior: every atom extends

throughout the whole lattice, and therefore must have a sharp momentum. In the

ground state, all atoms have the same momentum defined by the minimum of the

lattice dispersion. This implies a phase correlation between the particles, which

means that the phase-rotational symmetry of the Mott phase must be broken.

Clearly, the ratio of the two model parameters J and U controls, whether the

system is superfluid or Mott insulating. Ultrapassing a critical value (J/U)crit,

the atoms undergo a quantum phase transition. If we think of a solid, it will

certainly be very difficult or even impossible to modify this ratio. In the exper-

iment with cold atoms, however, J/U can be tuned just by changing the depth

of the lattice potential, i.e. by tuning the intensity of the lasers. In this way, it

became possible to realize this paradigm of a quantum phase transition [9] and

to clearly detect it. The latter was achieved by releasing the trapping potential

of the atoms which makes them expand freely in space, according to their initial

momentum. Photographs of the atomic cloud after a short expansion time, the

so-called time-of-flight absorption pictures, therefore reproduce the initial mo-

mentum distribution, integrated in one spatial direction. As we argued above,

this distribution characterizes the superfluid phase through its peaked structure.

As in the case of the experimental realization of Bose-Einstein condensates, the

observation of the Mott-superfluid transition strikingly confirmed a theoretical
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prediction of a fundamental physical phenomenon. The importance of this exper-

iment goes far beyond this: Providing experimental access to the phase boundary

of the Bose-Hubbard model, the quantum gas might be seen to solve this model.

One may argue that this is not quite a groundbreaking achievement, in view of

different theoretical techniques which allow for a precise calculation of the phase

diagram for bosons in a lattice: The scaling arguments from Ref. [8] give a quali-

tatively correct picture. Perturbation theory on the mean-field levels yields quan-

titatively good results [9, 10]. Further improvements achieved by going beyond

mean-field make theoretical results quantitatively exact [11–13]. Most accurate

calculations have been done using the Monte-Carlo method [14]. From this point

of view, no new insight is gained from experimentally realizing the model with

cold atoms. However, having the theoretical predictions at hand, the realization

of the Bose-Hubbard model must be seen as a ground-breaking proof-of-principle

experiment. We shall stress at this point the huge versatility of ultracold lattice

gases, which allows to explore much more complicated models. To give just a few

examples: one can, nearly at will, modify the geometry of the lattice, given by

the lasers. This also includes the dimensionality of the system. It is possible to

tune the interaction of the particles, whose strength is subject to Feshbach reso-

nances and even whose range can be modified, e.g. by using dipolar atoms and

suppressing s-wave scattering. And, although cooling techniques for fermions are

less efficient, it is also possible to fill an optical lattice with Bose-Fermi mixtures

or fermions [15, 16]. In contrast to the Bose-Hubbard model, the phase diagram

of the Fermi-Hubbard model is strictly speaking unknown. Especially, despite

decades of research, there is still debate, whether or not this microscopic model

is able to describe the physics of high-Tc superconductors. It is a promising idea

to answer these questions by realizing the model with cold atoms.

Artificial gauge fields. If we wish to simulate systems of elementary particles

using cold atoms, sooner or later a substantial drawback will show up: atoms are

neutral with respect to the fundamental gauge fields, while it is no exaggeration to

say that gauge fields are the central elements of modern physics. All fundamental

interactions can be derived from postulating gauge symmetries in the theories

for the free particles: Electromagnetic forces, mediated by photons, follow from

a U(1) gauge invariance in the Dirac equation. Weak and strong interactions,

mediated by three weak bosons and eight gluons, are the consequence of an SU(2)

and an SU(3) invariance, respectively. They are thus fundamental examples of

non-Abelian gauge theories. In order to access the broad range of physics related
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to gauge fields, it is a prerequisite to synthesize these gauge fields for atoms.

Certainly, the effective implementation of dynamical gauge fields, as the sources

of interaction between elementary particles, in systems of cold atoms is one of the

most challenging prospects for quantum simulations. Unfortunately, they seem

to be still a long way off.

However, active research work, and this thesis is supposed to be a piece of it, is

dedicated to investigating static or external gauge fields in cold atomic systems.

Examples for static gauge fields occurring in nature and the fascinating physics

due to them are manifold. There is, for instance, the Aharanov-Bohm effect

[17], where a charged particle moving in the fieldfree region around a magnetic

flux feels a U(1) Berry phase due to the non-zero electromagnetic potential. In

two-dimensional systems subjected to a strong magnetic field we may encounter

the vast field of quantum Hall physics [18], which we will discuss in more de-

tail at a later stage of this thesis. Non-Abelian gauge fields show up when, for

instance, the particle spin is coupled to the orbital motion. Predicting the behav-

ior of such systems is often quite difficult due to their strongly correlated nature,

especially when interactions come into play. Therefore, such systems are very in-

teresting candidates for doing quantum simulations. Such simulations, involving

cold atoms in artificial gauge fields, could increase our understanding of relevant

problems in condensed matter physics like topological insulators [19] or fractional

quantum Hall effect. On the latter, we will focus in the first part of the thesis.

Quantum simulation = quantum realization. Discovered in the 1980s on

layers between semiconducting materials [20], the fractional quantum Hall effect

originally is a solid state phenomenon. Thus, realizing it with cold atoms could be

considered a quantum simulation of a solid. This might help to answer pending

questions like, for instance, the nature of the fractional quantum Hall state at

filling factor ν = 5/2, for which a Hall plateau has already been observed [21],

but which cannot be understood in the spirit of Laughlin’s argument valid for

odd-denominator filling factors [22].

Certainly, the implementation of a fractional quantum Hall Hamiltonian in cold

atomic systems can be motivated by the quest for solutions to open problems like

that. However, at this point it seems to be important to stress that a quantum

simulation is not a “virtual” process, where the simulated particles exists only in

the memory of some computing machine. Contrarily, the simulators themselves,

i.e. the atoms, are real particles. This implies that the simulation of a relevant
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many-body problem with cold atoms is, at the same time, its realization. We

can thus use the versatility of cold atomic systems not only to mimic nature, but

moreover to confront nature with exotic conditions. Such conditions might not

even exist outside the cold atomic framework. Bose-Einstein condensation itself is

an exotic phase of matter for which the universe is just too hot, but experiments

have shown that nature is created such that it really supports this phase if we

cool it. There are many other exotic situations which we can think of. And at

least some of them may be realized in experiments, thereby realizing intriguing

properties of nature which emerge from these exotic conditions.

Realization of anyons. From this point of view, the study of fractional

quantum Hall physics is motivated on quite a fundamental level, as it considers

nature in the very exotic situation of being confined to two spatial dimensions,

while our universe appears to be locally a (3 + 1)-dimensional Minkowski space.

Whether such a setup is realized in solid materials as done since the 1980s, or

with cold atoms, as expected to be achieved in the near future, actually plays no

role. The versatility of cold atoms, though, is a huge advantage for fully exploring

this exotic regime.

The main motivation to realize fractional quantum Hall systems is a drastic con-

sequence for (quasi)particles which emerge from a two-dimensional many-body

system: They may not behave like bosons or fermions, as any particle or quasi-

particle in three or higher dimensions does [23, 24]. To understand this, we must

realize that interchanging a pair of particles (or quasiparticles) twice must be

equivalent to wrapping one particle around the other. In three dimensions, the

trajectory of this particle can be smoothly deformed into one where none of the

particles moves at all. Thus, the wave function describing the particles is not

allowed to change. Consequently, interchanging particles only yields a ± sign,

restricting the particles’ statistics to the bosonic or fermionic one. In two di-

mensions, however, the above argument does not hold. Trying to deform the

trajectory of the particle which moves around the other, we will at some point

hit the other particle. Thus, statistical phases different from ±1 become possible.

Such particles have been named anyons [25]. It has then also been pointed out

that, given an N -fold degenerate ground state of a system in two dimensions,

the statistical phase does not necessarily belong to U(1), but can also be element

of SU(N). Such particles have been named non-Abelions or non-Abelian anyons

[23, 24].
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The realization of such (quasi)particles in two-dimensional cold atomic systems

with artificial gauge fields should be possible. Though being an emergent phe-

nomenon, within the cold atomic world these quasiparticles are real particles.

Provocatively, one might say that they are as real as, for instance, the paradigm

of an elementary particle, the “free” electron, which is nothing else than the

quasiparticle excitation of the Dirac sea [26]. Whether or not one agrees with

this opinion, what we, once more, want to stress is that such quasiparticles are

not only simulated, but cold atoms can really provide them.

This distinction is especially relevant in so far as a main driving force for studying

the fractional quantum Hall effect is a future technological utilization of non-

Abelian anyons in quantum-logical gates [27]. Due to the topological origin of

these quasiparticles, gates operating with anyons give the hope that they will

allow for constructing fault-tolerant quantum computers. The future will show

whether solid-state systems are the most feasible ones to provide such anyons,

having the great advantage of needing less cooling, or the ones emerging from the

more versatile cold atom systems, or even others (e.g. out of photons, cf. [28]).

In all cases, cold atoms in artificial gauge fields seem to be useful: either as a

versatile quantum simulator of a solid (or anything else), or as a real physical

system with its own very interesting and very real properties.

Outline of the thesis. With this motivation for studying ultracold atoms in

artificial gauge fields, we can now give a detailed outline of the contents of this

thesis.

In Chapter 2 we will present different proposals how to synthesize gauge fields for

atoms. The simplest idea, considered in Section 2.1, is a rotation of the system.

In more details we will investigate a proposal to implement artificial magnetic

fields by an atom-laser coupling in Section 2.2. In Section 2.3, we will sketch a

generalization of this proposal to non-Abelian gauge field. While most physicists

have an understanding about what is a magnetic field, non-Abelian gauge fields

are less common, so we will also give a brief introduction into this mathematical

construction. Finally, in Section 2.4 proposals to implement gauge fields in optical

lattices are shortly discussed.

The following Chapters 3–6 form the first original part of the thesis, which is

dedicated to quantum Hall physics. The first section of chapter 3 gives a brief

introduction, and presents a variety of relevant fractional quantum Hall states.
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As we seek to make a close connection between the electronic quantum Hall effects

and the atomic counterpart, we start by investigating a system of fermionic atoms

with dipolar interaction in Section 3.2. Here, we will assume that their behavior

is described by the Laughlin wave function, and investigate the energy gap in the

thermodynamic limit. We will start with an artificial magnetic field, which we

then generalize to a non-Abelian gauge field. Thereby we are able to squeeze the

relevant single-particle states, which is shown to increase the energy gap, making

the system more robust against perturbations.

Chapter 4 is closely linked to the proposal of Section 2.2. By means of exact

diagonalization, which is briefly introduced in Section 4.2, we investigate the

bosonic fractional quantum Hall states which can be produced within this setup.

Our focus is on the “undesired” terms in the Hamiltonian, which inevitably are

carried along, if we use laser-dressing of atoms to generate an artificial magnetic

field. This study reveals the conditions under which fractional quantum Hall

physics should become observable in the laboratory. While Chapter 4 considers

the ground states of the system, Chapter 5 is dedicated to probably the most

fascinating feature of fractional quantum Hall effect, the quasiparticle excitations.

In this chapter, we calculate the fractional “charge” and the fractional statistics

of excitations above the Laughlin state. Again, we contrast the “pure” effect

without undesired terms, and the “real” effect taking into account imperfections

stemming from the concrete proposal. We also discuss the dynamics of quasiholes

in the Laughlin state, and contrast it to holes in less correlated systems. In the

latter, collapse-and-revival effects are found to take place, which may allow for

spectroscopy in the lowest Landau level. They also distinguish the Laughlin state

from other regimes, which could facilitate its experimental detection.

While Chapters 4 and 5 exclusively consider one-component Bose gases, an ad-

ditional spin degree of freedom may change the nature of the states. In Chapter

6, we consider a pseudospin- 12 Bose gas in an artificial magnetic field. We show

that a series of non-Abelian spin singlet states describe the ground states at dif-

ferent filling factors. Here, non-Abelian refers to the nature of their excitations.

This finding is striking, as these states are constructed as eigenstates of a k-

body contact interaction (with k in general larger than 2), while we consider the

realistic setup of a two-body contact potential. Thus, our results provide evi-

dence that these interesting many-body quantum states, so far just a theoretical

construction, could become real in experiments with ultracold atoms. Further-

more, the pseudospin degree of freedom allows to couple the external motion to
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the internal dynamics. The influence of such a spin-orbit coupling, described

by a non-Abelian gauge field, on the strongly correlated phases of the system is

investigated in Section 6.5.

Chapters 7 and 8 form the second original part of the thesis, which focuses on con-

densation phenomena in bosonic systems exposed to artificial gauge fields. Chap-

ter 7 considers BECs with a spin-orbit coupling. While on the non-interacting

level, this coupling causes a huge degeneracy, the mean-field ground state is shown

to possess only a two-fold degeneracy. Calculating the collective excitations, we

are able to show that quantum and/or thermal fluctuations select a unique ground

state. Differently to the fractional quantum Hall part of the thesis, here we con-

sider systems not only in two but also in three dimension. In fact, our calculations

show that the condensate is stable against thermal fluctuations only in three di-

mensions.

The only chapter dedicated to systems in optical lattices is Chapter 8. We inves-

tigate a Bose-Hubbard model in two dimensions, where the atoms are exposed

to Abelian and non-Abelian gauge fields. Above we have already outlined the

spectacular success of realizing quantum phase transitions of cold atoms in opti-

cal lattices. In this thesis, we analyze the effect of the gauge fields on this Mott

transition. We also calculate the excitation spectra in the Mott phase and at the

phase boundary. Our analysis shows that they have an intriguing discontinuity

upon tuning the gauge field strength. We find re-entrant superfluid phases, and

condensates of finite momenta.

Most of the work presented in this thesis has been published previously in the

following articles:

(I) T. Graß, M. A. Baranov, M. Lewenstein. Robustness of Fractional Quan-

tum Hall States with Dipolar Atoms in Artificial Gauge Fields. Phys. Rev.

A 84 043605 (2011)

(II) T. Graß, K. Saha, K. Sengupta, M. Lewenstein. Quantum Phase Transition

of Ultracold Bosons in the Presence of a Non-Abelian Synthetic Gauge

Field. Phys. Rev. A 84 053632 (2011)

(III) B. Juliá-Dı́az, D. Dagnino, K. J. Günter, T. Graß, N. Barberán, M. Lewen-

stein, J. Dalibard. Strongly Correlated States of a Small Cold Atomic Cloud

from Geometric Gauge Fields. Phys. Rev. A 84 053605 (2011)
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(IV) R. Barnett, S. Powell, T. Graß, M. Lewenstein, S. Das Sarma. Order by

Disorder in Spin-Orbit Coupled Bose-Einstein Condensates. Phys. Rev.

A 85 023615 (2012)

(V) B. Juliá-Dı́az, T. Graß, N. Barberán, M. Lewenstein. Fractional Quantum

Hall States of Few Bosonic Atoms in Geometric Gauge Fields. New J.

Phys. 14 055003 (2012)

(VI) B. Juliá-Dı́az, T. Graß. Strongdeco: Expansion of Analytical, Strongly

Correlated Quantum States into a Many-Body Basis. Com. Phys. Comm.

183 737 (2012)

(VII) T. Graß, B. Juliá-Dı́az, N. Barberán, M. Lewenstein. Non-Abelian Spin

Singlet States of Two-Component Bose Gases in Artificial Gauge Fields.

Phys. Rev. A 86 021603(R) (2012)

(VIII) T. Graß, B. Juliá-Dı́az, M. Lewenstein. Quasihole dynamics as a detection

tool for quantum Hall phases. Phys. Rev. A 86 053629 (2012)

(IX) T. Graß, B. Juliá-Dı́az, M. Burrello, M. Lewenstein. Fractional quantum

Hall states of a Bose gas with spin-orbit coupling. arXiv:1210.8035

Note that the articles (VIII) and (IX) have been prepared after submission of

this thesis.

These publications overlap with this thesis at the following places: Section 2.2

presents the proposal also discussed in (III) and (V). The whole Chapter 4, and

Section 5.1 are based on material from these two publications. Directly related

to them is publication (VI), which is further described in the appendix. Section

5.2 overlaps with (VIII). Section 3.2 is based on (I). Chapter 6 is based on (VII),

Chapter 7 is related to (IV) and (IX), and Chapter 8 is based on (II).



Chapter 2

Synthesizing gauge fields

In this chapter we will review different proposals how to make atoms behave as

if there was a gauge field acting on them.

2.1 Rotation of the system

Conceptually certainly the simplest way to synthesize a magnetic field is the ro-

tation of the system. The effect of a constant magnetic field B on a charged

particle is the Lorentz force F L ∼ v ×B perpendicular to the velocity v of the

particle. Recalling coordinate transformation laws from classical mechanics, we

see that rotating the system mimics this force: When going from an inertial ref-

erence frame into a rotating one, fictitious forces have to be included in Newton’s

laws of motion in order to keep their validity. To describe a particle rotating with

constant angular velocity Ωrot, a centrifugal force is needed to keep the rotation.

If the particle moves with a velocity v within the rotating frame, it will addi-

tionally feel the Coriolis force FC ∼ v × Ωrot. Apart from the proportionality

constant, this force will thus exactly mimic the Lorentz force, given that Ωrot is

parallel to B.

To put this on a more formal level, we write down the Hamiltonian of a gas in an

axial-symmetric harmonic trap with frequencies ω⊥ in the xy-plane and ω‖ along

11
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the z-axis [29]:

H =

N
∑

i=1

[

p2i
2M

+
1

2
Mω2

⊥(x
2
i + y2i ) +

1

2
Mω2

‖z
2
i

]

+
1

2

∑

ij

V (ri, rj). (2.1)

For completeness, we have included some, at this point unimportant, two-body

potential V . In a frame rotating around the z-axis with constant angular velocity

Ωrot = Ωrotez , the Hamiltonian transforms as Hrot = H − Ωrot · L, with L =
∑

i ri × pi, and can thus be re-written as

Hrot =
N
∑

i=1

[

(pi −MΩrot × ri)2
2M

+
1

2
M(ω2

⊥ − Ω2
rot)(x

2
i + y2i ) +

1

2
Mω2

‖z
2
i

]

+
1

2

∑

ij

V (ri, rj), (2.2)

which is equivalent to the Hamiltonian of N particles with charge q in a magnetic

field B = (0, 0, B), if we choose qB = 2MΩrot. We note that the vector potential

A for the magnetic field is fixed to the symmetric gauge: A = B
2 (y,−x, 0). The

effect of the centrifugal force, appearing in the second term of Eq. (2.2), is to

reduce the effective xy trapping frequency.

The latter implies that the system becomes unstable, when Ωrot approaches ω⊥.

This is a serious drawback, since interesting strongly correlated phases occur in

this limit (cf. Section 4.3.1). At this stage, let us only qualitatively discuss the

physical situation. First we note that by choosing ω‖ very large, the third term

in Hrot can be completely neglected, as it just confines the system to effectively

two dimensions [29]. Then, the first term in Hrot introduces a Landau level (LL)

structure, that is, harmonic oscillator levels with an infinite angular momentum

degeneracy in every level. The energy levels are separated from each other by a

gap 2Ωrot. Assuming weak enough interactions, all particles will remain within

the lowest LL (LLL). In this regime, strongly correlated states occur at high

total angular momentum L, where many different single-particle states are avail-

able. The second term in Eq. (2.2) takes care of the finite size of the system,

and introduces a Fock-Darwin spectrum. It removes the LL degeneracy, but for

the effective trapping frequency ωeff =
√

ω2
⊥ − Ω2

rot small compared to the LL

gap, the LLs remain quasi-degenerate. The effective trapping enhances popula-

tion of single-particle states with smaller angular momentum. Therefore, highly

correlated states become accessible only for small ωeff , i.e. near the instability.
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Figure 2.1: Vortex lattices observed in Ref. [30]. The lattice on the left is
formed in a slowly-rotating trap, while the right side shows a vortex lattice
due to a rapidly rotating trap.

This complication has so far hindered the experimental realization of strongly

correlated states with cold Bose gases by rotating the trap. Nevertheless, regimes

of smaller L have already been accessed (see Ref. [31] for a review). As in the

case of Helium II, a BEC can carry angular momentum only in form of quantized

vortices, which are visible in experimental pictures of the density. In the strongly

correlated regime, the number of vortices has to be of the same order as the

number of particles. As shown in Fig. 2.1, by increasing the rotation frequency,

the number of vortices (and thus L) is increased, but it has so far not been

achieved to go beyond the regime where vortices form a lattice, i.e. with many

more atoms than vortices.

2.2 Gauge fields due to a geometric phase

Due to the limitations of the method described in the previous section, a different

approach might turn out to be more feasible. In this section we describe a scheme

for synthesizing a magnetic field which is based on the coupling of internal atomic

levels to laser beams. As reviewed in Ref. [32], there exists a variety of proposals

falling into this category. We focus on the simplest one, which involves only two

atomic levels and a single laser beam. It not only illustrates in the clearest way

the mechanism of generating gauge fields due to geometric phases, but might

indeed allow for realizing the desired strongly correlated states. Properties of
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Figure 2.2: Scheme for achieving a geometric phase by coupling atoms to a
laser beam: (a) Atoms are trapped in the x–y plane and illuminated with a
plane wave propagating along the y direction. (b) The energy difference be-
tween the two internal states that are coupled by the laser field varies linearly
along the x direction. (c) Energy eigenvalues of the atom–laser coupling in
the rotating wave approximation. From: [34]

these states and their dependence on the experimental parameters are studied in

Chapters 3 and 4. In this section, however, we restrict ourselves to describing the

proposal, closely following our presentation of Refs. [33, 34].

The idea at the bottom of all proposals involving dressed atoms is the mathemat-

ical equivalence of gauge potentials and Berry curvatures, giving rise to geometric

phases [35]. A Berry phase, eiγ(C), is obtained by a particle on a trajectory C due

to the topology of the space, in which it evolves. It has to be distinguished from

the dynamical phase, eiEt, which is due to the time-evolution of the particle. It

is obvious that magnetic fields implement Berry phases, as the wave function of

a particle with charge q subjected to a magnetic vector potential A(r) acquires

a phase eiq
∫
C

A(r)·dr when the particle moves along C. In order to mimic gauge

fields acting on neutral particles, we thus must think of a mechanism which af-

fects the phase of the particle’s wave function in the same way as the magnetic

vector potential would do, if the particle was charged. We will now show how

this is possible due to a coupling between atoms and photons.

Again we assume an atomic cloud with harmonic confinement, which in the z-

direction is so strong that the system effectively is two-dimensional. Onto this

cloud we shine a single laser beam with wave number k and frequency ωL, which

propagates in the y-direction and is close to the resonance with a transition

between two internal atomic states, |g〉 and |e〉, ωL = ωA, see also Fig. 2.2a.

The interaction between the electric field of the laser and the induced electric

dipole is modeled by the atom-laser Hamiltonian, which in the rotating-wave
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approximation and in the rotating frame is given by [36, 37]

HAL = Eg |g〉 〈g|+ (Ee − ~ωL) |e〉 〈e|+
~Ω0

2
eiky |e〉 〈g|+ ~Ω0

2
e−iky |g〉 〈e| (2.3)

where Eg and Ee are the energies of the bare atomic ground and excited state,

and Ω0 is the Rabi frequency, which is proportional to the laser intensity.

Instead of describing the external dynamics of the system in terms of the bare

atoms, the coupling suggests to consider objects which are in a superposition of

both atomic levels, being the eigenstates of the atom-laser coupling, also called

dressed states. Since these new “internal” states depend on the position of the

atom, the center-of-mass movement is accompanied by a well-defined evolution

of the internal state. This is the clue which allows to get the geometric phases

mimicking a magnetic field.

But still, for the gauge potential to be non-trivial, we have to introduce a de-

pendence on x in the coupling. This can be achieved with a real magnetic field,

which via the Zeeman effect makes the internal energy levels vary linearly in x,

see Fig. 2.2b. Introducing a parameter w, setting the length scale of this shift,

we have,

Eg = −~Ω0

2

x

w
, Ee = ~ωA +

~Ω0

2

x

w
. (2.4)

Then, the single particle Hamiltonian is given by

Hsp =
p2

2M
+

1

2
M(ω2

xx
2 + ω2

yy
2) +

~Ω

2

(

cos θ eiφ sin θ

e−iφ sin θ − cos θ

)

, (2.5)

where the third term is the atom-laser Hamiltonian represented in the {|e〉 , |g〉}
basis. Here, M is the atomic mass, Ω = Ω0

√

1 + x2/w2, sin θ = w/
√
w2 + x2,

cos θ = x/
√
w2 + x2, and φ = ky. Below, we will fix the trapping frequencies ωx

and ωy in a convenient way.

At this point, we switch from the representation in terms of pure atomic states to

the dressed state picture. The energy levels of the dressed states are shown in Fig.

2.2c. There is a freedom in choosing the dressed states, which is the counterpart

of the gauge freedom one has for choosing gauge potentials to a given field. As

we will see below, the following choice will yield a description in the symmetric
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gauge:

|Ψ1〉 = e−iG

(

C eiφ/2

S e−iφ/2

)

, |Ψ2〉 = eiG

(

−S eiφ/2

C e−iφ/2

)

, (2.6)

in the {|e〉 , |g〉} basis, where C = cos θ/2, S = sin θ/2, and G = kxy
4w . Then, the

atomic state can be expressed as,

χ(r) = a1(r)⊗ |Ψ1〉+ a2(r)⊗ |Ψ2〉 (2.7)

where ai captures the external dynamics and |Ψi〉 represents the “internal” degree
of freedom. The single-particle Hamiltonian, expressed in the {|Ψ1〉 , |Ψ2〉} basis,

reads

Hsp =

(

H11 H12

H21 H22

)

, (2.8)

where the diagonal elements can conveniently be written down, if we define a

vector potential A,

A(r) = ~k

(

y

4w
,
x

4w
− x

2
√
x2 + w2

)

, (2.9)

and a scalar potential U ,

U(r) =
~
2w2

8M (x2 + w2)

(

k2 +
1

x2 + w2

)

. (2.10)

With this, we get

H11 =
[p−A(r)]

2

2M
+ U(r) + V (r) +

~Ω(r)

2
, (2.11)

and

H22 =
[p+A(r)]2

2M
+ U(r) + V (r)− ~Ω(r)

2
, (2.12)

which are the Hamiltonians driving the external dynamics of atoms being in

the internal state |Ψ1〉 and |Ψ2〉, respectively. By expanding the Hij terms up

to second order in x and y, which is justified by choosing w to be larger than

the extension of the cloud, we find that the energy distance between these two

manifolds is given by ~Ω0. For convenience, we make the Hamiltonian element
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for the low energy manifold, H22, independent of Ω0 by adding the constant term
~Ω0

2 to the diagonal of Ĥsp. Further we note that with the explicit selection

of Eq. (2.6) and for x, y ≪ w, A is in the symmetric gauge: A ≈ ~k
4w (y,−x).

This allows for making H22 fully symmetric by a proper choice of the trapping

frequencies:

1

2
Mω2

⊥(x
2 + y2) = U(r)− ~Ω(r)

2
+
A2(r

2M
+

1

2
M(ω2

xx
2 + ω2

yy
2). (2.13)

Eq. (2.12) then takes the form

H22 =
p2

2M
+
p ·A
M

+
M

2
ω2
⊥(x

2 + y2)

=
(p+A)2

2M
+
M

2
(ω2

⊥ − ω2
c/4)(x

2 + y2), (2.14)

with ωc = ~k/(2Mw) the cyclotron frequency. This final expression is formally

equal to the single-particle part of Eq. (2.2), if we choose ωc = 2Ωrot, or to

the Hamiltonian of a charged particle in two dimensions under the influence of a

magnetic field B = (0, 0, B) described in the symmetric gauge. The field strength

B is given by B = ~k/(2w).

This equivalence holds only for H22, but does not forH11. Due to the off-diagonal

terms in Hsp, these two manifolds are coupled. Typical expected values of H12

and H21 are of the order of the recoil energy ER = ~
2k2

2M which gives the scale

for the kinetic energy of the atomic center-of-mass motion when it absorbs or

emits a single photon. If we consider ~Ω0 ≫ ER, this coupling is small, and we

can restrict ourselves to the low energy manifold. This limit is called adiabatic

approximation, as the internal dynamics is assumed to be fast enough to follow

the center of mass motion adiabatically. It means that, once prepared in the

lower state |Ψ2〉, the atoms will never be in the excited internal state |Ψ1〉.

However, the accessible range of Ω0 is limited if one wants to avoid undesired

excitations of atoms in the sample to higher levels and/or an unwanted laser

assisted modification of the atom-atom interaction. This seems to be a drawback

of all the proposals making use of a coupling of different atomic states. It it

thus important to check the validity regime for the adiabatic approximation. In

Chapter 4, we will study the influence of finite Rabi frequencies on the system’s

behavior by considering the high-energy manifold as a small perturbation. At

this point, however, we just assume that we can neglect it.
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There is a second weak point deserving discussion. Namely, in Eq. (2.3) we

did not consider the spontaneous emission of photons from the excited state,

which would lead to a decoherence of the photons. Certainly, this assumption is

only justified as long as the lifetime of the excited state is longer than the typical

duration of an experiment. This can, for instance, be achieved with Ytterbium or

some alkaline earth metals having atomic states with lifetimes of several seconds.

Other setups circumvent this problem without depending on long-lived atomic

states. Here we only mention a scheme where the geometric phase is inscribed

by a two-photon Raman coupling of three hyperfine states whose energies are

linearly shifted in one spatial direction by a Zeeman effect. With the frequencies

of the Raman lasers being far from a resonance with excited levels, no spontaneous

emission may occur. This scheme has already been implemented with 87Rb [38,

39], and has allowed for observing a few vortices.

2.3 Non-Abelian gauge fields

In order to motivate the idea of synthesizing magnetic fields by rotation, we have

been able to argue with the equivalence between Lorentz and Coriolis force. With

respect to the scheme based on atom-laser coupling, our arguments became more

abstract, as we had to resort to the Berry phase. As in this section we will turn

our attention to more general gauge fields, it seems to be indicated to go into a

bit more details.

2.3.1 Definition of non-Abelian gauge fields

From a mathematical point of view, a magnetic field is a U(1) gauge field, which

means that the gauge potential couples to a U(1) degree of freedom, i.e. the

phase of the particle: Assume the Schrödinger equation

HΨ(r) =
1

2M
(p+A)

2
Ψ(r) = EΨ(r), (2.15)
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which is solved by some complex function Ψ : RD 7→ C. The Schrödinger equation
remains invariant under gauge transformations

A → A+∇Λ(r), (2.16)

Ψ(r) → exp[− i

~
Λ(r)]Ψ(r), (2.17)

which locally change the phase of the wave function Ψ. Here, the gauge function

Λ and all elements of the gauge potential A are functions mapping the real spaceRD onto R.
Clearly, for more complex Hilbert spaces, we can think of more complex trans-

formations of this kind. For instance, let us consider the state |Ψ〉 as an n-spinor
Ψ(r) = (Ψ1(r), · · · ,Ψn(r))T with each component Ψi mapping from RD to C.
Apart from phase rotations, we then can also perform spin rotations described by

SU(n) matrices R, Ψ → RΨ. For simplicity, let us assume that R is a constant

matrix. It then passes through the derivatives, p = −i~∇, in the Hamiltonian

(2.15). But now also the elements ofA can generally be Hermitian n×n matrices,

which not necessarily commute with R. However, we get an invariance of (2.15)

under the gauge transformations

Ai → RAiR
−1, (2.18)

Ψ → RΨ. (2.19)

Such gauge potentials Ai which stem from gauge transformations described by

elements of a non-commutative group like SU(n) with n > 1, are called non-

Abelian gauge potentials. One then usually has

[Ai, Aj ] = AiAj −AjAi 6= 0, (2.20)

which is a more restrictive definition, since by demanding that the Ai belong to

a non-commutative group we do not assure that they do not commute.

We note that the global gauge transformation defined in Eqs. (2.18) and (2.19)

becomes trivial if R and all Ai commute, as Eq. (2.18) reduces to Ai → Ai. This

is equivalent to the fact that no Berry phase γ = 1
~

∮

A · dr is accumulated if

a particle moves on a closed contour within a constant Abelian gauge potential.

Or simpler: The gauge field B derived from a constant Abelian gauge potential

A is zero. From electrodynamics we are familiar with the relation B = ∇×A,

which reflects these observations.
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Figure 2.3: Closed loop along a square contour.

It is clear that we have to modify this relation for non-Abelian gauge fields. The

effect of a constant non-Abelian gauge potential is to rotate the spinor while

the particle moves on a trajectory in real space. The rotation axis depends on

the direction of the trajectory. To see that the non-commutativity of the gauge

potential yields a non-zero Berry “phase”, we assume a particle moving on an

infinitesimal square contour C. For instance, the particle might first make a small

step of length δ in positive x-direction, then a δ-step in positive y-direction, and

go back along x and y, cf. Fig. 2.3. Since δ is assumed to be small, we may

expand the effect of each step, e.g.

exp(iδAx)Ψ(r) = [1 + iδAx − 1

2
δ2A2

x +O(δ3)]Ψ(r), (2.21)

for a step along the positive x-axis, and the analogous expression with Ay for steps

along the y-axis. For backward steps, we have to take the complex conjugate.

For the closed contour C, we then find in the lowest non-vanishing order:

exp(i

∮

A · dr)Ψ(r) = [1 + δ2[Ax, Ay] +O(δ3)]Ψ(r). (2.22)

If we define a gauge field B = (0, 0, i[Ax, Ay]) and calculate the surface integral

of the contour C, exp[i
∫

S(C)B ·dS], we obtain, to lowest order, exactly the same

result. This motivates the general relation, according to which the gauge fields

are derived from a non-Abelian gauge potential:

B = ∇×A+ i
∑

ijk

ǫijkAiAjek, (2.23)
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with ǫijk the totally antisymmetric tensor. For Abelian A, the second term

vanishes, and Eq. (2.23) reduces to the formula known from electrodynamics.

On the other hand, the first term vanishes for constant gauge potentials.

Although the non-Abelian part of the gauge potentials which we will consider in

this thesis are always constant, we give, for completeness, the generalization of

the Eqs. (2.18) and (2.19) to space-dependent gauge potentials:

Ai → RAiR
−1 − 1

g
(∂iR)R

−1, (2.24)

Ψ(r) → RΨ(r). (2.25)

The gauge transformation reduces to the Abelian one of Eq. (2.16), if we set

R = e−
i
~
Λ(r) and the coupling constant g = i~.

The non-Abelian potentials in the focus of this thesis belong to the SU(2) group,

which is the most relevant non-Abelian gauge group in physics, as it describes

rotations of spin-1/2. Of course, for composite particles with larger spin, or for

the elementary quarks with a threefold color degeneracy, SU(n) gauge fields with

n > 2 also become relevant.

2.3.2 Synthesizing non-Abelian gauge fields

In the previous sections we have discussed two schemes for synthesizing magnetic

fields. The first was based on a rotation of the system, while the second one

mimicked the magnetic field by implementing a Berry phase due to an atom-laser

coupling. The latter scheme stands out due to its huge versatility. Especially, it

allows for synthesizing SU(n) gauge fields if there is an n-fold degenerate manifold

of dressed states.

We can achieve this within a so-called multipod scheme which couples n + 1

degenerate atomic ground states |gi〉 to an excited state |e〉 via laser fields with

complex Rabi frequencies κi(r). The energy spectrum of the dressed states |χi(r)〉
then has n states with energies E = 0, while the remaining two states have a finite

energy ±E with E =
∑

i |κi(r)|2 [32]. Within an adiabatic approximation, the

states at finite energy can be neglected. Then, the dynamics of the degenerate

manifold can, in full analogy to the Abelian case, be described in terms of a scalar

potential U and a vector potential A. However, now the potentials U and Ai are

n × n matrices. With Vtrap(r) being the external trapping potential, the gauge
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potentials are given by [40]:

Uij = 〈χi|Vtrap(r) |∇χj〉 , (2.26)

Aij = i 〈χi| ∇χj〉 , (2.27)

where in the latter we recognize the Berry connection due to the space-dependence

of the dressed states. With the proper choice of these spatial dependencies, which

are controlled by the laser fields, we can obtain a large variety of SU(n) potentials.

Considering a tripod scheme, explicit formulas relating the Rabi frequencies to the

resulting SU(2) gauge potentials have been derived in Ref. [40], where the focus

has been put on synthesizing magnetic monopoles. In this thesis we only consider

simple non-Abelian fields of the form A = (α ·σ+f(r)1, β ·σ+g(r)1, 0), with

f and g linear in r, and σ = (σx, σy , σz) the Pauli matrices. As shown in Ref.

[41], it is possible to achieve such gauge potentials within the scope of a tripod

scheme.

We note that a first experimental realization of an SU(2) gauge field has been

achieved recently within the group of I. Spielman [42], but there A ∼ (σy , 0, 0),

and thus the gauge potential is Abelian in the strict sense of Eq. (2.20).

2.4 Artificial gauge fields in optical lattices

For completeness we conclude this chapter by outlining a scheme to synthesize

gauge fields in optical lattices. The first proposal was made in Ref. [43] for

Abelian gauge fields in effectively two-dimensional optical lattices. Atoms in two

hyperfine states |g〉 and |e〉 are trapped in an optical lattice, in which along one

spatial direction, say x, the potential maxima for |g〉 coincide with the potential

minima for |e〉. This is possible by the proper choice of the laser polarization.

Then the internal state of the atoms alternates from site to site when going along

the x-direction. By choosing the trapping in x-direction strong enough, tunneling

in this direction is fully suppressed, but can be stimulated by two Raman lasers

in resonance with transitions between |g〉 ↔ |e〉. Tilting the lattice either by

accelerating it or by applying a real electric field induces an energy offset between

neighboring sites. From this follows that each laser is either in resonance with

a hopping in forward or backward direction. If the laser fields are plane waves

running in y-direction, the laser-induced hopping processes are associated with
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a phase factor e±iqy with q the wave number of the laser. This space-dependent

phase makes the atoms accumulate a Berry phase when moving through the

lattice, and effectively mimics a constant magnetic field perpendicular to the

lattice.

In Ref. [44], this scheme has been generalized to non-Abelian gauge potentials.

The basic ingredient for an SU(n) gauge field are n different Zeeman sublevels |gi〉
and |ei〉 with i = 1 . . . n. They represent the different internal states on which the

non-Abelian field may act. Since the resonance frequencies of transitions from

|gi〉 and |ei〉 will be different for each i, different phase factors e±iqiy are acquired.

However, this still does not lead to a non-Abelian gauge potential. We also need

a mechanism which transfers atoms from one into another internal state. Ref.

[44] proposes to do this by making also the hopping in y-direction laser-assisted,

such that it drives transitions |gi〉 ↔ |gj〉 and |ei〉 ↔ |ej〉.

For completeness, let us also mention some alternative routes to artificial gauge

fields in optical lattices: Instead of superposing “standard” optical lattice with

additional lasers modifying the tunneling process, it is also possible to implement

the artificial gauge field directly within the optical potential of the lattices. These

so-called optical flux lattices use laser configurations which apart from generating

a periodic scalar potential also couple different internal states, effectively yielding

a magnetic flux [45, 46]. Another scheme which has recently been implemented in

one dimension is the so-called “Zeeman” lattice, which arises from a combination

of Raman and radio-frequency coupling of Zeeman-split spin states [47]. While

all these methods involve the dressing of different internal states, driven optical

lattices have recently been proven feasible for realizing artificial gauge fields for

cold atoms without relying on any internal structure [48].
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Chapter 3

Quantum Hall effects - from

electrons to atoms

The integer quantum Hall effect (IQHE) discovered in 1980 by K. v. Klitzing,

G. Dorda, and M. Pepper [49] and the fractional quantum Hall effect (FQHE)

discovered two years later by D.C. Tsui, H.L. Stormer, and A.C. Gossard [20] have

become two of the most studied phenomena in solid state physics (cf. [18, 50]).

After 30 years, they still attract great deal of attention, as nowadays quantum

Hall physics is also explored in the field of quantum gases. In this chapter we

try to summarize the most basic facts about quantum Hall effects, with a focus

on the FQHE. For introducing these effects it seems to be most pedagogical to

refer to the electronic case. We afterwards dedicate a separate section to relate

the electronic FQHE to an atomic counterpart with dipolar interactions.

3.1 Introduction to quantum Hall effects

Originally, Hall effects are charge transport phenomena, and are thus best in-

troduced by considering electrons in a metal. The main ingredients of any kind

of Hall effect are a strong confinement of the electrons to a thin piece of metal

of thickness d, and a magnetic field B perpendicular to this plane. It is then a

well-known phenomenon that by applying an electric potential in x-direction, the

Hall voltage VH will be induced in y-direction. It is due to the Lorentz force which

27
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Figure 3.1: Hall resistance ρxy in x, y-direction for an electric field in x-
direction as a function of a perpendicular B-field. Measured in [51].

makes the electrons moving along x to drift along y. Just by considering a balance

between the Lorentz force and a Coulomb force which results from the induced

voltage, one finds the classical relation VH = −IB/(ned) with e the electron‘s

charge, I the current, and n the charge carrier density. This effect thus allows

to determine the number of charge carriers of a material, but for us the essential

part of this formula is the proportionality between VH and B, or better ρxy ∼ B,

where ρxy = Ey/jx is the Hall resistivity measuring the ratio between the induced

electric field Ey and the current density jx due to the applied potential.

By using, for instance, heterojunctions with a conducting layer confined between

two semiconductors, it is possible to get effectively two-dimensional electronic

systems. For sufficiently pure materials and at low enough temperature, there is

a regime of strong magnetic fields, where ρxy is no longer linear in B, but shows

its quantized nature, as it abruptly jumps between plateaus. This effect, shown

in Fig. 3.1, is called quantum Hall effect.

3.1.1 Integer quantum Hall effect

The values of the Hall resistivity on the plateaus is given by ρxy = 1
ν

h
e2 , where ν

can either be an integer or a fractional number p/q with p, q integer. This criterion

distinguishes phenomenologically between the integer and the fractional quantum

Hall effect, but it hides the fact that the two effects are based on quite different

mechanisms. Their remarkable common property, however, is the independence
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of ρxy from the specific material and its amount of impurities, which is a strong

hint for the topological nature of both effects.

For understanding the IQHE, we have to consider a gas of non-interacting elec-

trons. Within the given setup of a two-dimensional confinement and a perpen-

dicular magnetic field, the single-particle wave functions are harmonic oscillator

levels, which we can easily derive for a Hamiltonian given by Eq. (2.14). Here we

note that on the single-particle level, the only difference between the atomic and

the electronic case is the existence of an effective harmonic trap in Eq. (2.14). We

include this trap in our derivation, but we note that it can be switched off at any

point in the calculation just by choosing ω ≡
√

ω2
⊥ − ω2

c/4 = 0. For convenience,

our derivation is in the symmetric gauge, but with slight re-definitions all steps

can equally be carried out in other gauges.

It is useful to introduce complex coordinates z = x − iy, which we will keep

throughout the thesis. With this, the Hamiltonian reads, after setting ~ ≡ 1 and

M ≡ 1/2:

H = −4∂z∂z̄ + (B2 + ω2)/4zz̄ +B(z∂z − z̄∂z̄), (3.1)

with z̄ the complex conjugate of z. Now we define bosonic ladder operators [52]

â =
√

ΩB/8
(

z + 4
BΩ∂z̄

)

, (3.2)

b̂ =
√

ΩB/8
(

z̄ + 4
BΩ∂z

)

. (3.3)

with Ω =
√

1 + ω2/B2, and accordingly their Hermitian conjugates â† and b̂†.

With this, the Hamiltonian takes the form H = Ω+â
†â + Ω−b̂†b̂ + const. There

are two types of excitations, with energies given by Ω± = B(Ω±1). In general, we

have Ω− ≪ Ω+, or even Ω− = 0 in the absence of a trap. Thus, the excitations

characterized by m = 〈b̂†b̂〉 do not contribute much to the energy of a state,

which is basically given by the energy quantum number n = 〈â†â〉. For a state

|n,m〉, the excitation energy is by

En,m = nΩ+ +mΩ−. (3.4)

The quasidegenerate levels characterized by n are called Landau levels (LLs).

For an interpretation of the quantum number m, we derive the eigenfunctions by

applying the raising operators â† and b̂† to the vacuum, i.e. the state which is

destroyed by â and b̂. This state |0, 0〉 is given by a Gaussian exp[−zz̄/(4λ2)]
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where λ−2 = BΩ. We will in the following use λ as a unit for length, and

consider z a dimensionless quantity. The states of the lowest LL (LLL), obtained

by applying m times the operator b̂† to the vacuum, have the form

φFD0,m(z) ∼ zm exp(−zz̄/4). (3.5)

We shall refer to these functions φFDn,m as the Fock-Darwin functions. Within the

LLL, n = 0, the quantum number m represents angular momentum, as shown by

Eq. (3.5). For arbitrary LLs, the angular momentum is given by m− n.

First let us consider a system of electrons in a solid, i.e. without harmonic trap.

Then each LL has, in principle, an infinite degeneracy. However, one has to

take into account the finite size of the system. Obviously, this will truncate the

maximum angular momentum, so the degeneracy becomes finite [18]. The levels

are separated by an energy gap 2B, which usually is large enough to make a

completely filled LL inert. A completely filled LL then behaves as an insulator.

However, a contribution of an inert LL to the system’s conductivity may come

from the edge of the system. Indeed, the behavior there turns out to be significant,

as it is determined by topology and thus robust against impurities of the material.

To understand what this means, let us apply the following semi-classical picture:

Depending on the direction of the magnetic field, the motion of an electron may

either be right- or left-handed. This chirality is a constant of the motion, and thus

electrons at the edge of the sample can only be reflected in a forward direction.

Therefore, just like in a superconductor, there is no backscattering at impurities,

making the contribution of every filled LL to the total conductivity independent

from material properties. Thus, this conductivity quantum of each LL is found

to be given only in terms of fundamental constants, h/e2. We note that these

“superconducting” edges and the insulating bulk make quantum Hall samples

effectively behave in the same way as topological insulators [53–55], but in the

latter this behavior is caused by an intrinsic mechanism, the spin-orbit coupling,

while in quantum Hall samples the external magnetic field breaks time-reversal

symmetry and thereby imposes the chirality of the electrons.

To fully understand Fig. 3.1, we still have to note that increasing B amounts

to decreasing the Fermi energy. As long as the Fermi energy lies within the

gap between two LLs, the number of filled LLs remains the same, and thus the

transport behavior does not change. This is reflected in the plateaus of ρxy. A
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broadening of the density of states of each LL around the corresponding energy

is responsible for the shape of ρxy between the plateaus.

3.1.2 Fractional quantum Hall effect

The reasoning of the previous subsection cannot be carried over to Hall plateaus

at resistivities ρxy = 1
ν

h
e2 characterized by rational values of ν. Indeed, the

existence of such plateaus would rather be contradicted by the given arguments.

But they were based on the assumption of non-interacting electrons. Certainly,

the screening of the electrons by the positively charged background ions effectively

weakens the interactions, and in case of completely filled LLs, the gap between the

(non-interacting) ground state is much larger than typical interaction energies.

Interactions then will not essentially modify the ground state. Thus, in the integer

case, the previous reasoning indeed holds. The situation is different, though, for

partly filled LLs, where the non-interacting system has a huge degeneracy, and

interactions therefore cannot be considered in a perturbative way. However, it

happens at certain filling factors, which coincide with the fractional number ν

so far used to quantify the Hall resistivity, that the interacting ground state has

an excitation gap in the thermodynamic limit. From this follows an insulating

behavior of the electrons in the bulk of the system, and only at the edges where the

Fermi energy crosses the confining potential we have gapless states contributing

to the conductivity. The mechanism for fractional quantum Hall (FQH) physics

is therefore based on the existence of a strongly correlated, gapped ground state

at certain filling factors.

Still, the question is how to find the spectrum of the interacting system. As we

will describe in more detail in the next chapter, a common method to achieve

this is exact diagonalization. Very often, the states obtained by this numerical

method are compared with “guessed” candidates for the ground state and its low-

lying excitations. During the last three decades, an immense variety of different

approaches for guessing FQH states has emerged, including composite-particle

constructions where magnetic fluxes are attached to the charge carriers [56, 57],

Cherns-Simons-Ginzburg-Landau theories which formalize this flux attachment

in a field-theoretic manner [58], or conformal field theory [24, 59] deriving FQH

states from correlators of a conformal field theory.

In the remainder of this section, we will give an overview of important FQH

states.
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3.1.2.1 Laughlin state

The first and most famous FQH state was discovered in 1982 by R. Laughlin from

a simple variational ansatz [22]. This ansatz reads

ΨL = NL

∏

i<j

(zi − zj)
qe−

∑
i |zj |

2/4, (3.6)

where q is, a priori, the variational parameter, and NL is a normalization factor.

The exponential is common to all single-particle states and just fixes the center

of mass. The interesting part is the polynomial. As it contains only z and not z̄,

the wave function lives exclusively within the LLL. The degree of the polynomial,

depending on q, determines the total angular momentum L (always in this thesis

in units of ~):

L =
q

2
N(N − 1). (3.7)

On the other hand, angular momentum is related to the filling factor ν, specifying

the number of magnetic fluxes (or vortices) per particle. To determine the filling

factor of the Laughlin state, we note that due to the structure of the wave function

any particle feels the other particles as q vortices, such that ν = N/q(N−1) → 1/q

in the thermodynamic limit [60]. Thus, the filling factor fixes the variational

parameter q before performing the minimization of energy. What might seem to

be a deficit, just demonstrates the power of the Laughlin wave function. Indeed,

for most repulsive interactions it turns out that the form of Eq. (3.6) is already

a very effective choice for making the particles avoiding each other. For contact

interactions (thinking of bosons), it can be seen directly, that Eq. (3.6) is an

exact zero-energy eigenstate (not taking into account kinetic energy).

It is easy to see that the Laughlin wave function is (anti-)symmetric for even (odd)

values of q, which on the one hand allows for bosonic and fermionic realizations

of the Laughlin state. On the other hand, it also restricts the wave function to

the corresponding filling factors ν = 1/q. Luckily, the most pronounced plateau

which has been observed for electrons is found filling ν = 1/3, and thus can

be well described by the Laughlin wave function. We note, however, that for

Coulomb interactions, the Laughlin wave function is not the exact ground state,

but very large overlaps have been found between it and the exact ground state

obtained by numerical diagonalization of small systems [22, 61].
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This fact appears more natural if one is aware of the analogy to plasma physics

[22]. Let us therefore assume that the electrons form a classical one-component

plasma embedded in two dimensions. Since the positively charged ions are too

heavy to move, we consider them as a homogeneous background potential. Ne-

glecting the kinetic energy, the free energy F contains a part stemming from the

repulsive interactions of the electrons, F ∼ −∑i<j log |zi − zj |. The logarithmic

form is due to the dimensionality of the system, as it solves Poisson equation in

two dimensions. Interactions with the background contribute a term ∼ ∑

i r
2
i .

The partition function, Z ∼ exp(−βF) with β = 1/q, then is seen to have ex-

actly the same form as the quantum probability distribution of the electrons in

the Laughlin state, |ΨL|2 ∼ exp
[

2
q

∑

i<j log |zi − zj|+
∑

i r
2
i /2
]

.

This relation between the quantum state and a classical partition function is

particularly helpful in order to understand the physics of the system, especially

in order to guess the excitations of the system. They can be interpreted as

quasiholes pierced into the plasma, or alternatively as quasiparticles in form of a

local increase of the density. This quasiparticle character of the excitations makes

it natural for them to have an energy gap. Especially intriguing is their fractional

behavior: They have fractional charges, the qth part of the unit charge, and also

their quantum statistics does not fall in the usual categories of bosons or fermions,

where interchanging two particles yields a phase exp(inπ), with n an integer. In

the case of quasiholes or quasiparticles above the Laughlin state, n acquires the

value 1/q. Such an anyonic quantum statistics is only possible in two spatial

dimensions. While these properties have been derived in the thermodynamic

limit [25, 62], we will later analyze in detail the behavior of quasiholes above a

bosonic Laughlin state of only a few particles (see Chapter 5).

The analytic wave function for the state where one quasihole is pierced into the

Laughlin state reads [22]

Ψqh = Nqh

∏

i

(zi − ξ)ΨL, (3.8)

with Nqh a normalization factor and ξ the position of the quasihole. Similarly, a

quasiparticle state can be defined, if we replace in Eq. (3.8) the coordinates zi

by the derivatives ∂zi . In order to remain within the LLL, these derivatives shall

only act on the polynomial part of the wave function, i.e.

Ψqp = Nqpe
−

∑
i |zj |

2/4
∏

i

(∂i − ξ)
∏

i<j

(zi − zj)
q. (3.9)
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It is straightforward to generalize these expression to states with more than one

excitations. For two quasiholes we have

Ψ2qh = N2qh

∏

i

(zi − ξ1)
∏

j

(zj − ξ2)ΨL. (3.10)

3.1.2.2 Moore-Read state and Read-Rezayi series

The Laughlin states can describe systems at filling 1/q with q odd if the system

is fermionic, or q even for bosonic systems. A very prominent FQH plateau,

however, is found in electronic systems at filling ν = 5/2, and thus cannot be

described with Laughlin’s variational wave functions.

It has then been noted by G. Moore and N. Read [24] that the fermionic Laughlin

wave functions can be interpreted as a Bose-condensation of composite particles

built up by the original fermionic particle and magnetic fluxes attached to it. For

this composite particle to be a boson, the number of fluxes has to be odd, which

restricts the filling factor to odd denominators. However, also pairs of composite

fermions should be able to condense, which motivated the so-called Moore-Read

(or Pfaffian) wave function

ΨMR = NMR Pf

(

1

zi − zj

)

∏

i<j

(zi − zj)
qe−

∑
i |zj|

2/4, (3.11)

where Pf denotes the Pfaffian determinant of a skew-symmetric N × N matrix.

It is given by

Pf (Mij) =
1

2N/2(N/2)!

∑

σ∈SN

sgnσ

N/2
∏

k=1

Mσ(2k−1),σ(2k). (3.12)

Here, σ denotes the elements of the permutation group SN of N objects. In Eq.

(3.11), the Pfaffian acts as a pairing function, while the rest of the wave function

describes a Laughlin state with exponent q. In each term of the sum over σ the

N particles are divided in N/2 pairs, and for every pair, one zero of the form

zi − zj is taken out from the Laughlin part by multiplication with the Pfaffian.

The total angular momentum is thus given by

L =
q

2
N(N − 1)− N

2
=
q

2

[

N(N − 1− 1

q
)

]

. (3.13)
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Since the Pfaffian yields a fully antisymmetric factor, the Laughlin part has to be

(anti)symmetric for fermions (bosons), i.e. q has to be odd for bosons, while even

for fermions. As for the Laughlin state, the filling factor is given by ν = 1/q, but

for fermions it may also describe a half filled LL on top of completely filled LLs,

e.g. ν = 5/2.

Let us put some attention to the simplest bosonic case with q = 1. The Laughlin

part of Eq. (3.11) has one first-order zero on every pair, but each term in the

pairing function takes out one zero for every of the N/2 pairs. This means that

in every term of the wave function each particle shares a zero with all other

particles, except for exactly one particle with which it is paired. Thus, oppositely

to the bosonic Laughlin wave function, the bosonic Moore-Read function is not

a zero-energy eigenstate of two-body contact interaction, but the wave function

must vanish whenever three particles come together. It is an exact zero-energy

eigenstate of three-body contact interaction.

Generalizing this idea of pairing composite particles, N. Read and E. Rezayi [59]

proposed a series of states which are exact zero-energy eigenstates of (k + 1)-

body contact interaction by clustering the particles into groups of k particles.

For k = 1, this is just the Laughlin state. Clusters of k = 2 particles yield the

Moore-Read state. For general k, one gets so-called parafermionic states which

have filling factors ν = k/2. The corresponding wave functions are symmetric.

Subsequently, these states can be generalized to filling factors ν = k/(Mk + 2),

with k ∈ N and M ∈ N0. The wave functions are symmetric for M even, and

antisymmetric for M odd.

Although for bosons the most relevant situation is M = 0, which is nicely illus-

trated by the property of vanishing interaction energy in (k + 1)-body contact

potentials, we should briefly mention the more general derivation based on a for-

mal framework [24, 59]: Namely, the particles are expressed by vertex operators

exp[iqφ(z)] of a conformal field theory. The φ(z) are free scalar fields in two di-

mensions, characterized by the correlator 〈φ(z)φ(z′)〉 = − log |z − z′|. While the

correlator 〈: exp[iqφ(z1)] : . . . : exp[iqφ(zN )] :〉, with : : denoting a normal order-

ing, is then found to reproduce the Laughlin state, an additional clustering field

is needed in the Read-Rezayi case. This additional field, Ψ, obeys a Zk algebra,

i.e. it is a parafermionic field. For k = 2, this field describes massless Majorana

fermions, which are characterized by 〈Ψ(z)Ψ(z′)〉 = (z − z′)−1. Then, the cor-

relator 〈Ψ(z1) : exp[iqφ(z1)] : . . .Ψ(zN ) : exp[iqφ(zN )] :〉 yields the Moore-Read

wave function, Eq. (3.11). The algebra of the conformal field theory determines
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the statistics of the quasiparticles, and it can be shown, that all states of this

Read-Rezayi series which have the parafermionic field (i.e. with k > 1) support

excitations with a non-Abelian quantum-statistics.

The mechanism for the non-Abelian character of quasiholes is pairing (in the

Moore-Read case) or clustering (in the Read-Rezayi case) of particles. Without

applying the formal machinery involved in the CFT derivation, we can follow the

argument of Ref. [24], which demands that a quasihole in the Moore-Read state is

single-valued only when it encircles a pair of composite particles. This allows for

excitations carrying half-flux. As we can add only full quanta of flux, at least two

quasiholes must be created. Different from Eq. (3.10) for Laughlin quasiholes,

each Moore-Read quasihole thus demands a prefactor which introduces relative

angular momentum only with respect to half of the particles. This suggests the

following wave function [24, 63, 64]:

Ψ2qhMR ∼ Pf

(

(zi − ξ1)(zj − ξ2) + i↔ j

zi − zj

)

∏

i<j

(zi − zj)
qe−

∑
i |zj|

2/4. (3.14)

Generalizing this formula to four quasiholes, it is seen to be no longer unique:

Within the Pfaffian, we could pair the quasiholes 1 and 2 with particle i, while

quasiholes 3 and 4 are paired with particle j, but also 1 and 3 (or 1 and 4)

could form pairs with i, and correspondingly 2 and 4 (or 2 and 3) would have to

be paired with j. It has been shown that from this three choices, only two are

linearly independent, which results in a two-fold degeneracy of the Moore-Read

state with four quasiholes. It is the existence of this degenerate manifold which

allows for a non-Abelian structure when particles are braided, i.e. interchanged

[24, 63].

3.1.2.3 Spinful FQH states and NASS series

The Laughlin state and all other states of the Read-Rezayi series describe spinless

particles, or particles in a spin-polarized configuration. In the “real” quantum

Hall effect, i.e. where the particles are charged and feel a true electromagnetic

field, the latter will indeed tend to polarize the particles’ spin, as a consequence

of the Zeeman splitting gµBB, with µB the Bohr magneton. Taking the g-factor

of free electrons and the free electron mass, this splitting is as large as the LL

gap. However, g is typically much smaller than 2 for electrons in a solid, and the
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effective mass might be heavily increased. Both effects together yield a gyromag-

netic ratio as small as 0.02 in GaAs [65]. This has, since the early days of FQHE,

motivated to formulate also spin-unpolarized wave functions. For the FQHE with

cold atoms, where spin is a pseudospin, represented by different internal atomic

states, the occurrence of spinful FQH states is natural.

A generalization of the Laughlin wave function to systems with spin was given

by B. I. Halperin [66]:

ΨH = NH

N↑
∏

i<j

(zi↑ − zj↑)
m

N↓
∏

k<l

(zk↓ − zl↓)
m′ ∏

i,k

(zi↑ − zk↓)
ne−

∑
i |zi|2/4. (3.15)

States described by a wave function of this form are usually called (m,m′, n)

Halperin states. It is easy to see that the orbital part of this wave function

reduces to the Laughlin wave function with ν = 1/m, if we choose m = m′ = n.

It is obvious that, if m, m′, and n are larger than zero, the (m,m′, n) Halperin

states are states with zero interaction energy in a two-body contact potential.

To be bosonic, symmetry demands m and m′ to be even, while no restriction

exists for n, as it is the exponent of coordinate differences (zi↑−zk↓) belonging to

particles which are distinguishable due to their spin. Thus, the (2, 2, 1) Halperin

state, having ν = 2/3, corresponds to the ν = 1/2 Laughlin state in the sense that

it is the bosonic state of lowest angular momentum being a zero-energy eigenstate

of two-body contact interactions. It is the unique ground state, if the interaction

is repulsive between all particles, and for N↑ = N↓. This directly implies that

the z-component of spin is zero, Sz = N↑−N↓ = 0. Due to the uniqueness of the

ground state, this requires also the total spin to vanish, S2 = 0, i.e. the system

forms a spin singlet.

It is then possible to repeat the procedure of the previous subsection, but instead

of considering spin-polarized configurations, demand the states to be spin singlets.

This had led to a generalization of the whole Read-Rezayi series, known as the

non-Abelian spin singlet (NASS) series [67, 68], characterized by the filling ν =
2k

2kM+3 with k ∈ N and M ∈ N0. The term “non-Abelian” refers to the nature

of the excitations. Just like in the Read-Rezayi series, the excitations are still

Abelian for k = 1, i.e. in the Halperin state, but for any k ≥ 2, non-Abelian

excitations are supported.

As for the Read-Rezayi series, all states of this series with M = 0 are unique

zero-energy eigenstates of repulsive (k + 1)-body contact interactions. We will



38 Chapter 3. Quantum Hall effects - from electrons to atoms

further study these states in Chapter 7 on a torus geometry. Due to the non-

trivial topology of this surface, so-called topological degeneracies arise, which,

together with the filling factor, allow to characterize the NASS phases.

In the following, we come back to the simplest FQH state, the Laughlin state. We

are interested in the “smoothest” connection between the electronic FQHE and

atomic realizations. Therefore we will now consider a setup of fermionic atoms

with dipolar interactions.

3.2 Laughlin states of dipolar atoms

Using fermionic atoms with polarized spin, the Pauli principle prohibits two atoms

to be at the same position, so there will not be contact interactions except for

the quantum-statistical ones. Instead, however, we might assume that the atoms

have an electric dipole moment, which causes interactions. In two dimensions,

the dipole interaction becomes formally similar to the Coulomb interaction if we

align the dipoles perpendicular to the plane. Then there are no anisotropy effects,

and the dipoles just repel each other according to the dipole-dipole potential

Vdd =
∑

i<j

d2

|zi − zj|3
, (3.16)

with d the dipole moment. The only difference to the Coulombic case ∼ 1/r is the

cubic decay with distance. We may thus assume that the correlations induced by

the dipolar interaction are similar to the ones due to Coulomb interaction, which

are well described by the Laughlin wave function. Especially, since the dipolar

interaction has a shorter range, the Laughlin wave function can be expected to

even better agree with the exact ground state of a dipolar system than it does in

the case of electrons.

An essential difference, however, distinguishing the Coulombic case from the dipo-

lar one, is the absence of a background potential in the latter. In the solid, to have

electroneutrality, every electronic charge is compensated by a positively-charged

ion. Due to the low mobility of the ions, one usually thinks of this potential as

a homogeneous background potential. It is easy to see that a Coulombic system

requires such a potential. Namely, we can think of the Laughlin state as a homo-

geneous liquid and assume that particles sufficiently far from each do not have

any correlations. Then, the large-distance contribution to the potential energy
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per particle, U , has the following asymptotic behavior

U ∝
∫ ∞

R0

V (r)rdr, (3.17)

with some lower bound R0 > 0. For a Coulombic 1/r potential this integral

diverges, so a screening background is necessary to stabilize the system. For the

dipolar 1/r3 potential, no contributions stem from the upper limit of the integral,

i.e. there are no interactions on large distances.

3.2.1 Quasihole excitation gap

Having the analytic expressions for the ground state and excited states, Eqs. (3.6)

and (3.8), we can evaluate the excitation gap. For instance, one can perform clas-

sical Monte Carlo and just sample over different configurations of the coordinates

z1, . . . , zN . Hereby, one starts with a random configuration and calculates its

energy, U =
∑

i<j V (zi, zj). An algorithm, e.g. the Metropolis algorithm [69],

generates new configurations and, depending on their probability given by the

corresponding wave function amplitude, accepts them or not. This procedure al-

lows for evaluating expectation values for a given wave function. The so-obtained

energy can be crosschecked with the one obtained by exact diagonalization studies

[70].

An elegant way to approximate the gap has been developed by S. Girvin [60, 71],

using analytic expressions for the density-density correlation functions of the

Laughlin state, g0(z1, z2), and the quasihole state, gqh(z1, z2). The standard

definition of these quantities reads

g(z1, z2) =
∑

ijkl

φ∗i (z1)φ
∗
j (z2)φk(z1)φl(z2) 〈Ψ| ĉ†i ĉ†j ĉk ĉl |Ψ〉 , (3.18)

for an arbitrary N -body state |Ψ〉, with φi a single-particle basis, and ĉi (ĉ†i )

the corresponding annihilation (creation) operators. Such a correlation function

quantifies, for a given state |Ψ〉, the probability of finding a pair of particles at

positions z1 and z2. Thus, the two-body interaction energy can be evaluated as

U = 1
2

∫ ∫

dz1dz2 g(z1, z2)V (z1, z2). The energy difference between the quasihole

and the Laughlin state in a dipolar potential is thus obtained by evaluating the
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following integral

∆ =
1

2

∫

d2z1

∫

d2z2 Vdd(z1, z2) [gqh(z1, z2)− g0(z1, z2)] . (3.19)

The problem hereby is that, despite the knowledge of analytic expressions for the

states, closed analytic expressions for g0 and gqh are unknown. This is where

the key idea of Ref. [71] comes into play: It relates the correlation function of

the Laughlin state with the one of a homogeneous one-component plasma, which

allows for finding an approximation for g0(z1, z2). The assumed homogeneity

implies the thermodynamic limit, i.e. N → ∞ particles. Explicitly, the plasma

analogy then yields the expression [71]

g0(z1, z2) =
ν2

(2π)2

(

1− e−
|z1−z2|2

2 − 2
odd
∑

j

Cj

4jj!
|z1 − z2|2j e−

|z1−z2|2

4

)

. (3.20)

From this expression for the Laughlin state, also the correlation function, gqh of

the quasihole system has been derived [60]. Therefore one has to push a particle

from the center to the “edge” of the infinite system, i.e. remove the particle. One

explicitly obtains [60]

gqh(z1, z2) =
ν2

(2π)2

[ 2
∏

j=1

(

1− e−
|zj |2

2

)

− e−
|z1|2+|z2|2

2

(

∣

∣

∣e
z1z̄2

2 − 1
∣

∣

∣

2

+ 2
odd
∑

j

Cj

4jj!

∞
∑

k=0

|Fj, k(z1, z2)|2
4kk!

)]

, (3.21)

Fj,k(z1, z2) =
z1z2
2

j
∑

r=0

k
∑

s=0

(

j

r

)(

k

s

)

(−1)rzr+s
1 z

j+k−(r+s)
2

√

(r + s+ 1)(j + k + 1− (r + s))
. (3.22)

Using these expressions, the gap of a dipolar system according to Eq. (3.19) has

first been calculated in Ref. [72]. There, a huge gap has been claimed. Redoing

the calculation, however, we find a much smaller number, published in Ref. [73].

Furthermore, the absence of a background potential in the dipolar system turns

out to be a delicate issue. For obtaining a positive gap at all, the thermodynamic

quasihole state has to be properly defined. Before continuing with the evaluation

of Eq. (3.19), we discuss this subject in the following subsection.
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3.2.1.1 Different types of quasiholes

In a finite system, we can think of creating a quasihole in three different ways

[60, 70]:

(i) by increasing the area of the system at constant particle number,

(ii) by reducing the particle number,

(iii) by changing the magnetic field at constant particle number and constant

area.

We will have to specify which kind of quasihole should be considered in order to

define the quasihole excitation gap. Since the first two possibilities either lower

the number of particles or their density, we should expect also a lowered inter-

action energy within the quasihole state. In an electronic system, the positively

charged background (partly) compensates these losses, resulting in a positive en-

ergy gap for any of the three definitions [60, 70]. Contrarily, in the dipolar case,

energy “gaps” defined according to (i) or (ii) will turn out to have a negative

sign. The only meaningful definition for the energy gap then is according to (iii).

The energy of a quasihole should be compared with the ground-state energy while

the system remains with the same number of particles occupying the same area,

similarly to the definition of the quasihole excitation energy in a normal Fermi

system.

If λ is kept constant, the correlation function given by Eq. (3.21) describes a

quasihole according to (ii). This is seen by noticing that sufficiently far from

the edges the density of the quasihole state has the form nqh(z) = nL[1 −
exp(−|z|2/2λ2)], while the Laughlin state has the uniform density nL = ν/2πλ2,

see Ref. [60]. From this we find that the difference in the number of particles for

the states (3.6) and (3.8) in a finite area around the origin with the size much

larger than λ is simply ν. In the finite-size expressions, Eqs. (3.6) and (3.8), these

particles are pushed to the edge of the system, resulting in a quasihole according

to (i). The expressions from Eqs. (3.20) and (3.21) consider the thermodynamic

limit. In infinite systems, pushing particles to the edge is equivalent to removing

them from the system. Thus, the calculation in the following subsection, based on

these thermodynamic expressions, will yield a “gap” according to the definition

(ii), i.e. ∆ = E
(N−ν)
qh − E

(N)
0 . This gap compares the energy of N − ν particles

in a quasihole state with the energy of N particles in the Laughlin state.
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Fortunately, we are able to easily relate this quantity to the gaps according to

(i) and (iii). We therefore write E0 = Nǫ0, where ǫ0 is the energy of one particle

in the Laughlin state. This quantity can readily be evaluated by substituting

z− ≡ z1 − z2 in Vdd(z1, z2) = V (z−) and in g0(z1, z2) = g0(z−). The energy is

then obtained by the integral:

ǫ0 =
(2π)2

2ν

∫ ∞

−∞
dz− g0(z−)Vdd(z−). (3.23)

Demanding a constant particle number, we may re-define the gap as

∆N ≡ E
(N−ν)
qh − E

(N−ν)
0 = ∆+ νǫ0. (3.24)

This definition describes a quasihole created according to (ii). However, as argued

before, apart from a fixed particle number, we should also demand a fixed volume.

Therefore we notice that each Landau state occupies an area ∝ λ2. For the

Laughlin state with N particles to occupy the same area as the quasihole state

with N particles and one quasihole, we thus have to modify the length scale λ′

of the excited state according to:

λ′2

λ2
=

N

N + ν
. (3.25)

Now we have to note that the energies in the dipolar system scale with λ−3.

Since we wish to compare states at different magnetic fields, we define the gap at

constant particle number and constant volume as:

∆V

λ3
=
E

(N)
qh

λ′3
− E

(N)
0

λ3
. (3.26)

By noticing that

E
(N)
qh

λ′3
=

(

∆
λ3

λ′3
+Nǫ0

λ3

λ′3

)

N

N − ν
, (3.27)

and approximating N/(N−ν) ≈ (N+ν)/N for large N , we find with Eq. (3.25):

∆V = ∆+
5

2
νǫ0. (3.28)

According to our reasoning above, this quantity is the relevant gap for a quasihole

of type (iii).
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3.2.1.2 Evaluation of the gap

Now we evaluate the integral in Eq. (3.19), making use of the expressions given

by Eqs. (3.20) and (3.21). First, we shall specify the coefficients Cj in Eqs. (3.20)

and (3.21). It is shown in Ref. [71] that by setting all Cj = 0, a system with

a completely filled Landau level is described, ν = 1. For this choice of Cj , the

resulting correlation functions are denoted by g
(1)
0 and g

(1)
qh . In order to have a

FQHE, we need a fractional filling, ν = 1/q, which requires the coefficients Cj

with j ≤ q to be non-zero. For fermions, the most robust effect is expected for

ν = 1/3, where the choice C1 = 1 and C3 = −1/2 is best suited. We call the

corresponding correlation functions g
(3)
0 and g

(3)
qh , and also define for convenience

the differences Σ0 ≡ g
(3)
0 − g

(1)
0 and Σqh ≡ g

(3)
qh − g

(1)
qh .

Turning now to the integral in Eq. (3.19) with ν = 1/3, we note that in

the Abelian limit it reduces to the one considered in Ref. [72]. As our nu-

merical result, however, drastically differs from Ref. [72], a careful analysis

is of order. Therefore we split the integral Eq. (3.19) into two parts, P1 ≡
∫

dz1
∫

dz2 Vdd(g
(1)
qh −g

(1)
0 ), which is analytically solvable, and P2 ≡

∫

dz1
∫

dz2 Vdd

(Σqh − Σ0), which we treat numerically.

For the analytic part we find P1 = −
√
2π/ν2 d2

λ3 . Note that for ν = 1, this

negative number would be the full, completely analytic result for the energy

difference ∆ defined in Eq. (3.19). This clearly shows what we have anticipated

in the beginning of this section, namely that this definition is not the appropriate

one for the energy gap in a dipolar system.

Before we evaluate P2 numerically, we examine the asymptotic behavior of the

integrand. As the divergence in the interaction term for z1 → z2 is compensated

by the vanishing of the correlations, this limit can easily be handled by a regu-

larization of the integral. The limit of z+ ≡ z1 + z2 → ∞, however, turns out to

be problematic: For finite particle distance, |z1 − z2| < ∞, this contribution is

not suppressed by the interaction, and the convergence of the integral Eq. (3.19)

requires that Σ0 and Σqh have the same asymptotic behavior. However, the

completely different structure of both functions obscure the latter. Contrariwise,

we should note that if we truncate the infinite sum in Σqh, stemming from the

s-sum in Eq. (3.22), this expression gets exponentially damped for large center-

of-mass coordinates, while Σ0 depends only on the relative coordinates, yielding

Σ0 − Σqh 6= 0 for |z+| → ∞.
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To circumvent this problem, we bring Σ0 to a form similar as Σqh, which is

possible by factoring out a damping exp[−(|z1|2+ |z2|2)/2] and Taylor expanding

the remaining exponential exp[|z+|2]. We are then able to write

Σ0(z1, z2) = e−
|z1|2+|z2|2

2

∑

j

−2Cj

4jj!

∞
∑

k=0

|F (0)
j,k (z1, z2)|2

4kk!
, (3.29)

F
(0)
j,k (z1, z2) =

k
∑

r=0

k
∑

s=0

(

j

r

)(

k

s

)

(−1)j−rzr+s
1 z

j+k−(r+s)
2 . (3.30)

As now each term in both Σ0 and Σqh is damped by a factor exp[−(|z1|2+|z2|2)/2],
they all vanish in the limit |z+| → ∞, and we may truncate the infinite sums at

a sufficiently large value of k. Note that due to the different orders in z1 and z2

of Fj,k in Eq. (3.22) and F
(0)
j,k in Eq. (3.29), the sum in Σ0 should contain two

more terms than the sum in Σqh for a quick convergence.

Now we are able to perform the numerical integration. The error due to the

truncation still is 5% for 10 terms, but can be minimized by a finite-size analysis

of our results taking into account up to 25 terms. We then find P2 = (0.1875±
0.0010) d

2

λ3 . With this, we find ∆ = 0.5(P1 + P2) = −(0.0455± 0.0010) d
2

λ3 . As we

have already argued before, this negative value is due to the reduced density of

the system.

We continue with calculating the gap as defined in Eq. (3.24). Therefore we have

to evaluate the integral Eq. (3.23). We obtain ǫ0 =
√
π

2ν

(√
2
2 − 15

32

)

d2

λ3 . Plugged

into Eq. (3.24), we find that also ∆N < 0. The negative value for ∆N can

be understood by noticing that the particle taken away at the origin now has

been added at the edge of the system. Accordinly, the volume of the system has

increased, so ∆N corresponds to the energy of a quasihole according to (ii). As

long as such a process is possible, the system is unstable as it tries to reduce its

density by diluting.

Finally, we turn to definition Eq. (3.28). Only in this case, we obtain a positive

gap, ∆V = (0.0132± 0.0020) d
2

λ3 , which however is much smaller than the number

found in Ref. [72], (0.9271±0.019) d
2

λ3 , but compares well with the gap obtained via

exact diagonalization of a small dipolar system in Ref. [74], where the discrepancy

to Ref. [72] has been attributed to the different system size. The deviation of

our result from the one obtained in Ref. [72] is due to the different handling

of the infinite sum in Eq. (3.22). By the method described here, based on

the expansion of Eq. (3.20) into Eq. (3.29), the correct asymptotic behavior of
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g0−gqh is guaranteed for arbitrarily large variables z1 and z2 even after truncating

the sum. The opposite is true if one just truncates the sum in Eq. (3.22) and

leaves g0 as defined in Eq. (3.20). As argued above, the latter always produces

wrong results for large center-of-mass coordinates, such that the validity of the

integrand in Eq. (3.19) is restricted to a finite regime around the hole. It turns

out that a very large number of terms would have to be taken into account, in

order to capture the whole regime which substantially contributes to the integral.

3.2.2 Laughlin state and quasihole gap in non-Abelian gauge

fields

As mentioned in Chapter 2, with cold atoms we can do more than just mimicking

magnetic fields. It is also possible to design gauge fields, which, apart from

multiplying a local U(1) phase to the wave function, rotate the state if it has some

internal structure. We will now consider atoms with two internal states, described

by a two-component spinor. Additionally to the Abelian gauge potential, which

we leave as before, we consider also a non-Abelian gauge potential, which we

assume to be constant in space and which can be expressed in terms of the Pauli

matrices σx and σy:

AnA = (ασx + βσy , γσx + δσy). (3.31)

We may interpret such a gauge potential as a coupling of the (pseudo)spin to the

orbital movement of the atoms, if we properly choose the parameters α, β, γ,

and δ. Choosing β = −γ and α = δ = 0, the gauge potential describes a Rashba

coupling [75]. For α = −δ and β = −γ = 0, we have a Dresselhaus coupling

[76], see also Chapter 7. We will first derive, for this general gauge field, the

Hamiltonian in terms of the previously defined ladder operators â, â†, b̂, and

b̂†. We will then make a particular choice, in which we obtain squeezed LLs, and

thus a squeezed Laughlin state. Then we repeat the above calculation in this new

scenario, which will demonstrate that such a squeezing increases the gap above

the Laughlin state, and thus stabilizes this state.

3.2.2.1 Hamiltonian structure

Up to an irrelevant constant, the presence of a non-Abelian gauge potential will

not modify the Abelian part of the Hamiltonian, H , given by Eq. (3.1). Including
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the non-Abelian part, we get

HnA = H1+ σx [2αpx + 2γpy − αBy + γBx]

+σy [2βpx + 2δpy − βBy + δBx] . (3.32)

If α, β, γ, δ ∈ R, the Hamiltonian is Hermitean. We then define

HnA ≡
(

H H↑↓

H†
↑↓ H

)

, (3.33)

with

H↑↓ =∂x(−2iα− 2β) + ∂y(−2iγ − 2δ) + y(−αB + iβB) + x(γB − iδB)

=

√

B

2Ω

{

(−iα+ β + γ + iδ)
[

â(1 + Ω) + b̂†(1− Ω)
]

+ (iα− β + γ + iδ)
[

â†(1 + Ω) + b̂(1− Ω)
]}

. (3.34)

In the second line we have used the definitions from Eqs. (3.2) and (3.3). Op-

positely to the diagonal elements, which are quadratic, i.e. given in terms of â†â

and b̂†b̂, the off-diagonal terms in the Hamiltonian are linear in the operators and

will thus mix different levels. In the trapped system, with 1 − Ω− 6= 0, we have

no solution for this Hamiltonian, but without trap the situation becomes analyt-

ically treatable, as the Hamiltonian will not any longer depend on the operators

b̂, b̂†.

The situation becomes particularly easy if we choose an isotropic configuration

with either −iα+ β + γ + iδ = 0 or iα− β + γ + iδ = 0. Then each off-diagonal

element depends either on â or on â†, but not on both. With this, the Hamiltonian

is a Jaynes-Cummings-type Hamiltonian, and the solutions are easily found. They

are given in Ref. [41], and are just spinors of the form (c↑ |n,m〉 , c↓ |n− 1,m〉)T ,
with c↑,↓ some coefficients which have to be properly chosen. This will be done

in Chapter 6, where we consider two-component Bose gases. In this chapter,

we will focus on an unpaired solution of the form (0, |0,m〉)T . Note that this

solution has higher energy than the lowest paired level with n = 1, but as we deal

with fermions, we can choose the Fermi energy in such a way that the unpaired

level becomes the lowest, not completely filled energy level. With that choice for

the LLL, the non-Abelian system becomes, up to a constant shift in the energy,

equivalent to the spinless case discussed in Section 3.2.1.
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3.2.2.2 Squeezing transformation

This equivalence between the Abelian and the non-Abelian problem holds only

in the isotropic case. Now we wish to focus on anisotropic configurations in the

non-Abelian gauge field. To make the off-diagonal elements H↑↓ real, we may

choose α = δ = 0. Anisotropic configurations are then defined by β + γ 6= 0 and

β − γ 6= 0. With this, H↑↓ depends on â and â†.

For the low-energy physics in such a configuration, Ref. [77] has pointed out that

the isotropic case is related to the anisotropic one through a squeezing transfor-

mation:

Ŝ(ξ) = exp[
ξ

2
(â2 − â† 2)], (3.35)

ξ = −tanh−1

(

γ − β

γ + β

)

, (3.36)

The eigenstates of the anisotropic Hamiltonian can then be obtained from the

isotropic solutions by applying Ŝ. Accordingly, the solutions have the same form

as before, but now the spinors explicitly read (c↑Ŝ† |n,m〉 , c↓Ŝ† |n− 1,m〉)T for

the paired solutions. We will focus on the unpaired solution, which is given by

(

0, Ŝ(ξ)† |0,m〉
)T

=
(

0, Ŝ(ξ)†[zm exp(−|z|2/4)]
)T

. (3.37)

Choosing the Fermi energy such that this level is the LLL, the only modification

with respect to the Abelian case enters through the squeezing transformation.

Note that this squeezing transformation is effectively given by just replacing the

original variables z by squeezed ones z̃:

[

z ≡ x− iy
]

→
[

z̃(ξ) ≡ cosh ξ z − sinh ξ z̄
]

. (3.38)

3.2.2.3 Gap above squeezed Laughlin state

The many-body states are obtained by filling the LLL, so they are equally affected

by the squeezing. Thus, we can easily adapt the Laughlin wave function and the

quasihole wave function, Eqs. (3.6) and (3.8), to the anisotropic scenario by

making the replacement Eq. (3.38). Accordingly, also the correlation functions

Eqs. (3.20–3.22) hold, if we make the same substitution. The gap, as defined

in Eq. (3.19), becomes a function of the squeezing parameter ξ. It is explicitly
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Figure 3.2: The gap ∆V at constant volume and constant particle number as
a function of the squeezing parameter ξ: The dots are obtained by a numerical
evaluation of Eq. (3.19) for different ξ, a fit of this data yields the solid line.
From: [73].

given by the integral

∆(ξ) =
1

2

∫

d2z1

∫

d2z2 Vdd(z1, z2) [gqh(z̃1(ξ), z̃2(ξ)) − g0(z̃1(ξ), z̃2(ξ))] . (3.39)

In the same way, we generalize the ground-state energy defined in Eq. (3.23)

to be a function ǫ0(ξ) of the squeezing parameter. Following the derivation of

Section 3.2.1.2, we finally arrive at the equation ∆V (ξ) = ∆(ξ) + 5
2νǫ0(ξ).

The calculation of Section 3.2.1.2 applied to a system with finite squeezing ξ is

similar as before, but now the whole integral has to be solved numerically. Again

we find negative values for ∆(ξ) and ∆N (ξ), which even decrease with larger ξ.

However, as also the ground-state energy ǫ0(ξ) increases with ξ, the gap ∆V (ξ)

at constant particle number and constant volume finally has a positive balance

for all ξ. As shown in Fig. 3.2, it increases with ξ, and a convenient fit to the

numerical data is found to be:

∆V (ξ) = ∆V (0) exp
(

α ξ2
)

. (3.40)

We obtain α = 0.529 and ∆V (0) = 0.0152 d2/λ3.

To understand this behavior, we note that the squeezing allows the particles to

get closer in one direction, while the particle distance is increased in the other

direction. Due to 1/r3 behavior of the dipole-dipole interaction, the interaction

energy is much more sensitive to changes of the density distribution at short
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distances rather than at large ones. Thus, compressing in one direction and

stretching in another one increases the interaction energy. As a consequence of

Eq. (3.28), this gives rise to a bigger energy gap.

We thus conclude that non-Abelian gauge fields may allow for achieving a more

robust Laughlin state, if they are used to introduce an anisotropy squeezing the

states.





Chapter 4

Fractional quantum Hall

states of laser-dressed

bosons

In the previous chapter the FQHE was introduced as a strongly correlated phase

of matter which can be described by analytic wave functions like the Laughlin

wave function, Eq. (3.6), or the Moore-Read wave function, Eq. (3.11). We

assumed that, due to the similarity between dipolar and Coulomb interaction,

fermionic atoms in an artificial gauge field exhibit a FQHE just like electrons in a

magnetic field. We thus described such a system by the Laughlin wave function,

which allowed us to evaluate its energy gap in the thermodynamic limit, as a

benchmark of experimental feasibility.

We have not checked up to which degree and under which circumstances atoms

in artificial gauge fields can indeed be described by the Laughlin wave function.

In this chapter, we shall be more concrete. To that aim, we focus on an explicit

proposal for generating an artificial magnetic field in the lab. Namely, we will

consider the setup described in Section 2.2, where the gauge field is due to a

coupling of the atoms to a laser field. The single-particle Hamiltonian Hsp is

given by Eq. (2.8). An important energy scale in this problem is the Rabi

frequency ~Ω0 which fixes the splitting between the low energy manifold H22 and

the high energy manifold H11. An ideal situation is the limit Ω0 → ∞, as we

51
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can then restrict ourselves to H22 from Eq. (2.14). In this chapter we wish to

compare this ideal limit with realistic choices for Ω0.

Another important quantity on the single-particle level is the gauge field strength

B, which fixes the LL spacing ~B/M , the cyclotron frequency ωc = B/M , and

thus also the effective trapping frequency ω ≡
√

ω2
⊥ − ω2

c/4. Experimentally, B

is controlled by the wave number of the laser field k, and the length scale w of

the Zeeman splitting: B = ~k
2w . It is convenient to define also the experimentally

free parameter

η =
ωc

2ω⊥
=

~

2Mω⊥

k

w
. (4.1)

Then the energy of a single-particle state in the LLL with angular momentum ℓ

simply reads

Eℓ = ~ω⊥ℓ(1− η). (4.2)

To derive this, we can follow the steps described below Eq. (3.1), adapting the

units accordingly.

On the many-body level, we will now consider bosons, as they are experimentally

the more feasible choice. We assume them to interact via a two-body contact

potential, characterized by the dimensionless parameter g:

V =
g~2

M

∑

i<j

δ(zi − zj). (4.3)

We will keep gN = 6 in the numerical study, but a discussion how varying g

would influence the behavior is given in Section 4.3.3.

The goal of this chapter is to study which strongly correlated states we can

expect in this setup. Such states are based on having a relatively high angular

momentum, which allows to introduce many zeros of the form zi−zj into the wave
function. While these zeros are favorable for reducing the interaction energy, they

cost kinetic energy. It will thus depend critically on the parameter η whether such

states are realized. Note that this parameter is the analog of rotation frequency

in a system where the gauge field is due to a rotation of the system. No analog

exists for the second parameter, Ω0. We will use a perturbative expansion to

derive an effective Hamiltonian, which will then allow to treat the influence of Ω0
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numerically by applying the exact diagonalization method. This restricts us to

small-sized systems.

For convenience, we will in this and the next chapter use units of length which

are given by λ⊥ =
√

~/Mω⊥. They are related to the unit of length λ from the

previous chapter by a factor
√
2. This change affects only normalization factors

and the Gaussian part of all wave functions. In the latter we now have to write

exp (−|z|2/2) instead of exp (−|z|2/4).

4.1 Effective Hamiltonian

On the single-particle level, we can simplify the problem if the Hamiltonian of Eq.

(2.8) divides into two well-separated energy manifolds, each of them described by

H11 and H22, respectively. In fact, the two components are separated by an

energy of the order ~Ω0. We assume that this can be made much larger than the

typical expected values of H22. The latter are of the order of the recoil energy

ER = ~
2k2/(2M). We know that the Fock-Darwin functions φFD0,i from Eq. (3.5)

solve the Hamiltonian H22.

Let us first assume that the coupling between both manifolds were zero, i.e.

H12 = H21 = 0. The low-energy physics would then be fully described by spinors

of the form |(0, i)〉 ≡ (0, φFD0,i )
T , with eigenenergies Ei being identical to the

eigenenergies of φFD0,i with respect to H22. We see that we could just replace

the Hamiltonian matrix Hsp by H22, and instead of spinors, we would just have

single-component states |i〉.

In our case, though, the off-diagonal elements are non-zero, but due to the huge

energy difference between the manifolds, we can expect transitions into the higher

manifold to be sufficiently short-lived. We thus restrict ourselves on a low-energy

Hilbert space, given by the lower manifold, and consider virtual transitions into

higher states perturbatively. Therefore we expand the Hamiltonian matrix to

second order in the off-diagonal part, which we denote by Hoff . This expansion
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reads

〈(0, i)|Hsp |(0, j)〉 =Eiδij + 〈(0, i)|Hoff |(0, j)〉

+
1

2

∑

k

〈(0, i)|Hoff |(k, 0)〉 〈(k, 0)|Hoff |(0, j)〉

×
(

1

Ei − Ek,0
+

1

Ej − Ek,0

)

+ . . . , (4.4)

where |(k, 0)〉 denotes a spinor of the form (fk, 0)
T , i.e. with zero weight in

the lower component, and fk is some eigenfunction of H11 with corresponding

eigenenergy Ek,0. We do not need to know neither the functions nor the eigenen-

ergy. It is enough to know that the energy difference Ei − Ek,0 is large, and can

be approximated by Ei − Ek,0 ≈ ~Ω0.

With this Eq. (4.4) becomes

〈(0, i)|Hsp |(0, j)〉 = 〈i|H22 −
H21H12

~Ω0
|j〉+ . . . , (4.5)

so we have reduced the problem to a one-component problem, described by the

effective Hamiltonian

Heff = H22 −
H21H12

~Ω0
. (4.6)

Truncating the perturbation term H21H12 in second order in x, y, ∂x, and ∂y, it

explicitly reads

H21H12 =
~
2

M2

[

1

4w4
− 2x2

w6
+
k2x2

16w4
+
k4x2

64w2
+
ikxy

4w5
+
k2y2

64w4

+

(

− ikx

4w3
− ik3x

8w

)

∂y +

(

x

w4
− iky

8w3

)

∂x

+

(

−k
2

4
+
k2x2

4w2

)

∂2y +

(

− 1

4w2
+

x2

2w4

)

∂2x

]

. (4.7)

One can show that this operator does not conserve L, as it connects L′-subspaces

with L′ = L+∆ where ∆ = 0,±2, ±4. We will solve Heff numerically by exact

diagonalization together with the interaction term.
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4.2 Exact diagonalization method

Now we are prepared to achieve our actual goal, namely to find the ground state

and low-lying excitations of the system. Therefore, we have to numerically solve

the Hamiltonian

H =

N
∑

i=1

Heff
i + V, (4.8)

where Heff
i is the single-particle Hamiltonian Heff acting on particle i, as given

by Eq. (4.6), and the interaction V has been defined in Eq. (4.3).

To solve the Hamiltonian, we express it as a matrixHij = 〈i|H |j〉, with |i〉 a basis
spanning the whole Hilbert space, and then numerically diagonalize this matrix

using standard routines. We thereby obtain results which are numerically exact

with respect to the considered Hamiltonian, but the method requires a finite

dimensional Hilbert space. In our problem, the Hilbert space has in principle

infinitely many dimensions, but we already have enough insight into the problem

to identify several truncations we can safely make.

First of all, we do not expect the LL structure of well separated energy levels,

Eq. (3.4), to be destroyed by neither the interaction nor the perturbation due

to the atom-laser coupling. The latter is assured by ~Ω0 ≫ ER, while for the

interactions the validity of this assumption will depend on the interaction energy

which is tuned by g. It should be smaller than the level spacing ~B/M . We

now could a priori derive a limiting value for g by demanding that the mean-

field interaction energy per particle gN~ω⊥/2 is smaller than the level spacing

2η~ω⊥. In the strongly correlated regime, however, interactions are expected to

be significantly reduced, so this condition seems to be too restrictive [78]. More

conveniently, we check the consistency of our results with the LLL assumption a

posteriori. With this in mind, we can safely truncate the single-particle basis by

restricting ourselves to the states spanning the LLL. As a basis for this space we

can conveniently take the exact solutions of H22, i.e. the Fock-Darwin functions

φFD0,ℓ (z) given by Eq. (3.5).

But still, these function span an infinitely large Hilbert space, as ℓ can run from

0 to ∞. However, the trapping potential causes an energy cost for increasing

angular momentum. This assures that we can also truncate with respect to

single-particle angular momentum. A priori, we do not know at which ℓ we can
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safely make this truncation, so we will have to make convergency checks to find

this out.

For the time being, we assume some maximum ℓmax, which then allows to con-

struct a finite many-body basis for N particles by just giving the occupation

numbers nℓ of each single-particle state ℓ. These so-called Fock states read

|n0, n1, · · · , nℓmax〉 = (4.9)

S
[

φFD0,0 (z1) · · ·φFD0,0 (zn0)φ
FD
0,1 (zn0+1) · · ·φFD0,1 (zn0+n1) . . . φ

FD
0,ℓmax

(zN )
]

.

Here S symmetrizes with respect to all permutations of {z1, . . . , zN} in order to

make the state bosonic. We also define operators ĉ†i and ĉi creating or annihilating

particles in Fock-Darwin states φFD0,i from a vacuum |0〉. The Fock states can then

be written as

|n0, n1, . . . , nℓmax〉 =
1

√

n0! . . . nℓmax !
(ĉ0)

n0 · · · (ĉℓmax)
nℓmax |0〉 . (4.10)

The action of these operators on a Fock states is as usual: ĉi |. . . , ni, . . . 〉 =
√
ni |. . . , ni − 1, . . . 〉 and ĉ†i |. . . , ni, . . . 〉 =

√
ni + 1 |. . . , ni + 1, . . . 〉, and the usual

bosonic commutation relations apply. The Hamiltonian H reads in this second

quantized notation:

H =

ℓmax
∑

i,j=0

eij ĉ
†
i ĉj +

∑

ijkl

Vijkl ĉ
†
i ĉ

†
j ĉk ĉl, (4.11)

with

eij = 〈i|Heff
22 |j〉 =

∫

d2z φ̄FD0,i (z)H
effφFD0,j (z), (4.12)

and

Vijkl = 〈i| ⊗ 〈j|V |k〉 ⊗ |l〉 = g

∫

d2z φ̄FD0,i (z)φ̄
FD
0,j (z)φ

FD
0,k(z)φ

FD
0,l (z), (4.13)

where lengths are measured in units of λ⊥, and energies in units of ~ω⊥. Solving

the integrals in Eqs. (4.13) and especially (4.12) is a lengthy but straightfor-

ward task, which is achieved by Mathematica. As mentioned before, due to the

perturbative term in Heff , the elements eij are not diagonal. However we find

that eij = 0 if |i − j| > 4. For the interaction part, it can directly be seen that

Vijkl ∼ δi+j−k−l, i.e. it conserves angular momentum.
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Since the feasibility of the numerical diagonalization crucially depends on the

size of the matrix, let us now analyze the Hilbert space dimension. The total

particle number of a Fock state in Eq.(4.9) is N =
∑ℓmax

i=0 ni. Thus, the number

of different many-body states within the basis can be calculated from an urn

problem of ℓmax + 1 different balls, which are drawn N times and placed back

after each drawing. Since the sequence of drawing does not matter, there are

D =
(

n+ℓmax

n

)

combinations, defining the dimension D of the Hilbert space.

Since we can expect that ℓmax must be increased when N is increased, we find

an exponential growth of D for large N . In the Laughlin wave function of Eq.

(3.6), for instance, ℓmax = qN , and from Stirling’s formula we then would get

D ∼ (q+1)(q+1)N/
√
πN for N → ∞. In reality, we can further restrict our basis:

Since the average 〈ℓ〉 = 〈L〉/N ≪ ℓmax in any relevant many-body state, we can

choose the maximum value Lmax of total angular momentum much smaller than

Nℓmax. Then the dimension of the Hilbert space can no longer be obtained by

means of a simple combinatorial model. Instead we construct the basis explicitly

on a computer. We find that D is still rapidly growing with N : We chose to

truncate the total angular momentum L at a value which is 16 units above the

Laughlin angular momentum, LLaughlin = N(N − 1) for q = 2. With this the

many-body basis of N = 4 particles contains 2 · 103 states, while for N = 8 we

already get D ∼ 3 ·106. We note that the chosen truncation at L = LLaughlin+16

turned out to be valid for all relevant states with N = 4 a posteriori, while we

have not tried to reach N = 8, and therefore cannot judge its validity here. It

rather seems to be optimistic to believe that the same truncation holds, when

〈L〉 is much larger.

An important issue which often significantly increases the accessible system sizes

are symmetries in the Hamiltonian. Each symmetry is related to a conserved

quantity O being eigenvalue of some operator Ô. Then [H, Ô] = 0, from which

it is easy to show that 〈O1|H |O2〉 = 0, where |Oi〉 shall denote eigenstates of

Ô belonging to different eigenvalues. Thus, in an eigenbasis of Ô, the Hamil-

tonian matrix has a block structure, and each block of dimension di < D can

be diagonalized separately. In our concrete Hamiltonian, with the complicated

perturbation on the single-particle level in Eq. (4.6), there seems to be no such

symmetry which we could exploit. Obviously, if we neglect the perturbation, i.e.

if we consider the limit Ω0 → ∞, the Hamiltonian H shows a rotational sym-

metry in the xy-plane, which results in conservation of total angular momentum

L, measured by the operator L̂ =
∑N

i=1 xi∂yi − yi∂xi . The Fock basis is already

eigenbasis of L̂, so the Hilbert space is easily divided in blocks with definite L.
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Then the many-body basis for N = 6 particles at L = LLaughlin contains 1 · 103
states, while 3 · 106 states are needed to treat N = 10 particles. Let us note that,

without perturbation, the system is equivalent to a system of rotating bosons,

which has been numerically studied before [79].

Obviously treating matrices of this size, is a numerical challenge. The number of

matrix elements is D2, and, assuming 32 bit floating point numbers, the memory

needed to store the full matrix is 8D2 byte. This means that matrices up to D =

5 ·104 fit into a typical RAM of 16GB. To treat bigger matrices, one can make use

of the sparseness of the matrix. Since any term in the Hamiltonian of Eq. (4.11)

acting on a state of the Fock basis will at most change four occupation numbers,

most of the Hamiltonian matrix elements are zero. We need not waste memory

for storing these zeros, especially since there exist diagonalization algorithms

which are based on operations which only multiply the matrix with a vector v:

v(i+1) = Hv(i). If H is a positive definite matrix, and if the initial state v(0)

has non-zero overlap with the ground state, this procedure will converge to the

ground state after typically i ≈ 50 iterations. A more sophisticated variation

of this so-called power method are different Lanczos methods [80]. They do not

rely on positive-definiteness of the matrix, and are not restricted to the ground

state. We find them implemented in standard routines. Even using Lanczos,

RAM still sets a boundary to the system size, as reasonably quick computations

require that all non-zero matrix elements can be stored. Also, as one sees by

considering the simple power method, each iteration step contains at least kD

floating point operations. Thus, computation time increases faster than system

size, which makes the treatment of large systems very costly.

Since our intention in this chapter is to vary, over wide ranges, the experimental

parameters Ω0 and η, we do not try to reach the largest possible sizes. Instead, we

will mostly be restricted to N = 4, without any need to apply Lanczos methods.

The situation will be different in Chapter 6, where we assume, for a different

system, an idealized Hamiltonian. There, we will also find it convenient to study

the bulk phenomena by considering a finite systems without edges, e.g. on a

sphere or on a torus.

Another quite technical issue which we should mention at this place concerns

the evaluation of the results obtained by exact diagonalization. We will get

the eigenstates of the system expressed as a D-component vector, where every

coefficient gives the contribution of the corresponding Fock state. We will be

interested in the overlaps of these state with the trial states presented in Chapter
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3. However, we know these states only in a first-quantized notation. Of course

it would be a straightforward task to also write down the Fock states in a first-

quantized notation, but for calculating then the overlap we would need to evaluate

an integral over all coordinates, i.e. in a 2N -dimensional space. It is clear that

this task becomes very difficult and costly as N increases.

We therefore choose the opposite way, in which we first express the trial states

in the Fock basis. Once this has been achieved, the overlap is simply the scalar

product of two vectors. Here, the difficulty is the decomposition of the first-

quantized states. For the particle numbers we are able to reach with our numerical

diagonalization, this job is done by a Mathematica code which we developped for

this goal, and which we have published in Ref. [81]. Due to its technical nature,

we provide this material in the appendix of this thesis.

4.3 Results: From condensates to strongly cor-

related phases

We now present the results which have been published in Refs. [33, 34]. We will

encounter different regimes, from condensed phases in relatively weak gauge fields

up to the strongly correlated Laughlin state close to the instability at η → 1. To

get a “clean” overview, we first analyze the adiabatic case, where the perturbation

H21H12/(~Ω0) is not included.

4.3.1 Adiabatic case: Ω0 → ∞

The adiabatic case of an infinitely large Rabi frequency is formally equivalent to

a rotating Bose gas. Its behavior, including the formation of vortices and their

melting into highly correlated states, has extensively been studied (cf. Ref. [29]

for a review). Accordingly, the findings of this section agree fully with previous

results on rotating Bose gases, notably the ones published in Refs. [79, 82, 83].

The main goal of the present section is to prepare the presentation of results for

the non-adiabatic regime in Section 4.3.2.

To classify the different ground states (GSs), we have evaluated several quantities:

1) their interaction energy Eint, 2) their angular momentum L, 3) their entropy
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S. The latter quantity is defined as

S = −Tr
[

ρ(1) ln ρ(1)
]

, (4.14)

with ρ(1) the one-body density matrix associated to the GS wave function. It is

given by

ρ(1)(r, r′) = 〈GS|Ψ̂†(r)Ψ̂(r′)|GS〉 (4.15)

where Ψ̂(r) is the field operator, Ψ̂(r) =
∑

ℓ φ
FD
0,ℓ ĉℓ. With the density matrix

we are also able to define the natural orbitals, φi(r), and their corresponding

occupations, ni, by the eigenvalue problem,

∫

drρ(1)(r, r′)φi(r) = niφi(r
′) . (4.16)

Then the entropy can be directly evaluated as S = −∑i ni lnni. It is a mea-

sure of the amount of correlations in the system and provides information of the

entanglement between one particle and the rest of the system.

The results for N = 4 are shown in Fig. 4.1 within the range 0.7 ≤ η < 1. Lower

values of η would lie beyond our lowest Landau level approximation. Four clearly

distinct regions are detected, characterized by constant values of Eint, L, and

S. Sharp jumps between these plateaus mark the boundary of each region. As

plotted in Fig. 4.2, the energy gap closes at these boundaries, which thus can

be understood as level crossings. As expected, interaction energy and angular

momentum are found to behave complementary. While the latter increases with

η, interaction energy gets reduced. At the same time, the number of correlations,

measured by S, increases. As the lower panel of Fig. 4.1 shows, this allows to

reach the strongly correlated states discussed in Chapter 3.

In the following, we summarize our observations in order to classify each of the

four regions:

• The first region corresponds to a fully condensed system with zero angular

momentum and vanishing one-body entanglement entropy, see Fig. 4.1. Ac-

cordingly, the ground state is given by the wave function Φ0 = Nce
−∑

i z
2
i /2,

with Nc a normalization constant.

• At the critical value η1 = 1 − gN/(8π) ≈ 0.76, (gN = 6), a degeneracy

between states with L = 0, 2, 3, and 4 occurs, see Fig. 4.2. A state with

broken symmetry, combination of several L-eigenstates, is precursor of the
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Figure 4.1: (upper panel) Interaction energy in units of ~ω⊥ (black circles)
and one-body entanglement entropy (red squares) of the ground state as a
function of η. (middle panel) Angular momentum in units of ~ of the ground
state and of the first excited state as a function of η. (lower panel) Squared
overlap between the ground state of the system and the exact Laughlin, Pfaf-
fian and Laughlin-quasiparticle states. The plots corresponds to the adiabatic
case Ω0 → ∞. From: [33].

nucleation of the first vortex state [84]. Increasing η the ground state re-

covers the cylindrical symmetry and the GS angular momentum is uniquely

L = 4. All this phenomenology can be inferred from the Yrast line displayed

in Fig. 4.3. The Yrast line is constructed by plotting the interaction energy

contribution of the lowest energy state for each L. From this line, the ad-

dition of the kinetic energy, which reads (up to a term independent of L

and η) Ekin = (1− η)L~ω⊥, produces the total energy with its minimum at

the angular momentum of the ground state, LGS. This is exemplified for

η = 0.85 and 0.94 in Fig. 4.3.

The ground state with L = N is known to be exactly given by [85, 86]

ΨL=N = NL=N

N
∏

i=1

(zi − Z)e−
∑

i z
2
i /2 (4.17)
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Figure 4.2: Energy difference, in units of ~ω⊥, between the ground state and
its first excitation as a function of η. The large blue numbers correspond to
the value of L for the ground state. The small numbers quote the value of L
of the first excited state. Ω0 → ∞. From: [33].
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Figure 4.3: Yrast line for N = 4, solid red circles, which corresponds to the
interaction energy contribution of the lowest eigenstates for each value of L.
The triangles and diamonds depict the sum of the interaction energy and the
kinetic contribution for η = 0.85 and η = 0.94, respectively. The arrows mark
the value of L which corresponds to the GS in each case. The energies are
given in units of ~ω⊥. From: [33].

with Z = (1/N)
∑N

i=1 zi. This wave function describes a state with one

vortex in the center-of-mass. As the sizeable entanglement entropy indicates

(see Fig. 4.1), this state is not fully condensed. We shall note, however, that

in the limit N → ∞, the center-of-mass is pinned to the origin [29], and the

state becomes fully condensed (cf. Fig. 4 of Ref. [87]).

Assuming a single vortex in the center of our finite system, turns out to

poorly represent the true GS. The squared overlap between the one-vortex
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state, given by

Ψ1vx = N1vx

N
∏

i=1

zie
−

∑
i z

2
i /2, (4.18)

and the GS, Eq. (4.17), is analytically found to be 15/32 ≈ 0.47 for N = 4.

A much higher squared overlap of 32/35 ≈ 0.91 is found between the exact

ground state and the Moore-Read state, which has L = N in the case of

N = 4. We note that, except for N = 4, the Moore-Read state has L > N .

It then defines a distinct plateau in the evolution of the system with η

[82, 83].

We find three different kinds of excitations, L = 3, 6 and 8, as can be seen

in Fig. 4.2. The latter is found to have a large overlap with the Laughlin-

quasiparticle state.

• For 0.92 ≤ η ≤ 0.96, the ground state has L = 8, a higher entanglement

entropy, and a smaller interaction energy. The ground state has a large

overlap with the Laughlin-quasiparticle state, as shown in Fig. 4.1. This

quasiparticle region has four different excitations, L = 4, 6, 9 and 12. The

L = 9 corresponds to a center of mass excitation of the system as dictated

by Kohn’s theorem [88, 89].

• Finally, for η & 0.96, the ground state wave function is the Laughlin wave

function, with zero interaction energy. Its excitations are the Laughlin-

quasiparticle (L = 8), and a center of mass excitation (L = 13). Its

analytical form is Ψ = N (z1 + z2 + z3 + z4)ΨL . In this region, 2N − 1

single-particle states are approximately equally populated, and the entropy

is S ≈ ln(2N − 1).

4.3.2 Non-adiabatic case: finite Ω0.

We repeat the analysis from the previous section, but now we take into account

a finite Rabi frequency Ω0 within the realistic range from 10ER to 100ER.

4.3.2.1 Properties of the system

Interaction energy, angular momentum, and entropy are analyzed as a function

of η and ~Ω0/ER in Fig. 4.4. We note that angular momentum is now only given



64 Chapter 4. Fractional quantum Hall states of laser-dressed bosons

Figure 4.4: (a): GS average of the total angular momentum, in units of
~, for N = 4, as a function of η and ~Ω0/ER. The insets concentrate on two
different values of ~Ω0/ER = 40, and 100, respectively. (b): Entropy. (c):
Interaction energy. From: [34].

as an expected value, and not anymore as a quantum number of the states. For

large Ω0 we recover the step-like structure from the adiabatic case. Decreasing

the values of Ω0, the transitions between the plateaus become broader and are

displaced towards smaller values of η. However, the characteristic values on each

plateau are not modified by the finite Rabi frequency. An exception hereof is

the expected value of the total angular momentum in the strongly correlated

regime: The Laughlin plateau with L = N(N − 1) is replaced by a region which

is characterized by 〈GS|L̂|GS〉 ≥ N(N − 1). Apart from this increased angular

momentum, the strongly correlated region (η & 0.93) still shows the Laughlin-like

behavior: The entropy again reaches the value ln(2N − 1), and also the average

interaction energy vanishes.

Other observable quantities which we can use to characterize the state are the

density and the pair-correlation function. The density can be obtained from Eq.

(4.15) by choosing r = r′. It is depicted in panels (a,b) of Fig. 4.5. The pair-

correlation function g(r, r0), defined in Eq. (3.18), is plotted in the panels (c,d)
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Figure 4.5: Density of atoms, panels (a) and (b), and pair correlation, pan-
els (c) and (d), of the ground state for ~Ω0/ER = 40 (a,c) and 100 (b,d),
respectively. The values of η are 0.942 and 0.955 for ~Ω0/ER = 40 and 100,
respectively. The solid circle marks the position of r0. From: [34].

of Fig. 4.5. We have fixed r0 at the position with the highest density. Contrarily

to the Laughlin state, for finite ~Ω0/ER the atomic cloud is anisotropic as a

consequence of broken rotational symmetry of the Hamiltonian. Nevertheless, the

pair-correlation functions still share an important common feature. Detecting one

particle in r0, the other three particles appear localized at the remaining three

vertices of a rectangle. This shows that particles tend to maximally avoid each

other, in the same way as they do in the exact Laughlin wave function. This

is possible, as the perturbation increases the angular momentum. On the other

hand, for ground states with L < N(N − 1), it would be impossible to have

correlations like this.

4.3.2.2 Generalized wave functions

In view of the observable properties shown above, the highly correlated regime for

finite Ω0 resembles a Laughlin state with deformed density and increased angular

momentum. It is obvious that these deformations will reduce the overlap between

the GS and the Laughlin wave function, as Ω0 increases.
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Therefore we propose a new trial wave function, which is based on the Laughlin

wave function, but without being restricted to a subspace with fixed angular

momentum. Instead we include terms with L = N(N −1)+2 which are obtained

by multiplying the Laughlin wave function with additional Jastrow factors. This

form guarantees that the test states have zero interaction energy. Our ansatz for

this “generalized Laughlin state” (GL) reads

ΨGL = αΨL + βΨL1 + γΨL2. (4.19)

with ΨL1 = N1 ΨL ·∑N
i=1 z

2
i , ΨL2 = N2

(

Ψ̃L2 − 〈ΨL1|Ψ̃L2〉ΨL1

)

, and Ψ̃L2 =

Ñ2 ΨL ·∑N
i<j zizj , such that we ensure 〈ΨL|ΨLi〉 = 0 and 〈ΨLi|ΨLj〉 = δij .

The values of α, β and γ are computed as α = 〈ΨL|GS〉/
√
N , β = 〈ΨL1|GS〉/

√
N ,

and γ = 〈ΨL2|GS〉/
√
N , with

N = |〈ΨL|GS〉|2 + |〈ΨL1|GS〉|2 + |〈ΨL2|GS〉|2.

This definition maximizes the overlap between the numerical GS and the expres-

sion from Eq. (4.19).

Quasihole excitations to such a ground state are obtained by multiplying with a

wave function zero at the quasihole position ξ,

ΨGLqh =

N
∏

i=1

(zi − ξ)ΨGL, (4.20)

or with two zeros for two excitations

ΨGL2qh =

N
∏

i=1

(zi − ξ1)

N
∏

j=1

(zj − ξ2)ΨGL. (4.21)

Similarly, we also define a generalized Pfaffian (GPf) state as

ΨGP = αΨP + βΨP1 + γΨP2 , (4.22)

with ΨP1 = NP1 ΨP ·∑N
i=1 z

2
i , ΨP2 = NP2

(

Ψ̃P2 − 〈ΨP1|Ψ̃P2〉ΨP1

)

, and Ψ̃P2 =

ÑP2 ΨP ·∑N
i<j zizj . Again, the parameters α, β, and γ are fixed to maximize the

overlap of the numerical ground state with ΨGP .



Chapter 4. Fractional quantum Hall states of laser-dressed bosons 67

Also for the Laughlin-quasiparticle state we define a generalized version (GLQP),

built up from the same Jastrow factors used in Eq. (4.19), i.e.

ΨGLqp = αΨLqp + βΨLqp1 + γΨLqp2 , (4.23)

with

ΨLqp1 = NLqp1 ΨLqp ·
N
∑

i=1

z2i ,

ΨLqp2 = NLqp2

(

Ψ̃Lqp2 − 〈ΨLqp1|Ψ̃Lqp2〉ΨLqp1

)

,

Ψ̃Lqp2 = ÑLqp2 ΨLqp ·
N
∑

i<j

zizj .

4.3.2.3 Overlaps

In Fig. 4.6 we show the squared overlap between the numerical ground state

and the three original correlated states (left panel) and their generalized versions

(right panel) from Eqs. (4.19), (4.22), and (4.23). It turns out that in all three

cases the state which is proportional to γ is much less populated than the states

proportional to α and β. We can thus safely neglect the contribution of this term.

As shown in Fig. 4.6, overviewing all three regimes, the largest improvement by

using the generalized versions occurs in the Laughlin region. Here, the total an-

gular momentum increases continously with η, leading to substantial occupation

of the state proportional to β.

Detailed information about the effect of the perturbation is shown in Figs. 4.7,

4.8, and 4.9 for each of the three regions separately. First, in Fig. 4.7 we consider

the overlap with the Pfaffian (Pf) and GPf, exploring fairly low values of ~Ω0/ER.

Lower values of ~Ω0/ER would require the consideration of higher order terms in

the expansion of Hsp, Eq. (4.4).

As one could have expected from the observables shown before, by decreasing

the value of ~Ω0, the maximum overlap is shifted towards smaller η: In the

symmetric case, the region of sizable squared overlap between the Pfaffian state

and the exact ground state was 0.75 . η . 0.92, for ~Ω0/ER = 20 it is displaced

to 0.73 . η . 0.89. At the same time, the squared overlap with the Pfaffian is

reduced, from around 0.9 in the symmetric case, to 0.7 for ~Ω0/ER = 10.
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Figure 4.6: (left panel) Squared overlap between the ground state and the
original strongly correlated states considered, namely, the Pfaffian, Laughlin
and Laughlin-quasiparticle states as a function of η for ~Ω0/ER = 40 and 100.
(right panel) Squared overlap between the GS and the generalized correlated
states considered, GPf, GL and GLQP as a function of η for ~Ω0/ER = 40
and 100. From: [33]
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generalized Pfaffian states defined in the text, upper and lower panels, respec-
tively, as a function of η. The different lines correspond to different values
of ~Ω0/ER. The solid line is obtained in the adiabatic case, i.e. Heff = H22.
From [33].
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Laughlin-quasiparticle (LQP) and generalized Laughlin-quasiparticle (GLQP)
states defined in the text, upper and lower panels, respectively, as a function
of η. The different lines correspond to different values of ~Ω0/ER. The solid
line is obtained in the adiabatic case. From [33].

The overlap increases by using the generalized wave function GPf as trial wave

functions. This shows that a main effect of the perturbation is to populate

states with additional Jastrow factors. Strikingly, we find large values of the

squared overlap with the GPf state (> 0.8) even for relatively strong perturba-

tions ~Ω0/ER ≈ 20. This could be relevant from an experimental point of view

as it increases the window of observability.

A similar behavior is found when studying the squared overlap of the Laughlin-

quasiparticle (LQP) state with the exact ground state of the system. As shown

in Fig. 4.8, the region of sizeable overlap with the Laughlin-quasiparticle state

gets shifted towards lower values of η as we decrease Ω0. As before in the Pf

regime, the generalized wave function (GLQP) turns out to be a better trial state

than the normal LQP state. Using the GLQP wave function, large values of the

squared overla (> 0.8) can be found for values of ~Ω0/ER > 30.

In Fig. 4.9 we finally present the overlaps with the Laughlin state and the gen-

eralized Laughlin state. Again, we note the shift towards lower values of η as we

decrease the value of ~Ω0/ER. Squared overlaps larger than 0.8 are only obtained

only for ~Ω0/ER > 40, using the generalized expression.
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Figure 4.9: Squared overlap between the exact ground state and the Laughlin
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4.3.3 Experimental feasibility

As we have shown in the previous subsection, within the experimentally realistic

range of 10 ≤ ~Ω0/ER ≤ 100, the discussed proposal is in principal able to bring

cold atoms into a Laughlin-like ground state. Whether a cooling into this state

can successfully be achieved, however, will strongly depend on its energy gap,

which must be large enough to protect the state.

It is hereby important to distinguish between the bulk gap and possibly gapless

edge excitation. As shown in Fig. 4.3, the system can increase its angular mo-

mentum without changing its interaction energy. In the limit η → 1, this yields

zero-energy excitation. Such excitations, however, can be ignored, as they will

modify the system only at the edge. For an estimate of the bulk gap, we should

extend the linear left branch in the Laughlin region in Fig. 4.2 up to η = 1. The

energy which we thereby find coincides with the energy difference between the

Laughlin state and the first excitation with the same angular momentum. This

shows that the bulk gap can be obtained by diagonalizing the interaction in a

Hilbert space with fixed angular momentum, L = N(N − 1). We denote this

quantity by ∆.
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Figure 4.10: ∆/g, in units of ~ω⊥, of the Laughlin state as a function of N
in the adiabatic case. From: [33]

In Fig. 4.10(a) we show the evolution of ∆/g with N for a constant value of g.

Alternatively, we could have set gN = constant, which yields exactly the same

figure, as a consequence of the fact that ∆ is proportional to g and independent

of N for large values of N . This result is in agreement with the calculations

reported in Ref. [78]. The tendency up to N = 7 is to asymptotically recover

the value of 0.1 previously obtained by Regnault et al. [90] assuming a spherical

geometry and later reproduced by Roncaglia et al. [91].

Keeping gN constant when increasing N has the advantage that also the mean-

field interaction energy per particle remains constant. This guarantees the validity

of the LLL approximation [78]. However, it also results in a vanishing gap,

∆ ∼ 1/N in the thermodynamic limit.

Apart from interactions, also the degeneracy lifting of the LLs for η < 1 can give

rise to LL mixing. In the Laughlin state at filling ν = 1/2, the highest occupied

single-particle angular momentum is ℓ = 2(N − 1), and thus has a kinetic energy

of 2~ω⊥(N − 1)(1 − η). This energy has to be compared to the LL gap which is

2η~ω⊥, and thus independent from N . Increasing N thus requires to approach

the instability limit η → 1, in order to keep the LLL approximation valid. As our

study in the previous section has shown, in this limit the effect of non-adiabatic

transitions tends to increase the angular momentum, making the ground state

strongly deviate from the Laughlin state.

These considerations suggest that the particle number has to be kept low, if one

wishes to realize the Laughlin state following the studied proposal. Oppositely, we

might try to waive the LLL approximation. Of course, for being in the Laughlin
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state the system has to be in the LLL, but the question is whether this is really a

restriction on g. Certainly, with strong interaction particles could easily scatter

into higher LLs, and very different, new states would have to be expected in the

spectrum. On the other hand, due to a peculiarity of contact interactions, the

ground state at L = N(N−1) should not be affected. In the contact potential, the

Laughlin state already has zero interaction energy, so it is impossible to reduce

the energy by occupying higher LLs. In fact, apart from the additional kinetic

energy, explicit calculations in the first and second excited LL have shown that,

oppositely, the interaction energy even increases in higher LLs. This means that

by increasing g via Feshbach resonances, we could be able to reach a situation

where the energy of the lowest excitation is given by the LL gap, i.e. ∆ ≈ 2η~ω⊥.

An even stronger reason for increasing g is the instability at η = 1, which must

be approached when we wish to realize the Laughlin state for large N at a fixed

g. The critical value for η arises from a competition between the kinetic energy

proportional to 1 − η, and the interaction energy proportional to g. This means

that larger g would favor the Laughlin state already at smaller η, and thus further

away from the trapping instability. The fact that, in principle, smaller η would

more easily cause a LL mixing due to the stronger degeneracy lifting, does not

play a role here for the reasons mentioned before.

It therefore seems to be interesting to study this approach in a more quantitative

analysis, taking into account at least two LLs from the beginning. Especially,

from our general arguments it is not clear what happens before reaching the

Laughlin regime, i.e. for strongly correlated states at smaller L, e.g. in the

Pfaffian region. Since in this regime ground states have finite interaction energy

even in the LLL, they might be strongly affected by scattering into higher LLs.

This also poses the question whether and how it can be achieved to cool down

the system from these states into the Laughlin state.



Chapter 5

Testing the system with

quasiholes

In the previous chapter, we have studied the ground states of a two-dimensional

Bose gas exposed to an artificial gauge field. Especially, we have seen that, for a

fixed contact interaction strength, the parameter η allows to tune the system from

condensed states at L = 0 or L = N through different strongly correlated states

into the regime, where a Laughlin-like state is the ground state of the system.

In this chapter we will study excitations above these ground states. Hereby, we

will focus on quasihole excitations. They can be achieved in a controlled way by

shining a laser beam onto the atomic cloud. Theoretically, this is described by

adding the following potential to the single-particle Hamiltonian of Eq. (4.6) [92]:

VL(ξ) ∝ I
∑

i

δ(ξ − zi), (5.1)

where I is the laser intensity, and ξ is the position onto which the beam is focused.

As such a potential energetically penalizes particles being at position ξ, it will,

for sufficiently strong I, transfer states described by some wave function Ψ into

states described by
∏

i(zi − ξ)Ψ, resulting in a hole at position ξ. States with

more than one quasihole can be achieved by several such potentials. Below, we

will explicitly test this mechanism by an exact diagonalization study.

Once the system is brought into a quasihole state, we can move the quasiholes

by adiabatically moving the laser focus ξ. If we then measure the phase shift due

73
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to this displacement, e.g. via a Ramsey-type interference measurement [92], we

can extract the effective “charge” of the quasiholes, and their quantum-statistical

behavior. For quasiholes in the Laughlin state, the fractional charge and anyonic

quantum statistics are intriguing features [25]. They are well known for ther-

modynamically large systems where they can be derived from Laughlin’s plasma

analogy [62]. In Section 5.1, we directly analyze the wave function for a small

cloud of atoms (N . 6) in the Laughlin state with one or two quasiholes. Thereby

we are able to show that this system size is sufficient for observing excitations

with a robust anyonic character. Moreover we show that also generalized Laughlin

states as discussed in the previous chapter support this kind of exotic excitations.

In Section 5.2, we study the dynamics of a quasihole after abruptly switching

off the potential from Eq. (5.1). Here we compare the behavior in the Laughlin

regime with the one in denser regimes where the ground states possess lower an-

gular momentum LGS. In general, a quasihole state is a coherent superposition

of states with angular momentum LGS ≤ L ≤ LGS + N . While in the Laughlin

regime the coherence between these different contributions is found to be pre-

served during the time evolution, it is lost in other regimes. This “collapse” is

clearly visible in the density as a smearing out of the quasihole. It is followed by

periodic “revivals”, where the coherence is restored and a quasihole forms again.

We show that this dynamics describes the free evolution of a condensed system

into a correlated state, followed by the reverse process.

This dynamics is reminiscent of the collapse and revival of a coherent light field

which resonantly interacts with a two-level atom. This effect has been studied

theoretically in the framework of the Jaynes-Cummings model since the early

1980s [93, 94], and has experimentally been observed in systems of Rydberg

atoms [95–97], or trapped ions [98]. With the realization of a Bose-Einstein con-

densate (BEC) in 1995, also interacting many-body systems have become candi-

dates for studying such collapse-and-revival effects: In Ref. [99] it has been argued

that quantum fluctuations cause a phase diffusion which leads to a collapse of

the macroscopic wave function. As a consequence of the discrete nature of the

spectrum, periodic revivals of the macroscopic wave function have been predicted

in Refs. [100, 101]. It has been proposed to produce macroscopic entangled states

by time-evolving a condensed state [102, 103]. An interesting scenario has been

discussed in Refs. [104, 105], studying collapse and revival of the relative phase be-

tween two spatially separate BECs. Measuring phase correlations between many

BECs which are distributed on an optical lattice has allowed for observing the
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collapse and revival of matter waves [106]. Recently, the observation of quantum

state revivals has been proven to provide relevant information about the nature

of multi-body interactions in a Bose condensed atomic cloud [107].

Also the collapse and revival which we discuss in Section 5.2 allow to extract

useful information: The effect itself not only clearly distinguishes the Laughlin

regime from denser ones. Measurement of revival times and positions also allows

to determine kinetic and interaction contribution to the energy of the system.

5.1 Anyonic behavior of excitations

In the following, we will first study Laughlin quasiholes in the adiabatic regime,

i.e. for Ω0 → ∞. While the standard literature (e.g. Ref. [18, 62]) usually

considers the thermodynamic limit, applying the plasma analogy, we will focus

on small systems. We will see how the fractional behavior of the excitations

becomes a robust property as particle number increases.

Afterwards we will also consider slightly non-adiabatic situations, where quasi-

holes are pierced into the generalized Laughlin state, as defined by Eq. (4.20).

We compare the quasiholes in both the Laughlin and the generalized Laughlin

state with respect to their fractional character.

5.1.1 Quasiholes in the adiabatic case

As already discussed in Chapter 4, for ~Ω0 ≫ ER, the GS squared overlap with

the Laughlin state is effectively 1, above a critical value of η. Now we consider

the system with the additional term (5.1) and find that there is also a region of η

where the overlap of the ground state of the system with the analytical quasihole

state is effectively 1, see Fig. 5.1. This shows that the potential of Eq. (5.1) is

able to produce quasiholes described by Eq. (3.8). Similarly, adding two such

lasers we also find a region of η where the overlap between the exact ground state

and the analytical state with two holes, Eq. (3.10), approaches 1. However, we

notice that the values of η at which the overlap for one or two quasiholes reaches

1 differ from each other, and both are found for values larger η than the onset of

the Laughlin state, see Fig. 5.1. These features are essentially independent of the

laser strength I, for sufficiently large I. On the other hand, since the Laughlin
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Figure 5.1: Squared overlap between the exact ground state of the system
where none (solid, black), one (red) or two (blue) quasiholes have been pierced
as described in the text and the corresponding analytical wave functions given
in Eqs. (3.6), (3.8) and (3.10). The quasiholes are created by a laser with
intensity I = 10 ~ω⊥

λ2
⊥

(dotted lines) and I = 30 ~ω⊥

λ2
⊥

(dashed lines), see Eq. (5.1).

state is protected against quasihole excitations by a bulk gap (cf. Section 4.3.3),

a weak laser potential will not be able to induce any new states.

5.1.1.1 Fractional charge

The most interesting property of these excitations is their fractionality, that is,

fractional charge and statistics. To study the fractional charge of the quasiholes,

we first note that in our electro-neutral system subjected to an artificial magnetic

field, there exists the analog of an electric charge which can be defined via the

behavior of a particle or quasiparticle moving within the gauge field. To this end,

we consider the phase a quasihole picks up while being adiabatically displaced

following a closed trajectory. The general expression for the Berry phase on a

closed loop C is given by [35]

γC = i

∮

C

〈Ψ(R)| ∇R |Ψ(R)〉 · dR, (5.2)

with |Ψ(R)〉 the state of the system, characterized by a parameter R, which in

our case is the position of the quasihole. For simplicity, we now assume that

the quasihole is fixed at a radial position |ξ| = Rλ⊥, but is moved along a circle

centered at the origin, see Fig. 5.2. Its position is then parametrized by the angle

φ. The movement on such a simple contour is sufficient to test the fractional

behavior.
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Figure 5.2: Moving one or two quasiholes at fixed radial positions on circles
around the origin allows for determining the effective charge and the statistical
phase angle. The quasiholes are always fixed at a radial position R = 1 (in
units of λ⊥).

For general contours, one can extract the acquired phases from the normalization

factor of the quasihole state, as described in [62]. For our circularly symmetric

contour, however, the situation is simpler, as we can re-write Eq. (5.2) as

γC = i

∫ 2π

0

〈ΨLqh(φ)|∂φ|ΨLqh(φ)〉dφ ≡
∫ 2π

0

f(R)dφ . (5.3)

Here we note that, due to the circular symmetry of the Laughlin state, the in-

tegrand does not depend on the angular position of the quasihole. The function

f(R) can be calculated by decomposing the Laughlin quasihole state into the

Fock-Darwin basis, which we have done analytically for particle numbers up to

N = 6.

This decomposition, though being quite straightforward, for increasing N and L

soon becomes very involved, as the polynomial wave function contains a lot of

terms. We have developed a Mathematica code which achieves this decomposi-

tion. It is published in Ref. [81], and described in the appendix.

Since expressions become very large, we explicitly give here only the result for

N = 4:

γC = 2πf(R) = 2π
4
(

10128R2 + 5313R4 + 1659R6 + 553R8
)

85572+ 40512R2 + 10626R4 + 2212R6 + 553R8
. (5.4)
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If we assume that the quasihole is moved sufficiently close to the center, i.e.

R . 1, we can expand this expression in R and find, γC = 2π(0.473426R2 +

0.0242202R4 +O(R6)) ≈ πR2. Thus, the acquired phase is approximately given

by the enclosed area in units of λ2⊥.

To obtain the effective charge of the quasihole, we must compare this result with

the geometric phase which a particle acquires due to the gauge field when it

moves along the same contour. In the Laughlin regime, where η ≈ 1, we find

with Eq. (4.1) B ≈ 2 ~

λ2
⊥
, thus the acquired phase ϕ is two times the enclosed area

in units of λ2⊥, i.e. ϕ = 1
~
B0(Rλ⊥)2π ≈ 2R2π. From this follows the effective

charge of the quasihole to be qeff = γC

ϕ ∼ 0.47, close to the expected value for the

Laughlin state, which at half filling should be 1/2 in the thermodynamic limit

[22, 25]. We have performed a similar study for N = 5 and N = 6, finding that

for N = 5, the effective charge is about 0.48, and for N = 6 it is found to be 0.49,

i.e. by increasing the particle number the value 1/2 is approached.

5.1.1.2 Fractional statistics

To prove the fractional statistics of the quasihole excitations we now consider the

system with two quasiholes at ξ1 = |ξ1|eiφ1 and ξ2 = |ξ2|eiφ2 , which we assume

to sit on opposite radial positions, i.e. |ξ1| = |ξ2| = Rλ⊥ and φ2 − φ1 = π. We

now consider the simultaneous adiabatic movement of the two quasiholes on two

half circles, in such a way that, at the end, the quasiholes interchange position

(see Fig. 5.2). This differs from a more common setup to test the statistical

angle, where one quasihole is fixed in the center, while the other is encircling it.

Our setup has the advantage that it allows for larger distance between the two

quasiholes. Note that in Fig. 5.2, the radial position is chosen at R = 1, i.e.

the distance between the center of the quasiholes is 2λ⊥, which seems to be the

minimum distance needed for not having a significant overlap (< 10%) between

the two quasiholes, see Fig. 5.3 (a). On the other hand, in this small system of

just four particles, larger radial positions lead to quasiholes overlapping with the

system’s edge.

The total phase picked up during the described movement should be the sum of

the phase picked up by one quasihole moved along a circle plus a phase factor

due to the interchange of the two quasiholes. Again the phase gradient turns

out to be independent from the angular position, but is described by a different
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Figure 5.3: (a) Squared overlap between the quasihole wave functions,
|〈ΨLqh(ξ1)|ΨLqh(ξ2)〉|

2 at opposite angular positions, φ1 − φ2 = π, as a func-
tion of their distance to the center, |ξ1| = |ξ2| = Rλ⊥. (b) Statistical angle
of two quasiholes at opposite angular positions and radial position Rλ⊥. In
both panels we present results for N = 4 (black solid), N = 5 (red dotted),
and N = 6 (green dashed).

function f̃ of the radial coordinate:

f̃(R) =
8
(

2868120R4 + 461616R8 + 25242R12 + 553R16
)

41660640+ 11472480R4 + 923232R8 + 33656R12 + 553R16
. (5.5)

The statistical phase angle is thus,

ϕ(R)stat ≡
∫ 2π

0

f(R)dφ−
∫ π

0

f̃(R)dφ = 2πf(R)− πf̃(R) . (5.6)

It is shown, as a function of R, in Fig. 5.3 (b). As expected, the statistical phase

is zero if both quasiholes are in the same position, and it increases linearly as the

distance between the quasiholes is increased. This linear behavior then saturates

once the overlap between the two quasiholes, |〈ΨLqh(ξ1)|ΨLqh(ξ2)〉|2, drops below
0.1, and remains mostly constant around π/2. At larger distances R, the system’s

edge starts to play a role, and the phase angle decreases again. By increasing the

number of particles N , the plateau of constant phase angle π/2 becomes larger,

thus a definite statistical phase angle of π/2 becomes a robust property of the

quasiholes.
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Figure 5.4: Left: Squared overlap of exact ground states (N = 4) with
generalized Laughlin state (solid black), generalized Laughlin state with one
quasihole (red), and generalized Laughlin state with two quasiholes (blue).
The quasiholes are created by a laser with an intensity I = 30~ω⊥/λ2

⊥ (dotted
lines) and I = 50~ω⊥/λ2

⊥ (dashed lines) at ξ1 = λ⊥ and ξ2 = −λ⊥. The Rabi
frequency is ~Ω0 = 100ER. Right: The values of the variational parameter β
for a given η are similar for all three states.

5.1.2 Non-adiabatic effects on the properties of quasiholes

To study the fractionality of quasihole excitations in the non-adiabatic case we

will again profit from the generalized analytical representations used to describe

the ground state of the system. Following the discussion in the previous section

we compute the squared overlap of the ground state obtained with no-, one-,

and two-extra lasers piercing holes into the system. First, we find a significant

squared overlap for the slightly perturbed case at ~Ω0 = 100ER, see Fig. 5.4. As

occurred in the adiabatic case, a large overlap with the analytical one- and two-

quasihole states appears only at higher field strengths than the one at which the

generalized Laughlin state is reached. Our study of the properties of quasiholes

in the non-adiabatic case will be restricted to the parameter domain where a

fair description of the states is provided by the generalized Laughlin state, see

Chapter 4.

As before we test the behavior of the quasiholes by analyzing the wave function.

Now we consider the generalized Laughlin wave function with one and two quasi-

holes, Eqs. (4.20) and (4.21). Note that, as a consequence of the anisotropy, the

gradient of the state does not only depend on the radial, but also on the angular

position of the quasiholes. Furthermore, there is a dependence on the parameter

β, defined as a variational parameter in Eqs. (4.20) and (4.21). As shown in



Chapter 5. Testing the system with quasiholes 81

Fig. 5.4, for given parameters η and Ω0, the same value of β optimizes simulta-

neously the ground state, the quasihole state, and the state with two quasiholes.

This allows to interpret β as a system parameter.

We define

fβ(R, φ) ≡ 〈ΨLqh(φ)|∂φ|ΨLqh(φ)〉 . (5.7)

This function fβ is quite lengthy, so we expand it in R and give only the lowest

term (O(R2)):

fβ(R, φ) ≃
8115904+ 2799526β2 − 7102

√

94958 (1− β2)β cos(2φ)

17142924+ 4477401β2
R2 . (5.8)

From the expression we see that for a fixed and small value of R, fβ oscillates

around R2/2, such that the angular integration
∫ 2π

0 fβ(R, φ)dφ again will yield a

Berry phase close to the encircled area, thus half of the Berry phase accumulated

by a normal particle.

Formally, we can capture this oscillating behavior by defining two effective charges

qx and qy, depending on the direction in which the quasihole moves. Up to

linear order in the quasihole coordinates X and Y , which is valid for small radial

positions R . 1, the Berry connection is given by (qxY,−qyX)/λ2⊥. The Berry

phase defined in Eq. (5.2) reads:

γC =

∮

1

λ2⊥
(qxY,−qyX) · dR = (qx + qy)

A

λ2⊥
, (5.9)

where A is the encircled area and Stokes’ theorem has been applied. The effective

charge, defined as qeff = (qx + qy)/2, and the gauge-dependent qx and qy are

plotted as a function of β in Fig. 5.5 for different N . In all cases the effective

charges are close to 1/2. For small values of β, which represent realistic states

of the system, the value of the charges approaches 1/2 as the number of atoms

in the system is increased. In summary, the average charge qeff has only a minor

dependence on β, which decreases as N increases. Though not realized in our

system, we note that in the limit β → 1, both charges qx and qy again coincide

due to the recovered cylindrical symmetry of the state ΨL1.

Finally, we introduce two quasiholes into the generalized Laughlin state. Follow-

ing a procedure similar to the one for the adiabatic case presented in the previous

section, we extract the statistical phase angle of the quasiholes. The result as a
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Figure 5.5: The effective charges qy (blue dotted) and qx (red dashed), and
qeff = (qx + qy)/2 (green solid) of quasiholes in the generalized Laughlin state
as a function of the admixture β of higher angular momentum to the Laughlin
state, for N = 4 (left) and N = 6 (right).
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Figure 5.6: Statistical phase angle ϕstat for two quasiholes in generalized
Laughlin state as a function of the variational parameter β. The radial posi-
tion of the quasiholes is at λ⊥ (blue solid line), 1.4λ⊥ (red dashed line), and
1.8λ⊥ (green dotted line).

function of β is shown in Fig. 5.6 for N = 4 and closed paths of different radii.

While the quasiholes in the bulk, R = 1, remain with an almost constant phase

angle ϕstat ≈ 0.51, the phase angle of quasiholes closer at the edge of the system

have a stronger dependence on β.

We conclude that the presence of a certain degree of non-adiabaticity (β . 0.7)

does not spoil the anyonic character of quasihole excitations above the Laughlin

state.
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5.2 Dynamics of quasiholes

So far we have shown that sufficiently strong laser beams directed towards a

bosonic cloud in the Laughlin state are able to create quasiholes according to Eq.

(3.8) for a single quasihole, or according to Eq. (3.10) for two quasiholes. The

position of the quasiholes is determined by the focus of the lasers. By adiabatically

moving the lasers, the quasiholes can be moved, as they have to follow the laser.

From the resulting Berry phases, we have extracted the effective charge and the

quantum-statistical phase of these quasiholes.

In the present section, we will analyze the dynamics of quasiholes, if they are

left on their own, i.e. if we suddenly switch off the laser which has created

the holes. The subsequent time evolution of the system is then described by the

time-independent Hamiltonian H from Eq. (4.11). For simplicity, we now neglect

the terms stemming from the non-adiabaticity of the atom-laser coupling. The

dynamics of the quasihole can directly be observed in the density of the system.

We will show that it yields relevant information about the ground state of the

system.

We will start in Section 5.2.1 by considering a quasihole in the Laughlin state. It

is the densest state with zero interaction energy in a two-body contact potential.

This property reflects in the decoherence-free dynamics of a quasihole. This is

in clear contrast to the case of a quasihole in ground states with L < N(N − 1),

where an interaction-induced dephasing delocalizes the excitation. Focusing on

a L = 0 condensate in Section 5.2.2, and on a Laughlin-type quasiparticle state

in Section 5.2.3, we find a “collapse” of the quasihole which is followed by a

“revival”. From period and position of the revival, it will become possible to

deduce information about kinetic and interaction energy in the system.

This section has been published in Ref. [108].

5.2.1 Quasiholes in the Laughlin state

Let us consider the situation with only one quasihole at position ξ. The state

(3.8) can be written as

Ψqh(ξ) = Nqh

N
∑

k=0

ξN−kfkΨL, (5.10)
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where the fk are totally symmetric polynomials of kth order in the coordinates

z1, . . . , zN , with the property that each of the coordinates appears at most to

linear order. First of all, we note that since the Laughlin part ΨL vanishes, when

two particles come together, so does every term in the sum of Eq. (5.10), i.e.

its interaction energy vanishes, V fkΨL = 0. Since every term has a well-defined

total angular momentum Lk ≡ LLaughlin + k (in units of ~), each term is also

eigenstate of the kinetic part of the Hamiltonian, which we have chosen to be

cylinder-symmetric. Recall that the single-particle energies, Ek = ~ω⊥Lk(1− η),

are proportional to the angular momentum. With this we have

HξN−kfkΨL = [~ω⊥(1 − η)k + const.] ξN−kfkΨL ≡ (ǫk + γ)ξN−kfkΨL. (5.11)

From this, we directly obtain the time evolution of the quasihole state:

Ψqh(ξ, t) ≡ eiHtΨqh(ξ) = Nqh

N
∑

k=0

ξN−kfkΨLe
i(ǫk+γ)t. (5.12)

By defining ξ̃(t) ≡ ξe−iǫt, we can re-write this as

Ψqh(ξ, t) = Nqhe
i(γ+Nǫ)t

N
∑

k=0

ξ̃(t)N−kfkΨL = ei(γ+Nǫ)tΨqh(ξ̃(t)). (5.13)

In this formula, we have split the phase evolution into an overall part, ei(γ+Nǫ)t,

driven by the energy γ + Nǫ of a quasihole state in the center, and separate

terms occurring for finite ξ, which have been absorbed into the definition of

ξ̃. We directly see that for ξ = 0 the quasihole state is a stationary state. A

quasihole off the center, however, breaks the cylindrical symmetry present in the

Hamiltonian H , and thus the quasihole encircles the origin, trying to restore the

symmetry. Conservation of angular momentum does not allow any change in |ξ|.
The angular velocity of the quasihole is given by ω⊥(1− η).

Note that the above calculation can easily be repeated for more than one quasi-

hole. It can generally be shown that the time dependence of the corresponding

wave function can be absorbed into the hole position ξ → ξe−iǫt, and an over-

all phase factor, as if all holes were situated in the origin. We note that the

normalization factor of the wave functions, which carries the information about

the anyonic statistics of the quasiholes, depends only on absolute values |ξ| or
|ξi − ξj |, thus the substitution ξ → ξe−iǫt poses no problem there.
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5.2.2 Quasiholes in the L = 0 condensate

Next we will analyze the dynamical behavior of holes in a system in the LLL

regime, but still far from the strongly correlated Laughlin regime. Namely, we will

consider a system where, in the ground state, yet no vortices have been formed,

i.e. L = 0. Such a system is a condensate described by the Fock-Darwin function

φFD0,0 (z) ∼ exp(−|z|2/2). The many-body wave function is simply the product of

N such single-particle functions. We denote it by Φ0 ∼ exp(−∑i |zi|2/2). Then,
as before, we create holes by additional δ-potentials according to Eq. (5.1). For

the case of a single hole at position ξ, we get the wave function:

Φqh(ξ) ∼
N
∏

i=1

(zi − ξ)Φ0 =
N
∑

k=0

fkξ
N−kΦ0. (5.14)

As before in the Laughlin case, the kinetic energy associated with each term is

linear in k. Assuming a non-interacting system, i.e. g = 0, we can in the same

way absorb the kinetic contribution to the time evolution in the hole coordinates:

Φqh(ξ, t)
∣

∣

∣

g=0
= exp [i(Nǫ+ γ′)t] Φqh(ξ̃(t)). (5.15)

In the overall phase factor we now have the zero-point energy γ′ of the system.

For the interacting system, however, the situation is different. The terms Ψk ≡
fkΦ0 are in general no eigenstates of the interaction V . To describe the time

evolution of this system, we thus have to decompose the Ψk’s into an eigenbasis

of V . Since V conserves angular momentum, we can restrict ourselves, for every

Ψk, to the subspace with L = k, for which we obtain the eigenbasis via exact

diagonalization. We denote the basis by χ
(k)
α and write:

Ψk =
∑

α

c(k)α χ(k)
α . (5.16)

The coefficients c
(k)
α can be easily obtained, since exact diagonalization yields

the χ
(k)
α in the Fock basis of occupation number states. In this basis, the state

Ψk is represented by the vector |N − k, k, 0, . . . 〉, from which it differs only by

a normalization factor Nk = [(N − k + 1)! (k + 1)!]−1/2. We thus have c
(k)
α =

Nk

〈

χ
(k)
α

∣

∣

∣ N − k, k, 0, . . .
〉

.

Obviously, the Ψk and thus the χ
(k)
α are within the LLL, so all χ

(k)
α are eigenstates

of the kinetic term with the same eigenvalue kǫ. The time evolution of the



86 Chapter 5. Testing the system with quasiholes

quasihole state is thus described by the wave function

Φqh(ξ, t) = exp [i(Nǫ+ γ′)t]
N
∑

k=0

ξ̃(t)N−k
∑

α

c(k)α χ(k)
α eiǫ

(k)
α t. (5.17)

Here, ǫ
(k)
α is the eigenvalue of χ

(k)
α with respect to V . The presence of this term

causes, in general, a dephasing of the different contributions to Φqh(ξ). There-

fore, we observe a radial movement of the hole stemming from the single-particle

contribution, but at the same time the hole fades out due to the interactions.

In clear contrast to the Laughlin case, the entire system is being deformed, as

can be seen in the density plots of Fig. 5.7. One might interpret this process as

the flow of excitation energy from the sharply localized hole to the edges of the

system. Interestingly, this process is reversible: As visible in the right side of Fig.

5.7, the hole re-appears in the density after each integer multiple of a revival time

T . Below we will relate this time to the interaction parameter g. The position

of the revivals is subject to the rotation of the hole which happens even in the

non-interacting case, and is thus determined by the single-particle energy scale

η~ω⊥.

To further establish the close relation of this dynamical behavior with collapse-

and-revival effects first discussed and observed in the context of the Jaynes-

Cummings model [93, 94, 97], and later for Bose-condensed matter [99–101, 104–

107], we consider the eigenvalues r of the density matrix

ρij = 〈Φqh(ξ, t)| ĉ†i ĉj |Φqh(ξ, t)〉 ,

i.e. the occupation of different eigenmodes. They are shown as a function of

time in Fig. 5.8: Initially, r = N , as all particles are in a single-particle state,

(z − ξ) exp(−|z|2/2). In the course of time, interactions will occupy additional

eigenmodes, causing a collapse of the condensate, clearly visible in the evolution

of r. The nature of the corresponding eigenmodes is particularly easy to analyze,

if the hole is placed in the center. Then, at any time, eigenmodes of ρij are

Fock-Darwin functions, as the rotational symmetry is maintained. In that case,

for all particle numbers we have studied, the most occupied mode is, at any time,

φFD0,1 , while the second most occupied is always the Gaussian, i.e. φFD0,0 . While

Fig. 5.8 shows that the originally condensed state collapses into a non-condensed

state, Fig. 5.9 also proves the correlated nature of the system at t = T/2. Here,

we have plotted the pair-correlation function g(z1, z2), as defined in Eq. (3.18),

after fixing the coordinate of one particle. As shown in Fig. 5.9, depending on
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Figure 5.7: Density plots for N = 8 (upper line), and N = 20 (lower line).
On the left, we show the initial density at t = 0 with one hole at ξ = 0.2λ⊥.
The pictures in the middle show the fully collapsed system, i.e. at t = T/2.
The pictures on the right correspond to t = T , where we observe the revival
of the hole.

where we fix one of the particles to be, the probability distribution of the other

particle is heavily affected. This is a trace of entanglement and in clear contrast

to the behavior at t = 0. Independently from where we choose one particle to be,

the pair-correlation function at t = 0 is found to remain with the same Gaussian

shape. Thus, the time evolution brings the initially fully uncorrelated system

into a correlated state. The effect is most pronounced in small systems with a

quasihole in the center. In this case, we find for N = 12 at t = T/2 an entangled

state with almost equally populated modes, nFD
0 = 4.7 and nFD

1 = 4.3.

In the following, we derive expressions for T and ξ(n). This will enable us to

deduce information about different system’s parameters from experimentally ac-

cessible quantities. We have to analyze the spectra ǫ
(k)
α , which define the periods

T̃
(k)
α of phase oscillations of each contribution χ

(k)
α :

T̃ (k)
α =

2π~

ǫ
(k)
α

. (5.18)
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Figure 5.8: Eigenvalues r of the density matrix ρ as a function of time. (a):
N = 8. (b): N = 20. Initially, one hole was pierced at ξ = 0.2λ⊥.

Figure 5.9: Contour plot of pair-correlation function g(r, r′) with one co-
ordinate fixed at r = (0, 0) [left side], (0.5, 0) [middle], or (2, 0) [right side].
Since

∫
g(r, r′)dr′ = ρ(r), we have divided each plot by the density ρ(r), in

order to obtain a common color scheme. The plots refer to a L = 0 conden-
sate, in which initially a central hole has been pierced. They are taken after a
free time evolution t = T/2. The system size has been set to N = 12. If one
particle is fixed at the center (left) or close to the center (middle), the pair-
correlation function signals an increased probability of the pair being close
together. If one particle is found far away from the center (right), the second
particle is most likely found on the opposite edge of the system. This mutual
dependence proves the correlated nature of the state at t = T/2.
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Now assume that there are some energy units u and u′, which allow to write

ǫ(k)α = ku′ + n(k)
α u, (5.19)

with n
(k)
α ∈ N. The part linear in k does not depend on α, and thus can be

absorbed into the kinetic energy contribution. The kinetic part will not affect

this collapse and revival process, as it is completely absorbed in an overall phase

and the time-dependent parameter ξ̃(t). The phase decoherence between different

α states is controlled by u, and the corresponding periods read

T (k)
α =

2π~

n
(k)
α u

. (5.20)

We see that T = 2π~/u is a multiple of all T
(k)
α , so at time T , all contributions

will have the original phase relations. The positions pm at which we will find

the mth revival of the hole is defined by the rotational movement of the hole,

i.e. pm = ξ̃(mT ). Note that now the time-dependence of ξ̃ is due to the kinetic

energy ǫ plus the interaction contribution u′.

To determine u and u′, we numerically analyze the spectra ǫ
(k)
α . We find that

the gap above the L = N subspace provides us, for any N , with an energy unit

u ≈ 0.040gN~ω⊥. All states in the spectrum are found to be given as integer

multiples of u plus the ground-state energy. Also in subspaces L ≤ N , the same

unit u can be used to quantize most of the energies. Strikingly, the eigenstates

to those energies which can not be constructed according to Eq. (5.19) have zero

overlap with ϕk. Thus, they do not contribute in Eq. (5.17).

The second energy unit of Eq. (5.19) turns out to have exactly the same value,

i.e. u′ = u. As exact solutions are known for the ground state energies in

subspaces with L ≤ N [109–111], we are able to write down an analytic expression,

u′ = gN
8π ~ω⊥. We thus obtain for the revival period

T =
(4π)2

gNω⊥
. (5.21)

From this formula, we directly see that choosing gN = const.makes the oscillation

periods independent from the size of the system. This choice is convenient as it

also guarantees a finite interaction energy per particle in the thermodynamic

limit. Fixing g rather than gN , the periods would decrease in larger systems.

By Eq. (5.21), a measurement of the revival period T directly yields information
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Figure 5.10: Eigenvalues r of the density matrix ρ as a function of time
for different particle numbers N . The hole has been introduced at the origin,
ξ = 0.

about gN . Measuring then the polar angle φ(n) of the revival position ξ(n) =

ξ̃(nT ) will allow to extract η. We find

φ(n) =
4n(1− η)

gN
+ n. (5.22)

Comparing the densities for N = 8 and N = 20 in Fig. 5.7 we find that the den-

sity tends to maintain its hole structure, when we increase the size of the system.

Accordingly, as can be seen in Fig. 5.8, the amplitudes of r as a function of time

become smaller. To study the role played by particle number, we have systemat-

ically increased the size up to N = 36 for the particularly simple situation of a

hole at ξ = 0. The results are shown in Figs. 5.10 and 5.11. As the data in Fig.

5.10 clearly indicates, the hole state will not dephase in the thermodynamic limit.

Accordingly, the density profile shown in Fig. 5.11 maintains its hole structure.

The reason for this behavior can be inferred from earlier work studying the ground

state wave functions for L ≤ N [109–112]. There it has been shown the ground

state wave functions for L ≤ N are closely related to the functions fk, which are

the wave functions where the total angular momentum L = k ≤ N is most equally

distributed amongst N particles, fk =
∑

1≤i1<···<iL≤N zi1 · · · ziL . From these

functions, we obtain the polynomial part of the ground state wave function of L =
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Figure 5.11: Density profile (along x = 0) for a system with initially one
hole at the origin (shown in red curve) at time t = T/2 for different particle
numbers N .

k by replacing the coordinates zi by the relative coordinates z̃i ≡ zi−Z, where Z is

the center-of-mass coordinate. Note that Z is not just a number, but an operator

with 〈Z〉 = 0. As center-of-mass fluctuations decrease with increasing particle

number of the system, for large-sized systems Z becomes pinned to the center, and

the states fkΨ0 become eigenstates of the Hamiltonian with eigenvalues Ek ∼ k.

Just like in the Laughlin case, we will then no more observe the collapse and

revival of the hole. Of course, the rotational movement around the origin will

survive the thermodynamic limit if the hole is initially placed outside the center.

Still there is a quantitative difference to the Laughlin regime, as the period of

rotation will be shorter due to the additional interaction energy u′ from Eq.

(5.19) which has to be absorbed in the definition of ξ̃(t). Qualitatively, however,

the dynamics of a single hole does not distinguish the condensed phase from the

Laughlin phase in the thermodynamic limit.

The situation becomes quite different if we pierce a second hole into the con-

densate. For simplicity, we choose to introduce one of them in the center. Our

wave function is then a linear combinations of states |0, 2N − k, k, 0, · · · 〉 with

0 ≤ k ≤ N . and we are in the angular momentum regime with N ≤ L ≤ 2N .

Here, even the GS energies EL may not behave linearly with L [57]. Also, much
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Figure 5.12: Occupation numbers r/N of eigenmodes as a function of time in
a condensate of N = 8 (dashed lines) and N = 12 (solid lines) particles, where
initially one hole has been placed in the center and second hole at |ξ| = 1. No
full revivals are observed, and the peaks at t = nT are washed out in larger
system.

more states are involved when expressing the states |0, 2N − k, k, 0, · · · 〉 in terms

of eigenstates of the interaction, which now live in a significantly increased Hilbert

space. The consequence of this is that, after a quick dephasing, the holes will

never exhibit a full revival, see Fig. 5.12. Contrarily, as the comparison of the

data for N = 8 and N = 12 in Fig. 5.12 suggests, the peaks at the same period as

given by Eq. (5.21) must be expected to disappear quickly in the thermodynamic

limit.

A L = 0 condensate with two quasiholes is similar to a L = N condensate with

one quasihole, and in the thermodynamic limit the L = N condensate with one

vortex in the center is the ground state of the system at this angular momentum.

Fig. 5.12 therefore suggests that in regimes L & N , also a single quasihole will

dephase. This seems to be reasonable, as spontaneous symmetry breaking has

been predicted for states with L & N [29, 87], and ground states in several L

subspaces become quasi-degenerate. Since within each quasi-degenerate manifold

energy differences are very small, while large energy jumps occur between differ-

ent manifolds, a dephasing of different contributions and thus a collapse of the
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quasihole must be expected. Furthermore, the smallness of energy contributions

in the quasi-degenerate manifolds make revival times unobservably long. We do

not further investigate this situation of L & N , as the symmetry-breaking leads to

the formation of vortex lattices [29], also observed in experiments [113]. Charac-

teristics of these lattice should allow for a clear identification of the corresponding

phases.

5.2.3 Quasiholes in the Laughlin quasiparticle state

Upon increasing the gauge field strength, the vortex lattice has been predicted

to melt when reaching filling factors ν . 6 [79]. Then, a variety of strongly

correlated quantum liquid phases are candidates for the ground state. Finally,

for ν = 1/2 or L = N(N−1), the Laughlin state becomes the ground state of the

system. It is certainly in this regime where observable properties to distinguish

between the phases become most relevant. Let us therefore study the dynamics

of a quasihole pierced in the last incompressible phase which has been predicted

to occur before reaching the Laughlin state. It is characterized by L = N(N − 2)

and by a wave function which differs from the Laughlin wave function only locally

at the origin, having the form of a Laughlin quasiparticle excitation, ΨL,qp =

exp(−∑i |zi|2/2)∂z1 . . . ∂zN
∏

i<j(zi − zj)
2, see Chapter 4.

For simplicity, we will pierce the quasihole in the origin, which makes the re-

sulting state an eigenstate of the single-particle part of H, and all dynamics will

exclusively be driven by V . To obtain the state Ôqh(0)ΨL,qp in the Fock ba-

sis, we numerically diagonalize the Hamiltonian H′ = V + VI in the subspace

L = N(N − 1). We then decompose this state in the corresponding eigenba-

sis of V , also obtained by exact diagonalization. Several eigenstates of V will

contribute, but the largest contribution comes from the Laughlin state with an

overlap of 0.709 (0.717) for N = 7 (N = 6). Expressed in the eigenbasis of V , we
can easily perform the time evolution of Ôqh(0)ΨL,qp.

The dynamics is clearly visible in the density shown in Fig. 5.13a: In the course

of time, the hole fades out, as the center of the cloud gains a finite density. At

some point, even a density maximum is developed at the origin, surrounded by a

circular density valley. As the valley spreads out, the maximum becomes clearly

peaked. The process is then reversed, and a hole at the center re-appears. Such

oscillations between a density maximum and a density minimum in the center
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Figure 5.13: Radial profile of the cylindrically symmetric density for a sys-
tem of N = 6 particles initially prepared in the state Ôqh(0)ΨL,qp at different
times t (in units of ω−1

⊥ ) with g = 1. In (a) the evolution from a quasihole in
the center to a density peak is shown. In (b) we plot the density for all times
t < 200, at which it takes a temporal maximum or minimum in the center.

can be observed repeatedly. The scenario, however, differs from the collapse-and-

revival process in the condensate: First, re-appearing holes are not equivalent to

the original hole, as their density at the center remains finite, and their core size

has decreased, see Fig. 5.13b. Second, the “revival” periods are not sharp. In

Fig. 5.13b, we have chosen precisely those times at which the process is reversed.

For N = 6, the reversal after the first re-appearance of the quasihole is found at

t = 55, while the second revival takes place at t = 114.

To understand this behavior, we have to analyze the spectrum of V at L =

N(N − 2) +N = N(N − 1). It can be divided into a quasi-continuous excitation

band and the Laughlin state. A gap ∆ separates these two contributions. For
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Figure 5.14: Overlap ci between Ôqh(0)ΨL,qp and eigenstates of V with
energy Ei for different N .

N & 6, the gap approaches the constant value of ∆ ≈ 0.1g, if we choose g (rather

than gN) to be constant, cf. Section 4.3.3 or Ref. [90]. Compared to this value,

the energy differences between states within the excited band are typically very

small. This property of the spectrum can be seen in Fig. 5.14, where we have

plotted the overlap of the eigenstates with the initial state, ci ≡ 〈Ôqh(0)ΨL,qp|χi〉,
versusEi/g. Here, |χi〉 denotes the eigenstates of V in the L = N(N−1) subspace,

and Ei is the corresponding eigenenergy.

Due to this structure, the relative dephasing of different contributions to Ôqh(0)

ΨL,qp from the excited band is slow compared to the dephasing of these contri-

butions with respect to the contribution from the Laughlin state. Following this

reasoning, 2π/∆ ≈ 63 for g = 1 sets the rough time scale for a “quasi”-revival, at

which the Laughlin state is again “in phase” with the low-energy contributions

from the excited band. This slightly differs from the number we find by analyz-

ing the density (cf. Fig. 5.13b), t = 55 for N = 6. But we note that the most

important contribution from the excited band is a state with energy E = 0.112g

(cf. Fig 5.14). Thus, it is in phase with the Laughlin after a time t = 56. It

has an overlap with Ôqh(0)ΨL,qp of 0.533. A superposition of this state and the

Laughlin state is able to reproduce the quasihole state with a fidelity of 78%.

Other important states, with overlaps 0.279 and 0.110, are found at E = 0.105g

and E = 0.102g. At t = 56 they are still nearly in phase with the E = 0.112g

state. But also states with E = 0.164g and E = 0.182g contribute significantly

with overlaps 0.180 and 0.133. These states will be clearly out of phase, making

the revival imperfect. Subsequent revivals will more and more suffer from the
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slow dephasing within the manifold of excited states. This explains the small

irregularity in the revival periods and the loss of the quasihole character in the

density profiles (see Fig. 5.13b).

Posing the question whether the described dynamics will survive in the thermo-

dynamic, we first note that due to the similarity between the Laughlin state and

Ôqh(0)ΨL,qp, we can always expect contributions from both the Laughlin state

and the excited band. This assessment seems to agree with Fig. 5.14, where the

overlap with the Laughlin state is found to be almost constant while varying par-

ticle number, 5 ≤ N ≤ 7. As the Laughlin gap is known to be constant for large

N , also the revival time has to be. The imperfection of the revival, characterized

by a finite density at the center, continuously improves, as we increase the system

size from N = 4 to N = 7. This seems reasonable, since energy differences in

the excited band decrease with larger N , slowing down the dephasing in the ex-

cited band. In Fig. 5.14 this reflects in the decreased spreading of relevant states

when increasing particle number. However, whether this might lead to a perfect

collapse-and-revival process in the thermodynamic limit, is not clear from our

calculations.

5.2.4 Applications

In the above section, we have shown that observing the dynamics of a quasihole

might serve to classify different ground states in the LLL regime. Especially,

the absence of coherence is a characteristic feature of the Laughlin regime, L ≥
N(N − 1), due to its zero interaction energy. It is distinct to the collapse of

the quasihole observed in finite systems with L < N(N − 1). For simplicity, we

have considered an idealized system with a cylinder-symmetric Hamiltonian, but

we note that even deformed Laughlin states, according to Eq. (4.19), should be

characterized by a decoherence-free quasihole dynamics due to their vanishing

interaction energy. In the condensed regime, the collapse of the quasihole is

followed by perfect revivals, and the system oscillates between a condensed and a

correlated state. System parameters like gN and η, specifying the interaction and

the single-particle energy, can be obtained by measuring period and positions of

this revival. A collapse-and-revival is also found for a quasihole in the Laughlin-

quasiparticle state, distinguishing this incompressible phase in direct vicinity of

the Laughlin phase from the Laughlin regime.



Chapter 6

Fractional quantum Hall

states of pseudospin-1/2

bosons

The strongly correlated phases we have encountered so far in this thesis described

spinless or spin-polarized systems. As we have shown in Chapter 4, bosons in

geometric gauge fields may be in topological phases which can well be described

by the Moore-Read wave function for ν = 1, Eq. (3.11), and the Laughlin wave

function for ν = 1/2, Eq. (3.6). These are the first two states of the so-called

Read-Rezayi (RR) series of parafermionic states [59], briefly discussed in Section

3.1.2.2. Considering the case of artificial gauge fields induced by fast rotations,

N. Cooper et al. have given numerical evidences that several RR states up to

filling factor ν = 6 are relevant to describe systems of spin-polarized bosons [79].

This has been a striking finding, as these states are constructed as the ground

states of a (k + 1)-body contact interaction with k = 2ν.

Although also bosons with a pseudo-spin-1/2 degree of freedom have already

been condensed [114, 115], and their behavior under rotation has been studied

both theoretically [116–118] and experimentally [119, 120], less attention has yet

been paid to the strongly correlated regime in such systems. For the electronic

FQH effect, however, a variety of states has been proposed for systems with spin.

Despite the strong magnetic field the electrons might be in a singlet phase due to

97
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their small gyromagnetic ratio in many solids. Within a conformal field theory

framework, a generalization of the RR series to the so-called non-Abelian spin

singlet (NASS) series [67, 68, 121] has been formulated, introduced in Section

3.1.2.3. For bosons, this series of topological states occurs at fillings ν = 2k/3,

and includes the (2, 2, 1)-Halperin state [66] with Abelian excitations at k = 1.

Like the RR states, the NASS states are constructed as the zero-energy eigenstates

of a repulsive (k + 1)-body contact interaction.

In this chapter we show, using exact diagonalization, that also for two-component

Bose gases in Abelian gauge fields two-body contact interaction leads to the

formation of a series of incompressible states. They are found precisely at the

NASS filling factors. For k = 1, this is trivially the Halperin state, but also

for k = 2 significant overlap with the corresponding NASS state and a similar

spectral structure indicate that the system can be brought into the NASS phase

within this realistic setup.

This finding is in close analogy to the spin-polarized case with RR-like states at

filling ν = k/2. However, as it is experimentally difficult to get into the regime

of low filling, the two-component system benefits from supporting analogs of the

RR states at higher filling. Furthermore, the possibility of tuning independently

inter-spin and intra-spin interactions provides additional control. In particular,

we will show that states with zero interspin interaction energy are obtained by

increasing the interspin interaction strength. The mechanism behind this are

correlations which are most economically used in pairs of particles with opposite

spin, favoring a singlet configuration in the case of SU(2)-symmetric interactions.

Finally, effects stemming from a spin-orbit (SO) coupling can be integrated in the

framework of two-component gases by generalizing to a non-Abelian gauge field.

We investigate this scenario, and find the formation of Laughlin states at filling

factors smaller than 1/2 [41, 122], of spin-orbit coupled analogs of Read-Rezayi

states [123, 124], and the occurrence of NASS-like states at SO coupling strengths

corresponding to a Landau level (LL) degeneracy.

Distinct from our work in Chapter 4, the present chapter will not focus on a

concrete proposal how to achieve the artificial gauge field. Possible ways how to

generate non-Abelian gauge fields have been presented in Section 2.3.2. These

SU(2) gauge fields contain magnetic fields acting on two-component spinors as a

limiting case. We also note that the simple proposal of rotating the gas directly

generalizes to magnetic fields for multi-component gases, although it cannot be

extended to SO coupling.
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Considering only the effective Hamiltonian, independently from the concrete ex-

perimental setup, has the great advantage that we can try to extract the core

physics. While for instance a harmonic trapping potential is certainly an impor-

tant part of any real experiment, in theory we can expect it to solely adjust the

total angular momentum, or, respectively, the filling factor. Explicitly, we have

seen this in Chapter 4. So we now feel safe about neglecting the trap. It is then

convenient to perform exact diagonalization in a geometry without edges, e.g. a

sphere or a torus. We will make the latter choice, which also can be seen as a

rectangle with periodic boundary conditions. Such boundary conditions have first

been used for studying FQHE in Ref. [125]. Apart from eliminating edge effects

from our study, they also represent a non-trivial geometry, on which topological

phases can be classified by the number of degenerate ground states [126].

In the following section, we will derive the LL structure on the torus, and work out

the translational symmetry [61] we can exploit for doing the exact diagonalization.

The results of the numerical diagonalization in the absence of SO coupling are

presented in Sections 6.3 and 6.4. The SO coupled system is described in Section

6.5: We study the fate of the Laughlin state upon tuning the SO coupling strength

in Section 6.5.1. In Section 6.5.2, we focus on one special coupling strength leading

to degenerate LLs and vary the filling factor.

6.1 Landau levels on the torus

In the absence of a trap, the single-particle Hamiltonian is just given by Hsp =

(p−A)2/2M . Considering periodic boundary conditions, i.e. working on a torus,

it is convenient to choose the vector potential in the Landau gauge, A = B(0, x).

This will not modify the LL spectrum, but the eigenfunctions have to be adapted

to the new gauge. As before, when deriving Eq. (3.1) in the symmetric gauge,

we define creation and annihilation operators (for ~ ≡ 1 and M ≡ 1/2):

c ≡ 1√
2B

(px − ipy − iBx), (6.1)

c† ≡ 1√
2B

(px + ipy + iBx), (6.2)
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with [c, c†] = 1 and [c, c] = 0. These operators bring the single-particle Hamilto-

nian to the harmonic oscillator form

Hsp = 2B

(

c†c+
1

2

)

, (6.3)

where, contrarily to Eq. (3.1), no trap breaks the LL degeneracy, and thus only

one type of operator appears. Different degenerate states within each LL are

characterized by a continuous quantum number κ, as can be seen by making a

plane-wave ansatz in the y-direction:

Ψ̃n,κ(x, y) = eiκyΦn,κ(x). (6.4)

This leads to a harmonic oscillator Hamiltonian Hsp(κ), determining Φn,κ:

Hsp(κ) = p2x +B2
(

x+
κ

B

)2

. (6.5)

The unnormalized eigenfunctions of this Hamiltonian are

Φn(x̃) = e−Bx̃2/2Hn(
√
Bx̃), (6.6)

with Hn the Hermite polynomials, and x̃ the shifted x variable:

x̃ = x+
κ

B
. (6.7)

We now apply the periodic boundary conditions on the system, as done in Ref.

[125]. In order to be periodic in y with a period b, we have to restrict κ to integer

multiples of 2π/b. We therefore define Xj ≡ κ/B = 2πj/(bB) with j ∈ Z. This

quantity has dimension of a length, as B = 1/λ2 with λ the magnetic length. As

can be seen in Eq. (6.5), it can be interpreted as a displacement of the harmonic

oscillator in x-direction. To make the wave function also periodic in x, with

period a, we can sum over all displacements Xj + ka with k an integer:

Ψn,j(x, y) ≡
∞
∑

k=−∞
Ψ̃n,B(Xj+ka)(x, y). (6.8)

This will not affect the b-periodicity in y, if the following condition is fulfilled:

ab = 2πλ2NΦ, (6.9)
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with NΦ an integer. Thus, for a given torus size a × b, only discrete values of

the magnetic field are possible. We can interpret NΦ as the number of quantized

fluxes within the unit cell. Note that NΦ is connected to the particle number N

through the filling factor

ν =
N

NΦ
≡ p

q
, (6.10)

where p and q should be taken co-prime.

The displacement in Eq. (6.8) is characterized by two parameters j and k. We

must restrict j to 1 6 j 6 NΦ to prevent double counting. In the LLL, the wave

functions explicitly read

Ψ0,j(x, y) ≃
∞
∑

k=−∞
exp

[

iy′
(

j

NΦ
+ k

)

a

λ
− 1

2

(

x′ +
a

λ

(

j

NΦ
+ k

))2
]

, (6.11)

where the unitless variables x′ = x/λ and y′ = y/λ have been introduced. After

normalization and replacing the k-sums by elliptic theta functions, we get

Ψ0,j =
(

2π2N3
Φ

a

b

)−1/4

e−
y′2

2 −ix′y′

θ3

(

jπ

NΦ
+

√

π

2NΦa/b
(x− iy), e

− π
NΦa/b

)

.

(6.12)

From this expression we should also note that the problem depends only on two

parameters: the axis ratio a
b , and the number of fluxes NΦ. The parameter B

just sets an overall length scale. The excited states can easily be obtained by

applying the ladder operator c†:

√
n+ 1Ψn+1,j = c†Ψn,j. (6.13)

With this, we can express the single-particle basis on the torus by the LL quantum

number, and an additional quantum number j which runs from 0 to NΦ − 1.

Since we will in the following consider two-component gases, each state has an

additional two-fold pseudospin degeneracy. We denote the internal state by an

index s =↑, ↓. On the other hand, we will be able to neglect the LL index n by

making the convention that all particles live in the LLL, as before in Chapter

4. When we, later in this chapter, also consider a SO coupled system, the LL

structure will be modified, as internal and external degrees of freedom will be

mixed. For the moment, however, we will only consider particles in LLL states
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Ψj,s ≡ Ψj |s〉. They are created (annihilated) by operators â†js (âjs). The wave

function Ψj represents the external degrees of freedom, while the spin is expressed

by the ket |s〉. The second-quantized notation of the Hamiltonian reads

H =
∑

j,s

ǫ â†jsâjs +
∑

{j,s}
V{j,s}â

†
j1s1

â†j2s2 âj3s3 âj4s4 . (6.14)

Since Ψj,s are the eigenstates of the single-particle part of the Hamiltonian Eq.

(6.14), this part is already diagonal, with ǫ the energy of a particle in the LLL. Due

to the LL degeneracy and neglection of higher LLs, this term is just a constant,

which we will neglect in the following. The interesting part of the Hamiltonian

is the second term describing a two-body interaction characterized by the matrix

elements V{j,s}. Here, {j, s} denotes the set of quantum numbers j1, . . . , j4 and

s1, . . . , s4. Assuming contact interactions we have:

V{j,s} =gs1s2δs1,s3δs2,s4 (6.15)

×
∫ a

0

∫ b

0

d2z1d
2z2 δ(z1 − z2)Ψ

∗
j1(z1)Ψ

∗
j2(z2)Ψj3(z1)Ψj4(z2).

with gs1s2 the spin-dependent contact interaction strength of two particles. Al-

though this double integral, below denoted by I, can be evaluated by straightfor-

ward numerics, we give an analytic solution. It can be obtained by inserting the

expansion of Ψj as given by Eq. (6.11), see also [50, 127]:

I =
1

2πNΦ

∞
∑

s=−∞

∞
∑

t=−∞
Cn1,n4

( τ

ϑ
s, τϑt

)

Cn2,n3

(

− τ
ϑ
s,−τϑt

)

× exp

[

−τ2
{

1

2

(

( s

ϑ

)2

+ (tϑ)
2

)

+ is(j1 − j3)

}]

δ′j1+j2,j3+j4δ
′
j1−j4,t, (6.16)

where δ′ is a Kronecker delta modulo NΦ, τ =
√

2π/NΦ, and ϑ =
√

a/b. The

coefficients Cni,nj depend on the LL. In Eq. (6.15), all particles are in the LLL,

so these coefficients are just 1. Nevertheless we have included them, as for the

spin-orbit coupled systems they will be needed. For interactions involving the
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first excited LLs n = 1 and n = 2, they read:

C1,0(u, v) ≡ −(u+ iv)/
√
2,

C0,1(u, v) ≡ (u − iv)/
√
2,

C1,1(u, v) ≡ 1− u2 + v2

2
,

C2,0(u, v) ≡ (u − iv)2/
√
2,

C0,2(u, v) ≡ −(u+ iv)2
√
2,

C1,2(u, v) ≡ (u2 + v2 − 4)(u+ iv)/4,

C2,1(u, v) ≡ −(u2 + v2 − 4)(u− iv)/4,

C2,2(u, v) ≡ (8 − 8(u2 + v2) + 2u2v2 + u4 + v4)/8.

The sums in Eq.(6.16) converge quickly, especially within the LLL. For LLs up

to n = 2, taking into account only values with |s| ≤ 16 and |t| ≤ 8 has given very

precise values.

From the expression in Eq. (6.16), one finds that the interaction conserves total

momentum J =
∑

i ji mod NΦ. In the next section, we will discuss symmetries

on the torus in greater detail.

6.2 Translational symmetries on the torus

We now exploit the translational symmetry of the system, which was fully dis-

covered by F. D. M. Haldane [61]. This will allow to work in a many-body basis

where states are characterized by a “Haldane momentum” K = (Kx,Ky) which

is conserved by the Hamiltonian. A comprehensive recipe for constructing this

basis can also be found in Ref. [50]. The main steps are summarized in this

section.

First we notice that the Hamiltonian in the Landau gauge commutes with a

“pseudomomentum” P i ≡ −pi − Byjex, which we use to define the “magnetic

translation operator” Ti(L) ≡ exp (−iL · P i). Further we introduce the lattice

vectors Lmn ≡ maex + nbey, with m and n integer. Although the Fock states

|j1, j2, · · · , jN 〉 are eigenstates of magnetic translations Ti(Lmn), this operator is

not particularly helpful, as all its eigenvalues are simply 1. This can be seen from
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writing Ti(L) = exp[i(Lxyi − LxLy/2)/λ
2]ti(L), in combination with Eq. (6.9).

Here, ti(L) denotes the standard translation, exp (−iL · pi).

Next, a “relative translation operator” is introduced, T̃i(L) ≡
∏

j Ti(L/N)Tj(−L/N),

which is found to leave the Hilbert space invariant for translations along L =

pLmn, where p is defined in Eq. (6.10) through the filling factor.

With these definitions, it is easy to see that the Fock states |j1, j2, · · · , jN 〉 are

eigenstates of T̃i(pnbey). We have:

T̃i(pnbey) |j1, j2, · · · , jN 〉 = exp(2πiqnJ̃/NΦ) |j1, j2, · · · , jN 〉 , (6.17)

with J̃ =
∑

i ji. Thus, a quantum number which characterizes the state is

J̃ mod (NΦ/q). However, one might also define a center-of-mass translation

Tcm(L) =
∏

i Ti(L), which leaves the single-particle states invariant for L =

Lmn/NΦ. From this we find that each subspace with fixed J̃ mod (NΦ/q) can

further be divided in q equivalent subspaces which are connected through a center-

of-mass translation. We then obtain as a quantum number J = J̃ mod NΦ. We

have already encountered this quantum number when writing down the Hamilto-

nian in Eq. (6.14) in second-quantized notation. For the exact diagonalization,

we can thus restrict the Hilbert space to a fixed J , reducing significantly the di-

mension of the space. Of course, to fully describe the system, we have to repeat

the calculation in all subspaces J . However, from the center-of-mass symme-

try we directly know that the spectra within J and J + nNΦ

q must be identical.

This allows to reduce the number of necessary calculations, or alternatively to

crosscheck the correctness of the applied code.

So far we have only considered the relative translational symmetry in y-direction.

This symmetry is easy to exploit, as the Fock basis is an eigenbasis of it. For

translations in x-direction, the situation is more complicated, as the translation

maps one Fock state onto another:

T̃i(pmaex) |j1, j2, · · · , jN 〉 = |j1 − qm, j2 − qm, · · · , jN − qm〉 . (6.18)

To exploit this symmetry, we thus have to construct linear combinations of dif-

ferent Fock states which are eigenstates of T̃i(pmaex). From Eq. (6.18) it is clear

that by repeatedly applying T̃i(pmaex), we will at most reach NΦ/q different

states, and then come back to the original one. This defines a class of states,

labeled by c, and having |c| ≤ NΦ/q members. For simplicity, let us denote these

Fock states by |c,m〉, with m running from 0 to |c| − 1. In this notation, Eq.
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(6.18) just reads

T̃i(mkaex) |c, 0〉 = |c,m〉 . (6.19)

A sum over all the states in a class then obviously will be an eigenstate of

T̃i(pmaex). It will also be an eigenstate of T̃i(pnbey), since

(

∑

i

ji − qm

)

mod NΦ =

(

∑

i

ji

)

mod NΦ.

To fully cover the Hilbert space, we will need |c| linearly independent combina-

tions of these states. This can be achieved by multiplying each state |c,m〉 with
an m-dependent phase factor exp(2πism/|c|). Varying s from 0 to |c|− 1, we will

get the |c| linear combinations we need:

|c, (s, J)〉 ≡ 1
√

|c|

|c|−1
∑

k=0

exp

(

2πisk

|c|

)

|c, k〉 . (6.20)

We can easily convince ourselves that these states are eigenstates of T̃i(pmaex).

Applying this operator, every state in the sum is mapped onto another one,

|c, k〉 → |c, k +m〉, and by factoring out a phase exp
(

− 2πism
|c|

)

, we recover the

original state. This phase factor is the corresponding eigenvalue. Considering

shifts from one cell into the neighboring cell, i.e. choosing m = 1, we see that

all these phases are distinct for different s. This allows to use s as a quantum

number to classify the states. Thus, the states given by Eq. (6.20) represent the

most convenient basis for studying the system on the torus. Using this basis, we

can divide the Hilbert space into blocks with fixed J and s. We will therefore

work in the basis of Eq. (6.20).

For deriving Eq. (6.20), we have widely followed the recipe given in Ref. [50].

However, we shall stress here that in this reference the exponential is given by

exp
(

2πisqk
NΦ

)

with s running from 0 to NΦ

q − 1, yielding wrong results if classes c

with |c| < NΦ/q exist.

Finally, let us note that the quantum numbers J and s can be related to a

pseudomomentum K:

Kλ =

√

2πb

NΦa

(

s− s0,
a

b
(J − J0)

)

. (6.21)
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The quantum numbers of zero pseudomomentum are defined as the point in the

Brillouin zone with highest symmetry. In most cases, (s0, J0) = (0, 0), but if N

is even and p and q are both odd, other values become possible [50].

6.3 Spin singlet states

Now we have introduced all the concepts and definitions, which allow to diago-

nalize in the most effective way the Hamiltonian H, given by Eq. (6.14), in a

toroidal geometry. For the rest of the chapter, if not specified differently, the

torus will be chosen as a periodic square, i.e. with periodicities a = b. For every

calculation, we fix the filling factor ν = N/NΦ by defining particle number N

and number of magnetic fluxes NΦ. Also the two quantum numbers s and J ,

defining the Haldane momentum K according to Eq. (6.21) are fixed. As the

interaction in Eq. (6.14) does not flip the spin of the particles, we can also fix the

spin polarization S = N↑ − N↓, where N↑ (N↓) denotes the number of spin-up

(spin-down) particles.

In this section, we are interested in the spin polarization of the ground state.

Most likely, this quantity will depend on the concrete choice of all interaction

parameters gs1s2 . Let us start with spin-independent interactions, i.e. gs1s2 = g.

Here, we will be able to show that the states with S = 0 are energetically favored,

resulting in a spin singlet configuration of the ground states for most of the filling

factors. Let us also note that the SU(2) symmetric interaction is a natural choice,

as many experiments [114, 115] work with the |F = 1,mF = 0, 1〉 states of 23Na,

or the |F = 1,mF = −1〉 and |F = 2,mF = 1〉 states of 87Rb with almost equal

s-wave scattering lengths within and between the components.

The mechanism which favors S = 0 can nicely be identified by comparing this

configuration with its opposite, the fully polarized regime, |S| = N . There, the

results from one-component gases are recovered (cf. Chapter 4, and Ref. [79]),

with incompressible phases at ν = k/2, forming the Read-Rezayi series. The fully

polarized zero-energy state with highest filling has ν = 1/2, and is the Laughlin

state, Eq. (3.6). In the fully unpolarized system, however, zero-energy states

occur up to ν = 2/3, where the 221-Halperin state [cf. Eq. (3.15)] is the exact

unique ground state of the two-body contact interaction. The analytic expression
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Figure 6.1: Ground state energies, not showing possible degeneracies, at
NΦ = 6 for different N and S subspaces with gs1s2 = g. Even (odd) values of
S correspond to even (odd) N .

of this state on a disk reads

ΨH =

N↑
∏

i<j

(zi↑ − zj↑)
2

N↓
∏

k<l

(zk↓ − zl↓)
2
∏

i,k

(zi↑ − zk↓), (6.22)

where we omit the irrelevant exponential term exp
(

−∑ |zi|2/4
)

. This wave func-

tion vanishes whenever two particles are at the same position, and it is symmetric

under exchange of two spin-up or two spin-down particles. However, it is antisym-

metric under exchange of particles with different spin, and thus cannot be used

for describing spinless bosons. For this case, also the terms in the last product

had to be squared, which would result in a less dense Laughlin-like wave func-

tion. Generalizing this observation, we state that any spatial wave function which

solves the fully polarized problem must also be a solution for |S| < N , while the

opposite is not true. Thus, for a spin-independent interaction, it strictly follows

for the ground state energies E(Si) with |S1| < |S2| that E(S1) ≤ E(S2).

Our numerical data, partially shown in Fig. 6.1, supports this finding. In fact, in

all cases we have investigated, the ground state of the S = 2 subspace occurs in

the spectrum of S = 0 as a low-lying excitation, except for N = 6 and NΦ = 8,

where we have a degeneracy, E(S = 0) = E(S = 2). In most cases, thus, the

ground state has uniquely S = 0, which makes it a singlet.
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The mechanism behind this observation are anticorrelations of the form zi↑−zk↓,
fully avoiding contact interactions of a ↑↓-pair due to a single zero in the wave

function, whereas similar anticorrelations become possible for particles with equal

spin only to the power of 2 or higher, increasing the angular momentum of the

system, or, respectively, the filling factor.

One of the key features of quantum gases are Feshbach resonances which allow

to tune their interaction strengths at will. We can use them to tune the spin-

dependency of interactions (cf. [7]). Obviously, increasing g↑↓ while leaving g↑↑ =

g↓↓ = g should favor spin polarizations with less ↑↓-pairs. However, we find that

this does not necessarily drive the system into the fully polarized configuration:

As shown in Fig. 6.2 for N = 6 at ν = 1, the energy of even the fully unpolarized

system saturates for large g↑↓. In this limit, the real ground state has S = 2

and E = 0.449 (in units of gB), close to the S = 0 and S = 4 ground states

with E = 0.466 and E = 0.475. All of them are well separated from the fully-

polarized ground state with E = 0.581. In contrast to this, the energy of spin-

unpolarized systems will never saturate at larger filling, as is shown in Fig. 6.2

for ν = 6/5. This different behavior is understood by noting that for ν = 1

the number of available zeros in the wave function is sufficient to completely

suppress interactions between pairs of different spins, 〈E↑↓〉 → 0, while it is

not for larger ν. Jumps in the curve of 〈E↑↓〉 as a function of g↑↓ show that

the states with 〈E↑↓〉 = 0 are reached by several abrupt re-organizations of the

ground states. We note that once the state with 〈E↑↓〉 = 0 is obtained, this

state must be an eigenstate for arbitrary g↑↓. Thus, by abruptly switching off

the interspin interaction, one could produce binary mixtures of highly entangled,

non-interacting systems.

6.4 Incompressible phases and NASS states

In this section we investigate whether, in analogy to the RR states for spin polar-

ized systems, incompressible states can be found amongst the spin singlet ground

states. Since incompressibility is connected to a discontinuity in the chemical

potential, we define the particle-hole excitation gap as

∆(N) = N

(

E(N + 1)

N + 1
+
E(N − 1)

N − 1
− 2

E(N)

N

)

. (6.23)
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Figure 6.2: Interaction energy for N = 6 and S = 0, 2 as a function of g↑↓.
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gs1s2 = g.
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Figure 6.4: Energy spectra for N = 12 particles with total spin S = 0 at
filling ν = 4/3. Left: For two-body contact interaction. Right: For three-
body contact interaction. In both cases, all interaction parameter are chosen
equally, g > 0. We do not show the three-fold center-of-mass degeneracy, but
visualize further degeneracies by slight shifts in K.

This quantity is plotted for NΦ = 6 in Fig. 6.3. Upwards peaks correspond

to downward cusps in the energy as a function of ν, and signal incompressible

phases. They occur at fillings ν = 2k/3 with k ∈ N. For these fillings, a series

of singlet states being exact zero-energy eigenstates of a (k + 1)-body contact

interaction is known [68]. For k = 1, this is the 221-Halperin state, which has

Abelian excitations, while the states for k > 1 are predicted to have non-Abelian

excitations, which established the name NASS series.

We first construct these states for k = 2 and 3 by diagonalizing the three- and

four-body contact interaction for up to N = 12 particles: The spectra with

ground states and low-lying excitations are shown on the right side of Figs. 6.4

and 6.5. They serve as a “fingerprint” of the topological phase, where possible

degeneracies of the ground state due to the torus geometry can be used to classify

the phase [126]. As predicted by conformal field theory (CFT), we find the NASS

states being characterized by a (k + 1)(k + 2)/2-fold topological degeneracy on

the torus. A subtlety occurs at k = 3, where the CFT construction [68], being

restricted to N = 2kp with p ∈ N, is not able to predict zero-energy ground states

for all N which are possible at ν = 2. In fact, we find zero-energy states also

for N = 8 and 10, but, in contrast to the states with N = 6 and 12 which have

the predicted ten-fold degeneracy, they are non-degenerate, and thus belong to a

different topological phase.
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Figure 6.5: Energy spectra of for N = 12 particles with total spin S = 0
at filling ν = 2. Left: For two-body contact interaction. Right: For four-
body contact interaction. In both cases, all interaction parameter are chosen
equally, g > 0. The eigenstates of two-body interaction which correspond
to the ten ground states of four-body interaction (with respect to K) are
highlighted by a blue triangle. By slight shifts in |K|, we visualize all of these
ten states, while some of them would elsewise appear as a single point in the
spectrum.

Next, we diagonalize the two-body contact interaction of our actual Hamiltonian

H, and calculate the overlaps between the ground states of H and the NASS

states. They are given in Table 6.1, and turn out to be significant: For k = 2, the

states are exactly equal for N = 4, and even for a relatively large-sized system

with N = 12 the overlaps are still around 0.8. Such a decrease of the overlap

with large N also occurs in the case of the RR states in single-component systems

with two-body contact interaction [29]. But one has to note that a topological

phase is a whole class of states, which makes the overlap a weak criterion in the

thermodynamic limit [126]. By the above mentioned topological degeneracies,

however, one should be able to classify the topology of a state, especially as an

eventual lifting of the topological degeneracy in finite systems should vanish in

the thermodynamic limit.

In the case of ν = 4/3 we find a strong lifting of this degeneracy (see Fig. 6.4

left), but we may consider the fact that the six lowest eigenstates of Ĥ agree in

their Haldane momenta K with the ones of the sixfold degenerate three-body

eigenstates as a signal for belonging to the same topological phase. As can be

inferred from Table 6.1, both the gap above theK = 0 states and the degeneracy

splitting behave non-monotonic. Additional numerical support for the two- and
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Figure 6.6: Overlaps between the ground-states of two-body contact inter-
action at filling ν = 4/3 with N = 8 with the NASS state as a function of the
interspin interaction strength g↑↓.

the three-body ground state being in the same topological phase was given by S.

Furukawa and M. Ueda [128]. They showed that the spectral structure becomes

more robust under variation of the torus ratio for larger N .

While all this indicates that the ν = 4/3 NASS phase can be obtained in a

system with two-body contact interaction, the situation is different for ν = 2. As

shown in the left side of Fig. 6.5, the candidates for the degenerate ground state

manifold mix up with excited states. Although most of the states have relatively

high overlaps with the NASS state obtained as zero-energy state of four-body

contact interaction (see Table 6.1), the discrepancies in the spectral structure

suggest that the two-body interacting system is in a different phase than the

four-body interacting system at ν = 4/3.

For the experimental feasibility of realizing the ν = 4/3 NASS to be high, it should

be robust with respect to deviations from the SU(2)-symmetric interaction. In

the case of a (k + 1)-body contact interaction at ν = 2k/3, the numerical values

of each interaction parameter do not influence the ground states. Though this

is different for two-body contact interaction at ν = 4/3, the overlaps with the

NASS states remain high within a wide range of g↑↓/g, and have a maximum

in the SU(2)-symmetric configuration. For N = 8, all overlaps are above 0.8 if

g↑↓/g ∈ [0.8, 1.6]. This observation is illustrated in Fig. 6.6.



Chapter 6. Fractional quantum Hall states of pseudospin- 12 bosons 113

N,NΦ K | 〈2b| 3b〉 | E2b N,NΦ K | 〈2b| 4b〉 | E2b

4,3 (0,0) 1 0.435 12,6 (0,0) 0.334 2.604
1 0.520 0.828 2.677

8,6 (0,0) 0.906 0.901 (0,2) 0.775 2.708
0.920 0.908 (0,4) 0.775 2.708

12,9 (0,0) 0.729 1.289 (2,0) 0.775 2.708
0.885 1.333 (2,2) 0.646 2.685

(2,4) 0.646 2.285
(4,0) 0.775 2.708
(4,2) 0.646 2.685
(4,4) 0.646 2.685

Table 6.1: Overlaps between zero-energy eigenstates of (k + 1)-body inter-
action with corresponding eigenstates of the two-body contact interaction at
energy E2b (in units of gB) and Haldane momentum K (in units of 2π~/a).
All states at filling ν = 4/3 have an additional three-fold center-of-mass de-
generacy.

6.5 Effects of spin-orbit coupling

Given the pseudospin degree of freedom, it is natural to ask how a coupling

of this internal degree of freedom to the external motion of the particle will

affect the system. In solids, this coupling represents a common scenario, as

real spins interact due to their magnetic moment with the real magnetic fields

induced by the motion of the electronic charge in the electromagnetic field of

the nuclei.. It can be taken into account by a non-Abelian gauge potential.

Choosing a coupling which is equivalent to the Rashba coupling [75], the total

gauge potential, consisting of the magnetic vector potential from the previous

section and the spin-orbit (SO) coupling, is given by

A = B(0, x, 0)1+ q(σx, σy). (6.24)

Here, the strength of the SO coupling is controlled by the parameter q, and σi

are Pauli matrices.

The gauge potential of Eq. (6.24) has the same form as the more general gauge

potential of Eq. (3.31) which we have already discussed in Section 3.2.2.1. There

we had distinguished between isotropic and anisotropic potentials, where the

latter had been treated via a squeezing transformation in Section 3.2.2.2, using

the fact that there is one uncoupled LL, which in the fermionic system can be

chosen to be the lowest not completely filled LL. Since the energetically lowest
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LL turns out to be a coupled one, the procedure of Section 3.2.2.2 would not

work for bosons. With the isotropic choice of Eq. (6.24), however, this poses

no problem. As shown by M. Burrello and A. Trombettoni [41, 122], the single-

particle Hamiltonian can in this case be solved analytically in closed form. The

solution yields new LLs which are superpositions of solely two levels of the Abelian

problem.

To see this explicitly, we can proceed in the same way as in Section 3.2.2.1, but

taking as annihilation and creation operators the ones defined in Eq. (6.1). We

then obtain the single-particle Hamiltonian

Hsp =

(

2B(c†c+ 1
2 ) + 2q2 2

√
2Bqc

2
√
2Bqc† 2B(c†c+ 1

2 ) + 2q2

)

. (6.25)

The diagonal part imposes the LL structure with the functions Ψn,j from Eq.

(6.8) being eigenfunctions in both components. Since the off-diagonal terms raise

or lower the LL quantum number n, the eigenspinors must be of the form

Ψ±
n,j ≡ (α±

nΨn,j, β
±
n Ψn+1,j)

T , (6.26)

where α±
n and β±

n are functions of q [41]. With this, we directly find the spectrum

of the system:

E±
n = 2B(n+ 1) + 2q2 ±

√

B2 + 8Bq2(n+ 1). (6.27)

For all finite q and B, the ground state solution is given by either a single E−
n , so

the former spin degeneracy is lifted, or by two degenerate E−
n and E−

n+1, cf. Fig.

6.7. The latter happens at q2/B = 2n+3, around which it becomes necessary to

include two LLs in the many-body problem, as the gap between the LLs becomes

very small or even vanishes. The solutions corresponding to E+
n , however, are

always at higher energies, so they never play a role. The coefficients α−
n and β−

n

are given by

α−
n = N

(

B + 2q
√

2B(n+ 1) +
√

B2 + 8Bq2(n+ 1)
)

, (6.28)

β−
n = N

(

B − 2q
√

2B(n+ 1)−
√

B2 + 8Bq2(n+ 1)
)

, (6.29)

N =

(

2

√

B2 + 8Bq2(n+ 1) + 2q
√

2B(n+ 1)
√

B2 + 8Bq2(n+ 1)

)−1

. (6.30)

The multiplication with N normalizes the spinors to 1.
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Figure 6.7: LL energies as a function of the SO coupling strength: The solid
lines refer to the solutions with E−

n , the red dashed lines to the solutions E+
n ,

cf. Eq. (6.27). While within a wide range, only one “minus” solutions forms
the LLL, at a certain SO coupling strength (marked by the arrow), two such
solutions become degenerate. Reprinted from: [41].

We then have to calculate the interaction matrix Vµνστ with respect to the eigen-

spinors Ψ−
n,j :

Vµνστ =
1

2

∫

d2z1 d2z2Ψ
−†
nµ,jµ

(z1)Ψ
−†
nν ,jν

(z2)V (z1, z2)Ψ
−
nσ ,jσ

(z1)Ψ
−
nτ ,jτ

(z2).

(6.31)

Again we take two-body contact interactions, so we have to evaluate

Vµνστ =
{

g↑↑αnµαnναnσαnτ

∫

d2z Ψ̄nµ,jµ(z)Ψ̄nν ,jν (z)Ψnσ,jσ(z)Ψnτ ,jτ (z)

+ g↓↓βnµβnνβnσβnτ

∫

d2z Ψ̄nµ+1,jµ(z)Ψ̄nν+1,jν (z)Ψnσ+1,jσ(z)Ψnτ+1,jτ (z)

+ g↑↓αnµβnναnσβnτ

∫

d2z Ψ̄nµ,jµ(z)Ψ̄nν+1,jν (z)Ψnσ,jσ (z)Ψnτ+1,jτ (z)

+ g↓↑βnµαnνβnσαnτ

∫

d2z Ψ̄nµ+1,jµ(z)Ψ̄nν ,jν (z)Ψnσ+1,jσ (z)Ψnτ ,jτ (z)
}

/2.

(6.32)

In Eq. (6.16), we have already provided formulas how to evaluate each of these

integrals above for nµ ≤ 2.

In the following, we will restrict ourselves to a SO coupling strength around the

degeneracy point at q2/B = 3, thus we will have to take into account the LLs

Ψ−
0,j and Ψ−

1,j . The Hamiltonian from Eq. (6.14) can then be mapped onto
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the new problem just by identifying the spin quantum number of the previous

case with the n quantum number. Similarly, we can map between the old basis,

constructed from the states Ψ0,j |↑〉 and Ψ0,j |↓〉, and the new basis, which has

to be constructed from the single-particle states Ψ−
0,j and Ψ−

1,j . We will describe

this mapping in more detail in the next subsection.

In principle, the Hamiltonian can now be diagonalized as before, but some im-

portant differences should be stressed. First we note that now also single-particle

energies given by Eq. (6.27) have to be taken into account, as long as we are

not precisely on the degeneracy point. However, this poses no problem, as these

energies are known analytically from Eq. (6.27), and thus can be directly evalu-

ated for each many-body state just by considering the population numbers N0 of

particles in Ψ−
0,j and N1 of particles in Ψ−

1,j .

More important is the fact that now the analog of spin polarization, S = N↑−N↓,

is the population imbalance, P ≡ N0−N1. But while the interaction of Eq. (6.15)

conserves the spin polarization S, the interaction matrix given by Eq. (6.32) does

not conserve P . This makes the SO coupled problem numerically much more

costly, as all subspaces from −N ≤ P ≤ N need to be taken into account.

The situation becomes simpler, however, if we are sufficiently far away from the

degeneracy point. As we have confirmed by explicit calculation, for a wide range

of q2/B the LL gap is large enough, to make a LLL assumption, i.e. completely

neglect the state Ψ−
1,j for q

2/B . 3, or the state Ψ−
0,j for q

2/B & 3. Then we have

P = N (or P = −N), and we expect states which are similar to the fully polarized

states, i.e. the Laughlin state or other states of the Read-Rezayi series discussed

in Section 3.1.2.2. Based on general arguments, the occurrence of Laughlin-like

or Moore-Read-like states in the SO coupled system has been predicted in Refs.

[41, 122]. Numerical evidence herefore has also been provided in Refs. [123, 124].

The latter works, however, do not go beyond the LLL approximation, and thus

are valid only in those regions where the LL gap is sufficiently large. In the

following, we will be interested in what happens when we approach the first

degeneracy point q2/B = 3.
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6.5.1 Laughlin-like states

6.5.1.1 At filling ν = 1/2.

In this section, we investigate the occurrence of Laughlin-like in the SO coupled

system. We therefore first fix the filling factor to the value ν = 1/2. For the one-

component system, as discussed in Chapter 4, the Laughlin state at this filling is

an exact solution with zero energy in the case of contact interactions. As argued

before, also the two-component system behaves similarly, if the SO coupling lifts

the degeneracy between two LLs. In order to compare the ground state of the

SO coupled system with the original Laughlin state, we shall map between the

distinct LL structures.

Performing such a mapping is trivial in the many-body Fock basis: Without SO

coupling, we encountered single-particle states which are fully described by the

quantum numbers ni, ji, and si. Due to the LL gap, a restriction to the LLL,

i.e. ni = 0 was justified. The spin quantum number takes two values, say 0

for ↑ and 1 for ↓. The Fock states are given by a ket |j1, s1; j2, s2; . . . ; jN , sN 〉.
The single-particle states in the SO coupled system are characterized by the

quantum numbers ni and ji. Furthermore, in Eq. (6.27) we found two kinds

of solutions which we distinguished by the index ± as a third quantum num-

ber. The structure of the energy spectrum around q2/B ≈ 3 allowed to re-

strict ourselves on the minus solutions, and consider only ni = 0 or 1. The

resulting Fock states |n1, j1;n2, j2; . . . ;nN , jN 〉 then simply map one-to-one onto

|j1, s1; j2, s2; . . . ; jN , sN〉 just by identifying si with ni.

Since the upper component of Ψ−
n,j reads α−

nΨn,j according to Eq. (6.26),

this mapping is equivalent to filtering out the lower spin component and re-

normalizing to one. We denote this mapping by a projection operator P acting

as

|n1, j1;n2, j2; . . . ;nN , jN 〉 = P |j1, s1; j2, s2; . . . ; jN , sN 〉 with ni = si. (6.33)

With this, applying the operator P to the Laughlin state, which is given in terms

of |j1, s1; j2, s2; . . . ; jN , sN 〉, yields a new state in the SO coupled basis. We may

choose for the Laughlin state all si = 0, so we obtain a state with all ni = 0,

but as well we might take si = 1, which yields a state with ni = 1. While

the first choice amounts for comparing the upper component of the SO-coupled

ground state with the original Laughlin state, the latter choice can be seen as a
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comparison between the upper component of the SO-coupled ground state with a

state which is obtained from the Laughlin state by shifting it into the first excited

LL, i.e. just by raising all LL quantum numbers by one.

We note that this “raised” Laughlin state poorly represents the ground state of

two-body contact interaction of a one-component system restricted to the first-

excited LL. We have calculated the true first LL ground state, denoted by Ψ1LL,

for a comparison with the ground state of the SO coupled system. Since also

the second-excited LL is involved in the lower component of Ψ−
1,j, we have also

calculated the ground state of two-body contact interaction restricted to the

second-excited LL, Ψ2LL. For the comparison in Fig. 6.8, these states, Ψ1LL and

Ψ2LL, are projected onto the LL structure of the SO coupled problem via Eq.

(6.33), making the choice si = 1, as these states should become relevant only

after the LL crossing, i.e. when the single-particle ground states are the states

Ψ−
ni,ji

with ni = 1.
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The overlaps between the projected test states and the ground state of the SO

coupled are shown in Fig. 6.8 as a function of q/
√
B. On the right side of

this figure, we also show how the occupation number N0 decreases when passing

through the degeneracy point. In the plots, we have chosen an SU(2) symmetric

choice for the interaction parameters. For q/
√
B .

√
3, our study agrees with the

results from [123], as the LL state projected onto ni = 0 is up to a high fidelity

the ground state of the SO coupled system. None of the test states, however, is

able to describe the system precisely at the degeneracy point. For a small range

above the degeneracy point, the projection of the Laughlin state onto ni = 1 turns

out to have high overlap with the exact ground state. The system organizes in a

non-Laughlin-like way for larger coupling strengths. It is the ground state of two-

body contact interaction within the first excited LL which then becomes a good

trial state. Interestingly, this state has no significant overlap with the Laughlin

state shifted to the first excited LL. Similar curves are obtained when setting the

intercomponent interactions to zero, i.e. choosing g↑↓ = 0.

The SO coupling therefore allows to study the behavior of bosons in higher LLs.

This is particularly relevant with respect to fermionic systems, where higher LLs

can be reached solely by filling the lower levels. In the field of strongly correlated

electrons, very much attention has been paid to the Hall plateau at ν = 5/2. For

a spin-polarized system, this represents the situation of a half-filled first excited

Landau level, which might be described by a Moore-Read-like wave function. It

could thus be interesting to explore this regime also within bosonic systems.

More information about the different phases can be obtained from the excitation

spectra. In the right side of Fig. 6.9, we show the low-lying excitation energies

as a function of q/
√
B. On both sides of the degeneracy point, the system is

gapped, while it is not at the degeneracy point. These gapped phases correspond

to the configuration where good overlaps with the projected Laughlin states are

obtained. Also the fact that the unique ground state (apart from the center-of-

mass degeneracy) has Haldane momentum K = 0, indicates the Laughlin-like

behavior of the system. For larger q/
√
B, states at different Haldane momenta

have almost the same energy. For N = 6 and SU(2) symmetric interactions,

these are states with K = (0, 0), (2, 0), 0, 2), (4, 0), and (0, 4) (in units of 2π~/a

with a the side of the square torus), while for N = 5 we find K = (0, 0), (1, 0),

0, 1), (4, 0), and (0, 4). Restricting ourselves to only one LL, which is justified

in this regime by the reappearance of a gap, we have been able to extend our

calculations to N = 8, where four states with K = (0, 0), (4, 0), 0, 4), and (4, 4)
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Figure 6.9: Left: Low-lying excitation energies. Right: Interaction energy
of the ground state. System parameters are chosen as in Fig. 6.8. Energies
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form a degenerate ground state manifold. These observations suggest that in

this regime phases with a broken translational symmetry occur, like crystalline

phases or bubble phases [129–131]. Such phases have been discussed in the context

of fermions as possible candidates for substituting the Laughlin state in higher

Landau level. Due to the limited system sizes we can treat, this regime does not

seem to be appropriately explored by means of exact diagonalization.

6.5.1.2 At filling ν < 1/2.

In spin-polarized systems, the Laughlin state at ν = 1/2 is easily seen to be

the ground state of two-body contact interactions, as the wave function vanishes

when two particles are at the same position. In the SO coupled system, this

is not the case. Mapping the ν = 1/2 Laughlin state according to Eq. (6.33) to

higher Landau levels induces effectively long range interaction [124]. The ν = 1/2

Laughlin state acquires in general a positive interaction energy, as seen in the right

side of Fig. 6.8. This is due to the fact that in the spin-orbit coupled Landau

level the corresponding wave function does not vanish when zi → zj .



Chapter 6. Fractional quantum Hall states of pseudospin- 12 bosons 121

However, as has been pointed out in Refs. [41, 122], Laughlin states with ν < 1/2

remain states with zero interaction energy even after a mapping into the Landau

level structure of the spin-orbit coupled system according to Eq. (6.33) with the

choice si = 0. The resulting wave function describes a system with all atoms

exclusively in the |n = 0〉 level. It thus represents the ground state for spin-orbit

coupling strengths q2 ≤ 3B at filling factor ν.

We have explicitly checked for ν = 1/4 (andN = 3, 4) that such a zero interaction

energy state exists for q2 ≤ 3B. Also, no zero interaction energy states are found

for q2 ≤ 3B at filling factors larger than ν = 1/4. In agreement with its Laughlin-

like character, it is located at Haldane momentumK = (0, 0), and it is the unique

ground-state for q2 < 3B. Precisely at the degeneracy point, q2 = 3B, additional

states with zero interaction energy occur within a ground state manifold which

then contains 7 (4) states for N = 4 (N = 3) at K = (0, 0), and additional states

at different pseudomomenta.

The origin of one of the additional ground states at the degeneracy point can be

traced back to the ν = 1/4 Laughlin state. Therefore one has to note that every

pair of coordinates appears with a (1/ν)th order zero of the form zi − zj in the

wave function of Eq. (3.6). The mapping of Eq. (6.33) brings a state which lives

in the LLL of the Abelian problem to state which, in terms of these Abelian LLs,

occupies partly the first or even the second excited LL. This mapping is thus

associated with a multiplication of the wave function with complex conjugate

variables z∗i , and with taking the derivatives ∂zi . The latter operation may affect

the property of being a zero interaction energy state. But since in every term

(zi − zj)
1/ν at most the second derivative ∂zi∂zj is taken, the mapping of Eq.

(6.33) applied to the Laughlin wave function at filling ν yields a wave function

where every pair of particles still has a zero of at least ( 1ν − 2)th order. For

ν = 1/4, this gives a second order zero, and thus still allows to raise the Landau

level index of one particle from n = 0 to n = 1. This yields a second zero-energy

state. This state is also present in the spectrum for q2 < 3B, but there it appears

as an excited state due to the occupation of an excited LL. The symmetry of this

state is characterized by K = (0, 0). By lowering the quantum number of the

particle in n = 1 to n = 0, we have been able to explicitly check that this state

is the partially raised Laughlin state.

The other zero interaction energy states occuring at the degeneracy point do not

exist in the spectrum for q2 < 3B. They are not polarized with respect to the

Landau level quantum number, that is, not all contributing Fock states contain
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the same number of particles in each Landau level. Only at the degeneracy point

such levels can be combined arbitrarily. This property allows for a larger number

of ground states at the degeneracy point.

For larger spin-orbit coupling strengths, q2 > 3B, the ν = 1/4 Laughlin state

and its partially raised counterpart remain zero interaction energy eigenstates of

the system. However, their single-particle energy now is higher than the lowest

possible one given by NE−
1 with E−

1 from Eq. 6.27. This will quickly give rise

to a ground state with higher occupation of the n = 1 level. This state has finite

interaction energy, as predicted by Ref. [122]. The precise localization of the

transition into the new ground state depends on the interaction strength. For the

SU(2) symmetric choice with g = 1, we get a ground state with finite interaction

energy already for q2 = 3.03
√
B.

A state of zero interaction energy which is fully polarized in the n = 1 level is

a Laughlin state with ν = 1/6 projected into n = 1. At such a low filling, our

numerics is restricted to N = 3 particles. Of course, a lot of states with zero

interaction energy exist at this filling, but only one has the property of being

completely within the n = 1 level. Such a state is not found at higher filling, that

is for N = 3 and N < NΦ = 18. Obviously, this state is the true ground state

between the first and the second degeneracy point. If we consider, instead of the

SU(2) symmetric choice, an interaction only between different pseudospins, that

is g↑↑ = g↓↓ = 0 and g↑↓ > 0, zero interaction energy states within the n = 1

level have been predicted for fillings up to ν = 1/4 [122]. We have checked this

prediction for N = 4. For spin-orbit coupling strengths q which are sufficiently

far above the degeneracy point, the unique ground state, with Haldane symmetry

K = (0, 0), is given by this fully polarized state of zero interaction energy.

6.5.2 Incompressible phases at the degeneracy point

We have seen in the previous section that the SO coupled system behaves as an

incompressible liquid at ν = 1/2 for a range extending from 0 . q/
√
B .

√
3,

and
√
3 . q/

√
B . 1.77. Precisely at the degeneracy point, q/

√
B =

√
3, the

incompressibility is lost. In this section we focus on that particular choice for the

SO coupling strength, and look for filling factors which might support gapped

phases.
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ν = 1.

As has been pointed out in several works [41, 123, 124], off the degeneracy points,

incompressible phases are supported not only at ν = 1/2, but also at other fillings

corresponding to the RR series. Let us therefore have a look at the Moore-Read

filling, ν = 1. We find a gapped phase, which according to its three ground

states atK = (NΦ/2, 0), (0, NΦ/2), and (NΦ/2, NΦ/2) can be identified with the

Moore-Read phase for q2 < 3B. It disappears at the degeneracy point, where we

find ground states at different pseudomomenta, which also depend on the size of

system: (3, 3), (3, 5), (5, 3), (5, 5), (4, 0), and (0, 4) for N = 5, and (3, 0), (0, 3),

(2, 2), (2, 4), (4, 2), and (4, 4) for N = 6. Since the gap between these states,

compared to other energy differences in the spectrum, is not extraordinarily big,

the system is expected to be compressible.

ν = 3/2.

The situation is a bit different at the next Read-Rezayi filling, ν = 3/2, where,

at N = 6, a ground-state at K = 0 is separated by a sizable gap of about twice

the typical energy difference from a second state at K = 0. Since a two-fold

degenerate ground state atK = 0 characterizes the ν = 3/2 Read-Rezayi state on

the torus, one might expect that at this filling a Read-Rezayi phase exists on the

degeneracy point. We have thus calculated the ground-states of a spin-polarized

system with four-body contact interaction. Projecting the two zero-energy states

into the LL structure of the SO coupled system, we obtain an overlap of 0.70 with

the real ground state. This number is close to the total weight of the state within

the polarized subspace P = 6, being 0.72. For the second state, an overlap of

0.32 is found. Increasing the particle number to N = 9, we still find overlaps of

0.39 and 0.42, but the spectral structure is not robust. While one state atK = 0

remains the ground state, the second state at this pseudomomentum lies above

other states in the spectrum.

ν = 2.

A clearly gapped phase shows up at filling ν = 2, where a unique ground state

at K = 0 is found for N = 8 and N = 10. This fact makes this phase distinct

from the Read-Rezayi states and the NASS states which are both possible can-

didates due to the filling factor. Apart from the large gap, the robustness of the

spectrum against deformations of the torus ratio, shown in Fig. 6.10, signals the

incompressibility of this phase.

NASS fillings.

Let us also pay attention to the NASS filling factors, ν = 2/3 and ν = 4/3,
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which support incompressible phases in the system without SO coupling. Also

in the SO coupled system, we find a clear gap in the spectrum at ν = 2/3 with

N = 6, and a small gap at ν = 4/3 with N = 8. Projecting the 221-Halperin

state, Eq. (3.15), onto the LL structure of the SO coupled system according to

Eq. (6.33), we calculate its overlap with the ν = 2/3 ground state. We find

the value of 0.19, but it should be noted that, as mentioned above, interactions

now can induce flips within the two-fold degenerate manifold, and therefore the

analog of spin polarization, namely population imbalance P , is not conserved. In

fact, the projected 221-Halperin state describes well the P = 0 fraction of the

ν = 2/3 ground state, but for a complete description of this state, we have to

use generalizations of the Halperin state, obtained by diagonalizing the two-body

contact interaction at ν = 2/3 in an Abelian field (q = 0) within different spin

subspaces. Then, after projection according to Eq. (6.33), the highest overlap of

0.60 is obtained with the state having S = −6. This corresponds to all particles

being in Ψ−
0,j, which is the most populated LL. Thus, population of n = 0 is still

favored, despite the degeneracy with n = 1 on the single-particle level. This shows

that interactions favor the LL with lower n. The total fidelity for −6 ≤ S ≤ 6 is

0.82.
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For ν = 4/3 with N = 8, the overlap with the projected NASS state is vanishing

small. However, if we again consider generalizations to arbitrary spin polariza-

tions, obtained by diagonalizing a three-body contact interaction at q = 0 for

different S, we find a total fidelity of 0.52, after the usual projection of Eq.

(6.33), and summing from −8 ≤ S ≤ 8.

Low filling.

Finally we note that an incompressible phase can be expected at a critical ν0,

defined as the largest filling supporting states with zero interaction energy. For

any ν < ν0, the interaction energy should remain zero, while for ν > ν0 it is by

definition larger than zero. Thus, at ν0 a kink in the energy as a function of ν

can be expected, resulting in an incompressibility of the system.

For spinless systems and two-body contact interactions, this critical filling is

ν0 = 1/2. With spin-orbit coupling of a strength q <
√
3B, we have seen that ν0

is shifted down to 1/4. At the degeneracy point, a zero interaction energy state

of the form of a (464) Halperin state has been predicted in Ref. [122]. With half

of the particles in the n = 0 level, and half of the particles in the n = 1 level, this

state has been constructed as an unpolarized state with P = 0. However, such

a state is ill-defined on a torus: The filling factor of the n = 0 level is given as

νn=0 = 1/(4 + 4) = 1/8, while for n = 1 it reads νn=1 = 1/(4 + 6) = 1/10. Thus,

the state cannot have P = 0, if both levels are assumed to fill the same area.

However, for arbitrary polarization P , we find states of zero interaction energy at

even larger filling factors: The Laughlin state with ν = 1/4 remains a ground state

at the first degeneracy point. Apart from the Laughlin state (P = N), a second

Laughlin-like state with one particle shifted into the first excited Landau level

(P = N − 2) shows up in the ground state manifold. Additional states with zero

interaction energy, not present in the spectrum of the system at any q, appear

at the degeneracy point. For N = 4 (N = 3), there are 5 (2) additional zero

interaction energy states with K = (0, 0). Further states with zero interaction

energy appear at finite pseudomomenta. For N = 3, there are two such states

for each pseudomomenta, while for N = 4 this number varies between 4 and 5.

This huge degeneracy of zero interaction energy eigenstates at ν = 1/4 suggests

that this is not yet the critical filling ν0 at the degeneracy point.

In fact, we find a unique zero interaction energy state at K = (0, 0) for ν = 2/7

and N = 4. This state has no well defined polarization P , but the large weight

w4 = 0.9298 indicates that the atoms are mostly in the lowest Landau level, n = 0.
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However, this makes the state to be an eigenstate only at the degeneracy point,

leaving the Laughlin filling ν = 1/4 to be the critical filling off the degeneracy

point. We do not find states with zero interaction energy are for ν = 1/3 (for

N = 4 and N = 5) or ν = 4/13 (for N = 4). Here, we therefore expect ν = 2/7

to be the critical filling of the system.

This would shift the incompressible phase from ν = 1/4 for q2 < 3B to ν = 2/7 for

q2 = 3B. However, we should also note that the excitation gap above the ground

state at ν = 2/7 state takes the tiny value of 2 ·10−4gB. The energy as a function

of ν is a concave function, and in the thermodynamic limit it might happen that
dE
dν → 0, when ν ց ν0. This would render a compressible phase even at ν0. We

therefore conclude that, at the degeneracy point, robust incompressible phases

are rather located in the denser regime. This should facilitate the experimental

observation.
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Chapter 7

Bose-Einstein condensates

with spin-orbit coupling

Gauge fields couple the internal and the external evolution of a particle. In the

case of spinless particles, the internal degree of freedom is just the phase of the

particle’s wave function. However, as we have already seen in Chapters 3 and 6,

for two-component bosons the internal state is given by a spinor, and gauge fields

having a matrix structure can connect them with the external evolution of the

particle. Such a coupling is quite a fundamental effect. Consider for instance a

single atom: Since an electron’s movement within the electric field of the nucleus

generates a magnetic field which may interact with the electron spin, naturally a

spin-orbit coupling, i.e. a connection between the spin state of the electron and

its external state, occurs. The effect is directly visible in the fine structure of the

atom’s spectral lines.

Spin-orbit (SO) coupling can also be encountered within condensed matter sys-

tems. In two dimensions, this coupling is well described by

HSO =
~
2k2

2m
1̂ + α(kxσy − kyσx) + β(−kxσy − kyσx) + const. (7.1)

The term proportional to α represents a SO coupling of the Rashba type [75],

whereas the term proportional to β is of the Dresselhaus type (cf. [132]). The

values of these coefficients depend on the crystal structure. It is directly seen

129
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that a non-Abelian gauge potential of the form A = [(α − β)σy ,−(α + β)σx, 0]

describes this coupling.

SO coupling in solids is responsible for a variety of interesting effects. For in-

stance, it allows materials to be topological insulators [19], which have conduc-

tance properties similar to quantum Hall systems, where the bulk is an insulator,

while a topologically protected conductivity is provided through the edge states

(cf. Chapter 3). But while in quantum Hall systems, this property is due to an

external magnetic field breaking time-reversal symmetry, topological insulators

show this behavior as an inherent property of the material.

SO coupling also plays the crucial role in the emerging field of spintronics. An

old idea proposed by S. Datta and B. Das is the spin field-effect transistor (or

Datta-Das transistor) [133]. Different from conventional transistors, this recently

realized device [134] uses the electron’s spin rather than its charge to operate

information.

In 2011, the coupling from Eq. (7.1) with α = β has been synthesized exper-

imentally in a Bose-Einstein condensed gas of 87Rb atoms [42]. Note that for

this choice, only the σx component of the spin couples to the orbital motion, and

the gauge field describing the coupling reads A ≃ (0, σx, 0). Since all but one

components vanish, the gauge potential is not non-Abelian in the strict sense,

but as the authors of Ref. [42] point out, with additional lasers more general

couplings can be synthesized. In this chapter, we will consider cold bosons with

a purely non-Abelian gauge potential of the form A ≃ (σx, σy, 0). A 90◦ spin

rotation yields the equivalence of this gauge potential with a Rashba coupling.

Differing from our study of the fractional quantum Hall regime in the first part

of the thesis, now there is no external magnetic field. We will find rich physics

purely originating from the SO term. Now we will also allow the system to extend

into the z-direction.

Most of the work presented in the remainder of this chapter has been published

in Ref. [135].



Chapter 7. Bose-Einstein condensates with spin-orbit coupling 131

7.1 Mean-Field Solution

We consider the single-particle Hamiltonian given by

H0 =

∫

dr Ψ̂†(r)

(

p2

2M
− Q

M
σ⊥ · p

)

Ψ̂(r), (7.2)

where Ψ̂(r) = (Ψ↑(r),Ψ↓(r))T is a two-component bosonic field operator, p is

the momentum operator, Q is the magnitude of the SO coupling, and σ⊥ is a

vector composed of Pauli matrices as σ⊥ = (σx, σy, 0) (we set ~ = 1). To solve

this Hamiltonian, we transform into Fourier space, and find the eigenspinors to

be given by

ϕ
(α)
k =

eik·r

2V

(

e−iφk/2

eiφk/2

)

and ϕ
(β)
k =

eik·r

2V

(

−e−iφk/2

eiφk/2

)

. (7.3)

Here, φk = tan−1 ky

kx
is the polar angle of k. The single-particle eigenstates of

Eq. (7.2) thus have spins pointing either parallel or antiparallel to their momenta

in the xy plane.

With this, we can write the field operator as

Ψ̂(r) =
∑

k

α̂kϕ
(α)
k + β̂kϕ

(β)
k , (7.4)

where α̂k and β̂k are annihilation operators. Accordingly, we expand the conju-

gate field operator Ψ̂†(r). The Hamiltonian (7.2) then reads

H0 =
∑

k

(

E
(+)
k α̂†

kα̂k + E
(−)
k β̂†

kβ̂k

)

, (7.5)

where the eigenenergies are, up to a constant, given by

E
(±)
k =

1

2M

[

(k⊥ ±Q)2 + k2z
]

, (7.6)

where k⊥ = (kx, ky, 0). The ground state to which the system may condense is

given by the α-mode, which has a minimum on a ring with kz = 0 and |k⊥| = Q

in momentum space (Fig. 7.1). Correspondingly, there is a macroscopic number

of ways in which N non-interacting bosons can occupy this manifold of states.
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Figure 7.1: The non-interacting (Rashba) energy spectrum of the Hamilto-
nian Eq. (7.2) with kz = 0. The red circle indicates the degenerate lowest-
energy single-particle states. From: [135]

Next, we take the simplest SU(2) invariant form for two-body contact interactions

Hint =

∫

dr
(g

2
[ρ̂(r)]

2 − µρ̂(r)
)

, (7.7)

where ρ̂(r) = Ψ̂†(r)Ψ̂(r), µ is the chemical potential, and g = 4πa
M where a is an

effective scattering length. At the mean-field level one replaces the operators by

c-numbers Ψ̂(r) → Ψ(r). The states that minimize the kinetic energy, Eq. (7.2),

are in general given by

Ψ(r) =
∑

|k⊥|=Q,kz=0

Ak

eik·r√
2

(

1

eiφk

)

(7.8)

where Ak are arbitrary coefficients.

Minimizing the interaction energy restricts the mean-field states of Eq. (7.8) to

having a constant density, ρ(r) = Ψ†(r)Ψ(r) ≡ ρ0. The large degeneracy on the

single-particle level allows to fulfill this constraint within the manifold of states

given by Eq. (7.8). One finds that Ψ(r) can have at most two nonzero coefficients

Ak occurring at opposite momenta. To see this, we notice that the spatial de-

pendence of Ψ†(r)Ψ(r) cancels, if all contributions to Ψ(r) are orthogonal to all

contributions of Ψ†(r) except for those having opposite phases. Since the spinor

space is two-dimensional, only pairs of orthogonal configurations can exist. These

are found at opposite momenta.
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Without loss of generality, we take the momenta to point along the x-axis and

thereby obtain the state

Ψ(r) =

√

ρ0
2

(

aeiQx

(

1

1

)

+ be−iQx

(

−1

1

))

, (7.9)

where |a|2 + |b|2 = 1. We can take a and b to be real and parametrized as

a = cos
(

θ
2

)

and b = sin
(

θ
2

)

since changing the phases of a and b amounts to

position displacements and overall phase shifts of Ψ(r) in Eq. (7.9).

The selection of (a, b) as a result of spin-symmetry breaking interactions (which

is resolved at the mean-field level) was worked out in [136]. In contrast, for the

SU(2) symmetric interactions there remains a two-fold degeneracy at the mean-

field level. We note that SU(2) symmetry is a realistic choice due to the relatively

small spin-dependent interaction in 87Rb. More importantly, however, SO cou-

pling in atoms relies on dressed states [32, 42], which may induce anisotropic

interactions [137]. Whether this might lift the degeneracy on the mean-field level

is left to future work when it becomes clear which of the proposed schemes is

most promising to realize a 3D Rashba coupling.

Another experimental entity which could lift this mean-field degeneracy is the

trapping potential. We have neglected this term, which we assume to be weak.

Then the conditions for the local density approximation (LDA) are satisfied [138].

Recent studies of SO coupled systems in harmonic traps can be found in Refs.

[139, 140]. Let us briefly sketch the analysis of Ref. [139] to clarify the condi-

tions under which the trapped system behaves similarly to the infinite system

considered in our approach. To the Hamiltonian as given by Eq. (7.2), we add a

harmonic potential which in Fourier space is given by V = −∇2
k/2. We restrict

ourselves to two dimensions.

In polar coordinates, the ansatz Ψm(k,Φk) = eiΦkm
(

fm(k),−eiΦkgm(k)
)T

re-

moves the Φk dependence from the Schrödinger equation. The quantum number

m can be identified with angular momentum. We obtain the coupled differential
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equations

Emfm(k) =
1

2

[

k2 +
m2

k2
− 1

k

d

dk
− d2

dk2
+

(

Q

M

)2
]

fm(k) +
Q

M
kgm(k), (7.10)

Emgm(k) =
1

2

[

k2 +
(m+ 1)2

k2
− 1

k

d

dk
− d2

dk2
+

(

Q

M

)2
]

gm(k)

+
Q

M
kfm(k). (7.11)

Taking the difference between Eqs. (7.10) and (7.11), we arrive at

[

k2 +

(

Q

M

)2

+
m2 +m+ 1/2

k2
− 2

Q

M
k − 2Em

]

(fm − gm)

− 1

k

d

dk
(fm − gm)− d2

dk2
(fm − gm)− 2m+ 1

2k2
(fm + gm) = 0. (7.12)

From the solutions of the system without trap, given in Eq. (7.3), we know

that for the low-energy mode ϕ(α) the spinors are oriented along (1, eiφk), i.e.

fm = −gm. We thus solve Eq. (7.12) by setting fm + gm = 0 and making the

ansatz fm − gm = k−1/2Φm. This yields

[

(m+ 1/2)2

k2
+ (k − Q

M
)2 − 2Em

]

Φm − Φ′′
m = 0. (7.13)

Expanding around the minimum of the free dispersion at k̃ ≡ k − Q
M , it reads

[

(m+ 1/2)2

(Q/M)2
− k̃2 − 2Em

]

Φm − Φ′′
m = 0, (7.14)

with solutions in terms of parabolic cylinder functions Dν(
√
2k) where [139]

ν =
(m+ 1/2)2

(Q/M)2
− 1

2
− Eν,m. (7.15)

This equation defines the energy levels Eν,m, which are given by the quantum

number ν. From this equation we find that due to the trap the different angular

momentum states within each level, characterized by m, are split. For the mean-

field result from Eq. (7.9) not to be affected by this splitting, we have to demand

that it is small compared to the interaction energy. As can directly been seen from

Eq. (7.15), this energy splitting becomes small for strong SO coupling and/or a

weak trapping. As a result, a large quasi-degenerate manifold of single-particle

states will allow for the same mean-field construction as in Eq. (7.9). Conversely,
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in the weakly interacting limit (where LDA is inapplicable) the ground states of

the RBEC system in a trap can form vortex lattices [139, 140].

7.2 Quantum Fluctuations

7.2.1 Order-by-disorder mechanism

The degeneracy of the mean-field solution from the previous section is accidental,

i.e. it does not correspond to any symmetry of the Hamiltonian H = H0 +Hint.

We thus expect quantum fluctuations about the mean-field state, Eq. (7.9), to

remove this degeneracy and to select a unique ground state. Such a mechanism,

where a degeneracy on the classical level is removed through fluctuations, of either

quantum or thermal nature, is called order-by-disorder. It has first been discussed

in the context of frustrated spin models [141], and later also in the context of

quantum magnetism [142] and magnetic ordering of ultracold atoms [143], but

clear experimental demonstrations are missing. The effect is reminiscent of the

Casimir effect, where two parallel metallic plates in the vacuum attract each other

due to the boundary conditions which they impose to electromagnetic fluctuations

of the vacuum. While in between the plates, the fluctuations are restricted to

eigenmodes of the cavity, outside of them fluctuations at any wavelengths may

occur, resulting in a higher vacuum pressure from outside, and thus an effective

attractive force on the plates

To analyze the effect of fluctuations in our system, we will have to determine the

excitation spectrum of the system. Therefore we numerically solve the coupled

Bogoliubov-de Gennes equations. Integrating over the resulting modes then yields

the free energy as a function of the relative condensate weights and temperature.

On this level, fluctuations should have lifted the degeneracy, and we will directly

see which state is selected as the ground state.

7.2.2 Collective Excitations

We start writing Ψ̂(r) = Ψ(r)+ψ̂(r) and perform a Bogoliubov expansion ofH to

quadratic order in the fluctuations ψ̂(r). Up to a constant the interaction Hamil-

tonian becomes Hint = g
2

∫

dr [δρ̂(r)]2 where δρ̂(r) = Ψ†(r)ψ̂(r) + ψ̂
†
(r)Ψ(r).

We will now perform several exact manipulations on this Hamiltonian, to arrive
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at a form from which we can read off the Bogoliubov-de Gennes equations. We

will follow the pedagogical derivation from [144]. In the basis which diagonalizes

H0, cf. Eq. (7.4), the first term of this expression reads

Ψ†(r)ψ̂(r) =

√

ρ0
V

∑

k

[

ei(k−Q)·ra∗
(

cos

(

φk
2

)

α̂k + i sin

(

φk
2

)

β̂k

)

+

ei(k+Q)·rb∗
(

i sin

(

φk
2

)

α̂k + i cos

(

φk
2

)

β̂k

)

]

. (7.16)

We thus define

γ̂k ≡ cos

(

φk
2

)

α̂k + i sin

(

φk
2

)

β̂k, (7.17)

η̂k ≡ i sin

(

φk
2

)

α̂k + i cos

(

φk
2

)

β̂k, (7.18)

and next

µ̂k ≡ a∗γ̂k+Q + b∗η̂k−Q. (7.19)

With this, the term (7.16) reduces to

Ψ†(r)ψ̂(r) =

√

ρ0
V

∑

k

eik·rµ̂k, (7.20)

and therefore

Hint =
∑

k

1

2
gρ0

(

µ̂†
kµ̂k + µ̂kµ̂−k + h.c.

)

. (7.21)

In order to re-write H0, we will have to define another operator, which is given

by the transformation orthogonal to Eq. (7.19):

ν̂k ≡ −bγ̂k+Q + aη̂k−Q. (7.22)

After some algebra, we find the total Hamiltonian H to be given by

H =
∑

k

[

χ̂
†
k

(

k2

2M
+ gX

)

χ̂k +

(

−ikyQ
M

χ̂
†

k+2QΓχ̂k + h.c.

)

+
gρ0
2

(

χ̂T
kXχ̂−k + h.c.

) ]

, (7.23)
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where for convenience, the matrices

X =

(

1 0

0 0

)

and Γ =

(

b∗a −b∗2
a2 −ab∗

)

(7.24)

have been defined. With our parametrization of a and b, Γ can also be written as

Γ = −i
2 [σy + i(sin θσz + cos θσx)]. The operators µ̂k and ν̂k have been combined

in the vector operator χ̂k = (µ̂k, ν̂k)
T .

The Hamiltonian (7.23) is quadratic in χ̂k, however, modes at momentum k are

not only coupled to modes at −k, as is the case for bosons without SO coupling,

but also to modes with k+2Q. The Hamiltonian thus cannot be represented by

a finite matrix. However, we can bring Eq. (7.23) to the form

H =
∑

k∈BZ′

Φ̂
†
kMkΦ̂k, (7.25)

if we consider a matrix Mk and vector operators Φ̂k of infinite dimensions. The

first Brillouin zone (BZ) extends over −Q ≤ kx < Q, while ky and kz run from

−∞ to ∞. In the reduced Brillouin zone (BZ’), kx is restricted to positive values.

The modes at different kx are accounted for by higher bands, included in the

following definition of the vector operator Φ̂k:

Φ̂k ≡









































...

χ̂k+2Q

χ̂k

χ̂k−2Q

...

(χ̂†
−k−2Q)T

(χ̂†
−k)

T

(χ̂†
−k+2Q)T

...









































. (7.26)

The corresponding matrix Mk can be obtained by comparison with Eq. (7.23).

It can conveniently be written as a Kronecker product of three matrices if we
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define a matrix Dk of (in principle) infinite dimension

Dk = Diag

(

. . . ,
(k + 4Q)2

2M
,
(k + 2Q)2

2M
,
k2

2M
,
(k − 2Q)2

2M
,
(k − 4Q)2

2M
, . . .

)

,

(7.27)

and a matrix n+ of the same size which is non-zero only on the first diagonal,

where it has ones. With this we obtain

Mk =1⊗Dk ⊗ 1+ 1⊗ 1⊗Xgρ0 + σx ⊗ 1⊗Xgρ0− (7.28)

[1⊗ n+ ⊗ σy + iσz ⊗ n+ ⊗ (sin θσz + cos θσx) + h.c.]
kyQ

2M
.

The left and the right matrices in the Kronecker products are 2 × 2 matrices.

The left matrix is due to the inclusion of operators χ̂ and their conjugates χ̂† in

a single vector, Eq. (7.26). The block form stemming from the right matrix is

due to the fact that the χ̂’s are two-component operators. The infinite matrix in

the middle takes into account the coupling of k-modes to (k + 2Q)-modes, and

vanishes for Q = 0. Then, Mk reduces to a 4 × 4 matrix, as it should be for the

Bogoliubov description of a normal two-component Bose gas.

With the definition from Eq. (7.28), we can write down the Bogoliubov-de Gennes

equations as the eigenvalue problem [145]:

ηMkvkn = Eknvkn, (7.29)

where η = σz ⊗ 1 ⊗ 1, i.e. a diagonal matrices with entries +1 in the upper,

and entries −1 in the lower half. Eigenenergies are the positive eigenvalues, and

the eigenstates are given by the corresponding eigenvectors, normalized according

to v†knηvk′n′ = δkk′δnn′sgn(Ekn). We have labeled eigenvectors and eigenvalues

with a momentum index k and a band index n.

Since large momenta should not contribute to low-energy excitations, we can

truncate the matrix Mk at some point, which is necessary to solve Eq. (7.29)

numerically. Truncating the inner matrix in Eq. (7.28) to nmax dimensions will

restrict Eq. (7.29) to having 2nmax positive eigenvalues. Certainly, the higher

eigenvalues will suffer from the truncation, so nmax must be chosen large enough

to make the modes of interest independent from the cutoff.

Eq. (7.28) is convenient to numerically solve the problem, which now reduces

to the diagonalization of finite matrices. Alternatively, a closed notation of the
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Hamiltonian as a 4×4 matrix is possible in real space [135]. We therefore note that

in real space the manipulations Eqs. (7.19) and (7.22) correspond to transforming

the field operator ψ̂(r) according to

χ̂(r) = eiσy
θ
2 e−iσzQxeiσy

π
4 ψ̂(r). (7.30)

If we define the four-component vector

Φ̂(r) =
(

χ̂
T (r), χ̂†(r)

)T

, (7.31)

then, up to a constant independent of θ, we find that

H =
1

2

∫

dr Φ̂
†
(r)M(r,p)Φ̂(r),

with

M(r,p) =1⊗ 1
p2

2m
+
gρ0
2

(1+ σx)⊗ (1+ σz)−
Qpy
m

× {1⊗ σy cos(2Qx)− σz ⊗ [cos(θ)σx + sin(θ)σz] sin(2Qx)} . (7.32)

Differently to the infinite matrix Mk in Eq. (7.28), the corresponding real space

matrixM(r,p) is just the Kronecker product of two 2×2 matrices. We will need

this representation later for a large-T expansion.

We now proceed by analyzing the spectrum of the system which is found by

diagonalizing ηMk. As shown in Fig. 7.2 for different θ, there exist two gapless

(Goldstone) modes. Following the experimental parameters of Ref. [42], we have

chosen Q2

2m = gρ0. The dispersion is plotted along ky. As can be seen from

Eq. (7.29), the spectrum Ekn has no θ-dependence when ky = 0. We refer to

the dispersions as ‘density’ and ‘spin’ modes since they reduce to the known

expressions Ekd =
√

εk(εk + 2gρ0) and Eks = εk in the limiting case of Q = 0,

where εk = k2

2m is the free particle dispersion. One sees that upon increasing

θ from zero to π/2, the spin mode decreases in energy while the density mode

increases. Thus, there is a competition which (a, b) configuration is selected by the

fluctuations. In the right panel we have therefore plotted the average of the spin

and density modes for each value of θ. The average is always lowest in energy for

θ = 0. This indicates that the zero-point fluctuations from the Goldstone modes

will select θ = 0 state. This state, as can be seen from Eq. (7.9), corresponds

to all bosons condensing into a single momentum state of the Rashba coupled
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Figure 7.2: (a) The dispersions for the density and spin Goldstone modes
for three values of θ for kx = kz = 0. (b) The average (arithmetic mean) of

the density and spin modes. In both plots we have fixed gρ0 = Q2

2m
. From:

[135]

system. This order-by-disorder mechanism, also including thermal fluctuations,

will be considered more quantitatively in the next section.

Analytical expressions for the dispersion relations and the eigenvectors of Eq. (7.29)

can be found in the low-energy limit where κ = k−Qêx is small. One therefore

expands the eigenvalue problem from Eq. (7.29) in powers of κ [146], i.e.

Mκ+Qêx ≡M0 +M1 +M2, (7.33)

v(κ+Qêx)n ≡ v0n + v1n + v2n + . . . , (7.34)

E(κ+Qêx)n ≡ E0n + E1n + E2n + . . . . (7.35)

We are interested in the modes with E0n = 0, so we obtain one equation to first

power in κ, and another equation to second power in κ:

ηM0v1n + ηM1v0n = E1nv0n. (7.36)

ηM0v2n + ηM1v1n + ηM2v0n = E1nv1n + ǫ2nv0n. (7.37)

By projecting the first of these equations into the null vector space of M0 and

multiplying with η, v0n is found. Multiplying with this vector, one obtains E1n
and v1n. Finally, one obtains an eigenvalue problem for E2n [146].



Chapter 7. Bose-Einstein condensates with spin-orbit coupling 141

The analytic expressions read [135]

Ekd =
√

2gρ0
(

εkxz + λεky sin
2(θ)

)

, (7.38)

and

Eks =
√

εkxz(εkxz + λεky )
2

εkxz + λεky sin
2(θ)

, (7.39)

for the density and spin modes respectively, where λ = gρ0/(4εQ + 2gρ0) and

kxz =
√

k2x + k2z . These agree well with the numerical results shown in Fig. 7.2

for small κ except for two special cases which require a more careful analysis.

In particular, for θ = 0, the density mode disperses quadratically along ky while

for 0 < θ ≤ π/2 the spin mode disperses as k3y along ky. Otherwise the density

and spin mode have, respectively, linear and quadratic dispersions about their

minima. It is interesting to compare these to the non-interacting energies shown

in Fig. 7.1, which have quadratic and quartic dispersions about their minima.

7.2.3 Free energy

We will now quantify the order-by-disorder effect by calculating the free energy

of the system. Due to the θ-dependence of the collective excitations, also the free

energy will depend on the configuration of the system. To calculate it, we start

writing the partition function:

Z =
∑

{mn,k}
exp



−β
∑

n,k

Ekn(mkn + 1/2)



 , (7.40)

where mkn is the occupation number of the mode characterized by k and n, and

β = 1/kBT the inverse temperature. The zero-point term can be taken out of

the sum over the basis states, and then the free energy, defined as F = − 1
β lnZ,

reads:

F = − 1

β







−β
∑

kn

Ekn
2

+ ln





∑

{mkn}
exp

(

−β
∑

kn

Eknmkn

)











. (7.41)
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The sum over {mkn} can be factorized into a product of sums:

F =
∑

kn

Ekn
2

− 1

β
ln

[

∏

kn

∞
∑

m=0

e−βEknm

]

. (7.42)

The sum over m is a geometric sum, such that the free energy finally reads

F =
∑

kn

Ekn
2

+
1

β
ln

[

∏

kn

1− e−βEkn

]

. (7.43)

It is useful to separate out the contribution from zero-point fluctuations and write

F(θ) = Fq(θ) + Ft(θ) where

Fq(θ) =
1

2

∑

k∈BZ,n

Ekn(θ), (7.44)

Ft(θ) = kBT
∑

k∈BZ,n

ln
(

1− e−βEkn(θ)
)

. (7.45)

The purely quantum contribution Fq(θ) diverges, but this divergence can be reg-

ularized by subtracting the free energy for a particular mean-field configuration,

e.g. θ = 0: ∆Fq(θ) ≡ Fq(θ) − Fq(0). This regularized expression converges, and

no renormalization of the effective range of interactions is needed. The zero-point

contribution to the free energy, numerically computed as a function of θ, is shown

in Fig. 7.3(a) where the summation is performed over 26 bands. We emphasize

that in order to obtain quantitatively correct results, including only the gapless

modes is insufficient. One sees, indeed, that the θ = 0 state has the lowest energy

and at T = 0 such a state is unambiguously selected.

We now turn to the finite-temperature contribution to the free energy. Interest-

ingly, one finds that the sign of the thermal contribution ∆Ft(θ) = Ft(θ)−Ft(0)

is negative and opposite to that of ∆Fq(θ). Furthermore, the magnitude of the

thermal contribution is always smaller than the contribution from zero-point fluc-

tuations, in contrast to typical situations where thermal fluctuations enhance the

degeneracy lifting and are larger in magnitude for modest temperatures (see, e.g.

[143]). The sign of ∆Ft at low T can be understood by noting that the spin mode

has the lowest energy for θ = π/2 (Fig. 7.2).

As seen in Fig. 7.3(b), the magnitude of ∆Ft(θ) approaches ∆Fq(θ) at high T ,

so that ∆F (θ) = ∆Fq(θ) + ∆Ft(θ) = O
(

T−1
)

→ 0 in this limit. This behavior
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Figure 7.3: (a) The zero-point contribution to the free energy ∆Fq as a
function of θ for three different values of g. (b) The absolute value of the
(negative) thermal free energy splitting between the θ = 0 and θ = π/2 con-
figurations |∆Ft(π/2)| as a function of temperature (solid line). This is seen
to approach the quantum zero-point splitting ∆Fq(π/2) at high temperatures
(dashed line). In both panels the solid lines are fits to the numerically com-
puted data points. From: [135]

can be understood through a high T expansion of the free energy [135]:

Ft(θ) ≈ kBT
∑

k∈BZ,n

ln [βEkn(θ)]−
1

2

∑

k∈BZ,n

Ekn(θ). (7.46)

As the second term cancels the quantum contribution, we focus on the larger first

term which can be written as

kBT
∑

k∈BZ,n

ln [βEkn(θ)] =
1

2
kBT ln |det(βηMk)|

= kBT
∑

k∈BZ′,n

ln |βλkn|

where λkn are the eigenvalues of Mk, and we have used |det(η)| = 1. The eigen-

values λkn are independent of the condensate configuration given by θ. This can

be seen in real space by noting that the θ-dependence ofM(r,p) from Eq. (7.32)

can be removed through the unitary transformation M(r,p) → U†M(r,p)U

where U = 1
2 (1+ σx)⊗ 1+ 1

2 (1− σx)⊗ eiθσy . The same transformation intro-

duces a θ-dependence into η and so the eigenvalues of ηM(r,p) generally depend

on θ, which determine the Bogliubov spectrum. Thus, to this order we find that

∆Ft(θ) = −∆Fq(θ). The next-order term in the high-temperature expansion has



144 Chapter 7. Bose-Einstein condensates with spin-orbit coupling

1/T dependence, as can be seen from the numerical results shown in Fig. 7.3(b).

We now quantify the magnitude of the degeneracy lifting considering realistic

experimental values. As in Ref. [42], we consider 87Rb in the F = 1 hyperfine

state. The spin-independent interaction constant g/h is given by 7.6·10−12 J cm3.

Note that the spin-dependent interaction term is two orders of magnitude smaller.

As a typical density we choose ρ0 = 2 × 1014cm−3, and we set the SO coupling

strength such that gρ0 = Q2

2m . We then find that at zero temperature the free

energy splitting per particle due to fluctuations is ∆F (π/2)/kBN = 110 pK.

One should note that this number should not be directly compared with the

condensate temperature since the total energy determines the ground state. It

is this energy which will determine experimental timescales for the relaxation to

the ground state, which in sufficiently large systems should be short enough to

occur within the duration of the experiment.

7.2.4 Condensate Depletion

Finally, we have to check the self-consistency of our approach. This is determined

by the depletion or the number of particles excited out of the condensate Nex

considered as a fraction of the total particle number N . Consistency of course

requires that this be finite, as neglecting terms beyond quadratic order in H from

Eq. (7.23) is quantitatively reliable only if Nex ≪ N . The quantum and thermal

contributions to Nex = Nq +Nt are [3]

Nq =
1

2

∑

k∈BZ,n

〈vkn| (1− η) |vkn〉 (7.47)

Nt =
∑

k∈BZ,n

〈vkn| vkn〉 f(Ekn), (7.48)

where f(x) = (eβx − 1)−1 is the Bose-Einstein distribution function.

To check whether these expressions converge, we numerically evaluate them for

kc ≤ k ≤ Kc, where kc is a small-momentum cutoff, and Kc is a large-momentum

cutoff. By varying Kc we find that none of them has an ultraviolet divergence.

The situation is more complicated in the infrared, as for an infinite system, the

sums become integrals over an integrand which diverges at k = 0. Decreasing

kc therefore also requires to increase the numerical resolution, in order to not

overestimate the value of the integral. As shown in Figs. 7.4 and 7.5 for θ = 0,

this introduces large numerical errors for small kc, which may make the integral
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Figure 7.4: (a) Thermal depletion (at β = 0.1) in 3D as a function of the
small cutoff momentum kc, for θ = 0. The sum is performed over a small
grid (∆k = 0.001, ∆φ = ∆θ = 2π/128). The errorbars are defined as the
numerical difference to the sum over a grid with step sizes increased by 30%.
They point downwards, as increasing the resolution is found to decrease the
value of the sum. For fitting the data, we take into account values with
relative errors less than 5 %, which amounts for excluding the first 5 values.
These poorly converged values make the depletion look divergent, though the
fit according to the expectation from the small-momentum expansion [146]
shows that it converges. We find the density mode (which is linear in kx)
as the mode which predominantly contributes to the thermal depletion. (b)
Quantum depletion in 3D for θ = 0. The grid resolution is ∆k = 0.002, ∆φ =
∆θ = 2π/64. The quantum depletion clearly converges with a quadratic kc-
dependence.

look divergent though it is not. An exception is the quantum depletion Nq in 3D,

where the integrand does not diverge for k = 0, and the sum clearly converges

[see Fig. 7.4(b)].

In all other cases, the numerical results seem to be less reliable, but luckily in the

infrared limit we can also resort to analytical results from the small-k expansion

sketched before. At θ = 0, the density mode dominates the depletion integrals,

which read [146]:

Nq ∼
∫

ddκ
1

√

κ2 sin2 Φ+ κ4 cos4 Φ
, (7.49)

Nt ∼
∫

ddκ
1

κ2 sin2 Φ+ κ4 cos4 Φ
, (7.50)

where κ = k −Q, and Φ is the polar angle (in 2D), or the azimuthal angle (in

3D). Note that for the 3D-integral d3κ ∼ κ2 sinΦ dκ dθ dΦ, while the 2D-integral
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Figure 7.5: (a) Thermal depletion (at β = 0.1) in 2D as a function of
the small cutoff momentum kc, for θ = 0. The grid resolution is∆k =
0.0002, ∆φ = 2π/640). The errorbars are defined as the numerical differ-
ence to the sum over a grid with doubled step sizes. For fitting the data, we
take into account values with relative errors less than 5 % (which amounts
for excluding the first 6 values). The thermal depletion in 2D has a 1/k
divergence. (b) Quantum depletion in 2D for θ = 0. The grid resolution
is∆k = 0.001, ∆φ = 2π/96). The errorbars are defined as the numerical
difference to the sum over a grid with step sizes increased by 33%. These
first seven values are not taken into account for the fit, as they are poorly
converged. They make the 2D quantum depletion look divergent, though the
fit according to the expectation from the small-momentum expansion [146]
shows that it converges.

reads d2κ ∼ κ dκ dΦ. To evaluate Eq. (7.49) in 2D, we note that for small κ the

integral is dominated around Φ = 0, so we expand the trigonometric functions

around this point. Then performing the Φ-part of the integral, we end up with

Nq ∼
∫

dκ log κ, which depends as kc(1− log kc) on the small-momentum cutoff.

Our numerical result shown in Fig. 7.5(b) perfectly agrees with this functional

behavior taking into account the numerical errors. Thus, at T = 0, the depletion

is finite in both two and three dimensions.

For T > 0, we again expand the trigonometric functions around Φ = 0, where

the integrand diverges, and perform the integral in Φ. In 3D, this yields Nt ∼
∫

dκ log
(

1 + c
κ

)

∼ a + bkc + ckc log k
2
c . In 2D, we obtain Nt ∼

∫

dκ κ−2 ∼
1
κ . The numerical results shown in Figs. 7.4(a) and 7.4(a) agree with these

functional dependencies. Thus, while finite temperature leads to a divergence

of the thermal depletion in 2D, the 3D system remains stable also for T > 0

[147, 148]. Qualitatively the same results are obtained for θ > 0, though in this

case the spin mode dominates the depletion integrals.
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To conclude this chapter, we summarize our results. As shown, for sufficiently

weak trapping potentials, Rashba SO-coupled bosons have a large ground state

degeneracy, which on the mean-field level is not fully lifted by isotropic inter-

actions. Within a Bogoliubov approximation, we have calculated the collective

excitations of the system. Thereby we have established that fluctuations select a

single mode into which the bosons are expected to condense. Such an ordering due

to fluctuations is called order-by-disorder, and we have discussed the feasibility to

observe this effect in an experiment with Rashba coupled bosons. Especially we

have argued that such a configuration is stable in 3D even for finite temperature,

while the 2D system requires T = 0. We expect bosons with Rashba SO coupling

to be realized in the near future for which the predicted configuration should be

observable in Stern-Gerlach experiments.





Chapter 8

Mott transition in synthetic

gauge fields

So far we have considered continuous systems. But as we already have sketched in

the introduction of this thesis, spectacular progress in the field has been achieved

by subjecting cold atoms to optical lattices [6]. These are trapping potentials

built by counter-propagating lasers which lead to a potential with a periodic

modulation. Optical lattices therefore allow to realize lattice models as they

might for instance be relevant in solid-state or high-energy physics. One of the

simplest of such models, realized with cold atoms in a pioneering experiment [6],

is the Bose-Hubbard (BH) model [5, 8]. The appeal of this model stems from

the competition between a hopping strength J , due to which the bosons may

build up long-range correlations, and a repulsive on-site interaction of strength

U . For integer filling, U penalizes hopping processes, as a local increase of particle

number costs more energy than the corresponding decrease of particle number

on the neighboring site saves. Correlations between atoms in different sites are

therefore hindered by the interaction part. At a certain ratio J/U , the bosons

undergo a phase transition from such an uncorrelated phase, the so-called Mott

insulating (MI) phase, to a correlated phase, the superfluid (SF) phase. This

phase transition is not triggered by thermal fluctuations, that is, it can also occur

at zero temperature. Instead it depends critically on the Hamiltonian parameters

J and U , and is therefore a paradigm of a quantum phase transition (QPT) [9].

The experiment of Ref. [6] has pushed QPTs from a theoretical concept to an

experimental reality.

149



150 Chapter 8. Mott transition in synthetic gauge fields

One has then been able to go even deeper: When the system becomes superfluid,

the phase correlations between particles must spontaneously break the phase-

rotational symmetry of the Hamiltonian. From the theoretical point of view,

it is well known that this has to result in massless collective excitations, the

so-called Nambu-Goldstone bosons [149, 150]. In 2009, experimentalists from

Hamburg have been able to detect this mode in a BH system [151]. While the

Nambu-Goldstone mode is considered to be an excitation of the phase of the SF

order parameter, it should also be possible to excite its amplitude, which has

theoretically been predicted to result in a gapped and massive mode [152–155].

Very recently, these excitations have been seen in an experiment in Munich [156].

When quenching from the phase-correlated phase into the Mott phase, the BH

system has also been used to study interesting quantum dynamics, giving rise

to collapse-and-revival effects similar to the ones we have discussed in Chapter 5

[106].

In this chapter, we wish to further enrich the BH model by providing it with an

artificial gauge field. As we pointed out in Chapter 2, it is possible to achieve

artificial gauge fields for particles in optical lattices via a laser-assisted hopping

term [43, 44]. Other techniques which recently have been proven experimentally

are Rashba induced Peierls phases [47], or a shaking of the lattice [48]. Thus,

artificial magnetic fields in optical lattices already exist, and even artificial spin-

orbit (SO) coupling for cold atoms on optical lattices are in reach.

The motivation for implementing gauge fields in lattice systems are manifold. The

periodic structure relates such system to solids, and in the context of spin-orbit

coupling to the physics of topological insulators. But it is also very appealing from

a theoretical point of view. For decades, the intriguing energy spectrum of non-

interacting electrons in a two-dimensional periodic potential with a perpendicular

magnetic field is known to be a fascinating fractal figure, the so-called Hofstadter

butterfly [157]. Depending on the precise value of the magnetic flux per plaquette,

the energy bands are split and shifted within the Brillouin zone. Detecting this

structure of the spectrum experimentally is still a challenge, which might be

achieved by realizing the Hofstadter model in a cold atomic setup. The presence

of an additional non-Abelian gauge field has been shown to further enrich the

spectrum to a figure which has been named the Hofstadter moth [44].

The scenario we investigate in this chapter combines the two aspects of an MI-SF

transition driven by local interactions, and a modification of the single-particle

dispersion due to an artificial gauge field. The interplay between single-particle
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and many-body physics can very conveniently be studied within a resummed

hopping expansion, since the many-body problem becomes exactly solvable in

the limit of no hopping. Thus, a formula based on the exactly known Green’s

functions of the system without hopping can be derived which, just by plugging

in the free dispersion subjected to the gauge field, yields a good approximation

to the full Green’s function up to hopping strengths where the system enters the

SF phase. For the case of a BH system without gauge fields, this method has

allowed to precisely localize the MI-SF phase boundary [11], and to describe the

different excitations of the system [154, 155].

In the setup considered here we study bosons on a square lattice with a pseudospin-
1
2 degree of freedom. This allows to go beyond the effects due to a magnetic field

[158–160], and consider also SU(2) gauge fields, mimicking an SO coupling. Even

in the absence of any gauge fields, the extension of the BH model to systems of

multi-species and higher spin bosons has been shown to provide rich phase dia-

grams [161–163]. In this chapter, we will show that for the simplest non-Abelian

gauge field, described by a constant SU(2) gauge potential, the interplay of inter-

and intra-species interactions and the presence of the external gauge field leads

to qualitative changes in several aspects of the MI-SF transition. Computing the

momentum distribution of the bosons in the MI phase near the MI-SF transition,

we show that the precursor peaks occur at finite, rather than zero, momenta due

to the presence of the gauge field. We find a sudden change of the peak positions

when the strength of the gauge field is varied in certain parameter regimes. This

indicates that a slight change in the gauge field strength has strong impact on

the dynamical behavior of the system and might be especially relevant for its

non-equilibrium dynamics. This behavior is somewhat reminiscent of the QPT

of excited states discussed in Ref. [164] and of the abrupt sign change of the Hall

conductivity which has recently been found for a system of hardcore bosons [165].

We demonstrate that the phase boundary displays a non-monotonic dependence

on the strength of the gauge field leading to re-entrant MI-SF transitions with the

variation of the strength of the gauge field at a fixed hopping strength. Finally,

we construct an effective Landau-Ginzburg theory and use it to chart out the

nature of the SF phase into which the transition takes place. We show that for

a constant non-Abelian gauge field, the SF density near the transition does not

exhibit any spatial ordering. This feature is to be contrasted with the case where

an Abelian flux (with half flux quanta per lattice plaquette) is added over the

existing SU(2) potential leading to a spatial pattern in the SF density.
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The work presented in this chapter has been published in Ref. [166].

8.1 The Model

As explained in chapter 2, an SU(2) gauge field can be generated for a system of

two-species ultracold bosons by distinguishing between the atoms in two different

Zeeman levels representing the two ’flavors’ of the non-Abelian theory [44]. In

doing so, one substitutes the standard hopping process by a laser-assisted tun-

neling, which may depend on the position and the state of the atom. One of the

crucial features of such a tunneling is its ability to flip the state of the atom.

Taking into account local interactions between the atoms, the effective Hamilto-

nian describing the system can be seen to be the same as that of a two-species

BH model [161, 162, 167], with an additional non-Abelian vector potential in

the hopping term providing the additional inter-species coupling. Defining the

number operators n̂ai = â†i âi and n̂bi = b̂†i b̂i, where âi and b̂i denote the boson

annihilation operators of the two species, the local part of the Hamiltonian reads

Ĥ0 =
∑

i

[Uaa

2
n̂ai (n̂

a
i − 1) +

Ubb

2
n̂bi (n̂

b
i − 1) + Uabn̂ai n̂

b
i − µan̂ai − µbn̂bi

]

, (8.1)

where Uxy is the strength of the interaction between a pair of particles with flavors

x and y and µx denotes the chemical potential of species x. The Hamiltonian Ĥ0

is easily diagonalized using the Fock state basis: Ĥ0

∣

∣na, nb
〉

= Ena,nb

∣

∣na, nb
〉

. It

is easy to see that Ĥ0 allows for ground-state degeneracies which are lifted in the

presence of a hopping term leading to different types of “magnetic” orderings in

the Mott state[161].

As we wish to focus on the influence of gauge fields on the MI-SF transition, we

shall first consider the parameter regime for which Ĥ0 has a unique ground-state

in the local limit. The simplest choice in this regard is to assume two independent,

identical systems, i.e. Uaa = Ubb ≡ U , µa = µb ≡ µ, and Uab = 0. With this,

Ĥ0 describes a system which in its ground-state is in both flavors occupied by an

equal number n of particles, with µ/U < n < µ/U + 1 as in the one-component

BH model. This setup will be further investigated in Sections 8.2.2 and 8.3, for

the MI and SF phase, respectively.

In another scenario, investigated in Sections 8.2.3 and 8.3, we take into account

repulsive interactions between the components (Uab > 0). In this case, a subspace
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spanned by all states
∣

∣na, nb
〉

with na+nb = ñ forms the degenerate ground state

manifold, where ñ is the particle number per site. For 0 < µ/U < Uab/U , one sin-

gle atom occupies each site, such that any linear combination c1 |1, 0〉+ c2 |0, 1〉
at every site is a ground state of the unperturbed Hamiltonian Ĥ0. The hop-

ping lifts this degeneracy. As shown in Ref. [162], for small λ ≡ Uab/U , an

antiferromagnetic ordering is preferred, while for λ ∼ 1, the system chooses a

translational-invariant ferromagnetic phase. Between these two limits an XY or-

dering with c1 = c2 = 1/
√
2 occurs. In the rest of this work, we shall focus on the

ferromagnetic and the XY phases, where the ground state preserves translational

symmetry.

The kinetic part of the Hamiltonian is given by

Ĥ1 = −
∑

i,j

(â†i , b̂
†
i )Jij

(

âj

b̂j

)

, (8.2)

where Jij = δ<ij>Je
−i(Aj ·rj−Ai·ri) is a nearest-neighbor hopping with a constant

strength J , and we have chosen ~ = 1. The phase factor associated with the

hopping is defined by the gauge potential Ai, which we choose to be of the

following form

Ai = (ασy , βσx + 2πri · êxΦ, 0), (8.3)

where σx,y are the Pauli matrices, Φ is an Abelian flux, êx denotes the unit

vector along x, ri is the spatial coordinate of site i, and α, β are parameters

characterizing the non-Abelian vector potential. Although interesting anisotropy

effects can be expected from choosing α 6= β (see Refs. [73, 77] and Section

3.2.2.2), here we shall consider α = β for simplicity. With this choice, the intra-

species hopping terms (â†i âj and b̂†i b̂j) become proportional to cosα, while the

inter-species hopping terms due to the non-Abelian vector potential (â†i b̂j and

b̂†i âj) become proportional to sinα. For α = 0 and Φ 6= 0, we thus recover

the Hofstadter problem of a constant magnetic field perpendicular to the two-

dimensional (2D) system in the Landau gauge [157]. Note that also in the opposite

limit, Φ = 0 and α 6= 0, where the vector potential becomes constant, the non-

Abelian character of the gauge potential, i.e. [Ai, Aj ] 6= 0, yields a constant but

finite gauge field. For the Abelian flux, we shall focus on Φ = p/q, where p and q

are co-prime integers. Most of our work has been done for Φ = 0 or 1/2; however,

the method developed here can be straightforwardly extended to other values of

Φ as shown in Ref. [159].
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8.2 Mott insulating phase

8.2.1 Hopping expansion

Our approach to study the full Hamiltonian Ĥ = Ĥ0+Ĥ1 is based on a resummed

hopping expansion as developed in Refs. [11, 154, 155, 168] for the single species

BH model. In this formalism, one considers the hopping term as a perturbation

and focuses on the time evolution of the operators. For a description of the

equilibrium physics at zero or finite temperature, it is convenient to work in

imaginary time. In the Dirac picture, where Ĥ0 is assumed to drive the time

evolution of the operators, we have: â(τ) = eĤ0τ â e−Ĥ0τ . We introduce artificial

sources jai (τ), j
b
i (τ) and define Ĥ1[{j}](τ) ≡ Ĥ1(τ)+

∑

i

(

j̄ai (τ)âi(τ)+j̄
b
i (τ)b̂i(τ)+

h.c.
)

with β the inverse temperature, and {j} denoting the set of all four currents.
The free energy of the system can then be written as a functional of the sources:

F [{j}] = − 1

β
lnTr

(

e−βĤ0T̂τ e
−

∫ β
0

dτ Ĥ1[{j}](τ)
)

, (8.4)

where T̂τ indicates imaginary-time ordering. From this it can directly be seen

that the derivatives βδF/δj̄a(b)i (τ) = 〈âi(b̂i)(τ)〉 = Ψ
a(b)
i (τ) yield the order pa-

rameter fields Ψ
a(b)
i (τ) which vanish within the MI phase. For a description of

the Mott physics, it is thus sufficient to expand F [{j}] up to second order in the

currents. Furthermore, as quantum fluctuations of the hopping term scale down

with dimension [169], in a two-dimensional system an expansion of F [{j}] up to

first order in the hopping strength J and a subsequent resummation is expected

to yield qualitatively correct results. The resummation is automatically achieved

by performing a Legendre transformation iteratively in the hopping, which sub-

stitutes the source fields {j} by the physical order-parameter field. Carrying out

these steps, as detailed in Refs. [11, 168], we finally obtain the effective action of

the system up to second order in J/U :

S[{Ψ}]MI =
1

β

∑

i,j

(

Ψ̄a
i , Ψ̄

b
i

)

[

(

Ĝ0
ij

)−1

− Jij

](

Ψa
j

Ψb
j

)

(8.5)

where Ĝ0
ij = 〈T̂τ Ô

†
i (τ)Ôj(τ

′)〉0 is the unperturbed two-point function. Here the

operators Ô†
i and Ôj may be of type a or b, and the thermal average, 〈·〉0, is

with respect to Ĥ0 at the inverse temperature β. Note that Ĝ0 is a function of

τ −τ ′; thus (Ĝ0)−1 is most easily found in frequency space. We point out that an
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alternative way to derive the same effective action within a random phase approx-

imation is described in Ref. [170] for the BH model, and can straightforwardly

be generalized to systems with an Abelian gauge field [159]. From Eq. (8.5), we

find that Ĝ = [(Ĝ0)−1 − Jij ]
−1 is the resummed two-point function which can be

used, for example, to find the boson momentum distribution [159, 170]

nk = − lim
T→0

1

β

∑

ωM

Tr[Ĝ(k, iωM)]. (8.6)

These momentum distributions can be observed in time-of-flight (TOF) measure-

ments, as we shall discuss later.

The excitation spectra of the bosons can be obtained from the poles of Ĝ or

equivalently by setting up the equation of motion: δS[{Ψ}]MI/δΨ̄a,b = 0. In

Fourier space, this reads

∑

k

[

δk,k′Ĝ0(ωM)−1 − Jk,k′

](

Ψa
k′(ωM)

Ψb
k′(ωM)

)

= 0, (8.7)

where Jk,k′ is the Fourier transform of Jij . After an analytic continuation to real

frequencies iωM → ω+ iǫ, the solutions of Eq. (8.7) yield the dispersion relations.

In the following subsections, we apply this general procedure to specific choices

of gauge potentials and parameters λ and µ.

8.2.2 Independent species

The simplest non-trivial parameter choice which we shall treat in this section cor-

responds to λ = 0 and 0 ≤ µ/U ≤ 1. In this case, Ĥ0 describes two independent

standard BH systems with unique non-degenerate ground state having one boson

of each species per site. The coupling between them is provided by the inter-

species hopping terms arising from the non-Abelian gauge potential. For this

case, it is clear that the unperturbed Green function has vanishing off-diagonal

terms, i.e. G0
12 ∼ 〈â†(0)b̂(τ)〉0 = 0 and Ĝ0

21 ∼ 〈b̂†(0)â(τ)〉0 = 0. From our sym-

metric choice of parameters, it also follows that G0
11 = G0

22 rendering Ĝ0 ∼ 12x2.

Further, the site-factorizable nature of Ĥ0 guarantees that the diagonal elements

of Ĝ0 are given by δk,k′ times a function G0(ωM) of a single Matsubara frequency

G0(ωM) =

∞
∑

n,m=0

eβEn,m

Z0

(

n+ 1

∆n+1 − iωM
− n

∆n − iωM

)

, (8.8)
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where Z0 =
∑∞

n,m=0 e
βEn,m , and ∆n = En,m −En−1,m. In the zero-temperature

limit, the Boltzmann sums in Eq. (8.8) reduce to a single term corresponding

to the ground-state occupation numbers, n = m = 1. In the following two

subsections, we shall compute Ĝ for the two simplest choices of gauge potentials

corresponding to a constant non-Abelian gauge field: the one without Abelian

flux, Φ = 0, and that with an Abelian flux Φ = 1/2.

8.2.2.1 Constant gauge potential without magnetic flux (Φ = 0)

For a constant gauge potential without Abelian flux, Φ = 0, the hopping matrix

is diagonal with respect to momentum k, i.e.

Jk,k′ =2J
{

cosα[cos(kx) + cos(ky)]1− sinα[sin(kx)σy + sin(ky)σx]
}

δk,k′ , (8.9)

where here and in the rest of the paper, we have set the lattice spacing a ≡ 1.

As the unperturbed Green function Ĝ0 is already diagonal with respect to the

internal degree of freedom, we need to diagonalize only the hopping matrix. Its

eigenvalues are

E±
k =2J

{

cosα [cos(kx) + cos(ky)]± sinα
√

sin2(kx) + sin2(ky)
}

. (8.10)

The energy bands of the system at zero temperature are thus given by [G0(ω +

iη)]−1|T=0 − E±
k = 0, where we have Wick rotated back to real frequency. This

yields two quadratic equations

ω2 + ω(2µ− U + E+
k ) + µ2 − µU + (µ+ U)E+

k = 0,

ω2 + ω(2µ− U + E−
k ) + µ2 − µU + (µ+ U)E−

k = 0,

(8.11)

leading to four energy bands shown in Fig. 8.1. Two of these bands occur at

ω > 0 and the other two at ω < 0, so that they may be interpreted as particle/hole

excitation spectra of the system. We note that as α→ 0, the particle and the hole

spectra become increasingly similar and ultimately indistinguishable for α = 0

yielding the standard dispersion of MI bosons with no gauge potential [170].

Furthermore, the particle and hole excitations have a gap in the Mott phase

which closes as one approaches the superfluid-insulator transition by increasing

J/U . Beyond the transition point, which occurs at J = Jc, the solutions of Eq.

(8.11) are complex, indicating instability of the Mott phase.
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Figure 8.1: Boson energy dispersion for Φ = 0, α = 1, µ/U = 0.41, and
J/U = 0.05. See text for details. From: [166].

Figure 8.2: Left: The Mott lobes with α dependent heights. The solid
(dashed) lines indicate the lobes for α = 0(1). Right: Value of Jc at the tip
of the n = 1 Mott lobe as a function of α. The solid (dashed) lines correspond
to Φ = 0(1/2). From: [166].

The MI-SF phase boundary, as obtained by the procedure described above, is

shown in Fig. 8.2. We find that the phase boundary has the usual lobe structure.

However, the value of Jc at the tip of the Mott lobe is strongly influenced by α

and can thus be tuned by varying the strength of the gauge field. This leads to re-

entrant superfluid-insulator transitions in the system by variation of α, provided

that J is appropriately fixed at (say) J = Jc(α = 0.2π) as can be seen from Fig.

8.2. We also note that the universality class of the superfluid-insulator transition

has the same properties as in the standard BH case [8]. At the lobe tip, the

additional particle-hole symmetry renders the dynamical critical exponent z of

the transition to be unity; at other points, z = 2.

One of the key difference of the superfluid-insulator transition in the present

system from the normal BH model is that the position of the minima of the low-

energy excitations at and near the critical point in the first Brillouin zone are at

finite momenta and strongly depend on α (see Fig. 8.3). Since the position of

these minima correspond to precursor peaks of the bosons near the critical point
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Figure 8.3: The position of the boson energy minima at finite wavevector
parametrized by k (see text) in systems without flux (solid line) and with
1/2 flux (dashed line). In the latter, a QPT of the excited band occurs at
α = π/4.From: [166].

[170], this feature is reflected in the momentum distribution of the bosons in the

Mott phase near the transition. From the Green function G, we compute the

momentum distribution using Eq. (8.6). The results of this calculation are shown

in the top panel of Fig. 8.4. We find that at finite α, the precursor peaks of the

momentum distribution at J ≈ 0.97Jc(α) are at finite momenta, reflecting the

fact that the subsequent condensation of the bosons at J = Jc(α) will occur at

non-zero momenta. We note that such a pattern in the momentum distribution

should be easily picked up in TOF experiments. Since standard TOF experiments

will measure the distribution of both species simultaneously, the presence of the

non-condensing mode will slightly reduce the visibility of the pattern. However,

we expect that one should be able to easily subtract this background in order to

observe the sharp peaks of the condensing mode. The most significant feature

distinguishing the non-Abelian scenario from the known standard one, is the

number of peaks which in general is quadrupled by the non-Abelian gauge field.

We predict this feature to be clearly observable in TOF experiments.

8.2.2.2 Gauge potential with magnetic flux (Φ = 1/2)

Turning to the case with an Abelian flux Φ in the gauge potential of Eq. (8.3),

the hopping matrix becomes space-dependent:

Jij = J exp
{

− i
[

ασyxij + (ασx + 2πΦxi1)yij
]

}

, (8.12)

for nearest neighbors, so either the distances xij ≡ xj−xi = 0 and yij ≡ yj−yi =
±1, or vice versa. In Fourier space the general structure of the hopping matrix

now reads:

Jk,k′ = Aδk,k′ +Bδky ,k′
y
δkx,k′

x+2πΦ +B∗δky,k′
y
δkx,k′

x−2πΦ, (8.13)
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where A and B are functions of momentum which will be specified later. Since the

hopping matrix now connects momenta in the magnetic Brillouin zone which differ

by ±2πΦ, the k-sum in Eq. (8.7) won’t reduce to a single term as before without

flux, but we can get rid of the sum by taking into account the periodic boundary

conditions. For a generic Φ = p/q, the periodicity of the lattice, Ψk = Ψk+2πnex ,

ensures that Eq. (8.7) leads to a set of q closed equations. To write them down,

we introduce the notation

Ψk,n ≡ Ψk+n×2πΦex (8.14)

with n = 0, · · · , q − 1. In this notation, the hopping matrix takes the form

Jkn,k′n′ = δk,k′ (Aδn,n′ +Bδn−1,n′ +B∗δn+1,n′) , (8.15)

with

A ≡ Akx,n ≡ 2J ×
(

cos(kx + 2πΦn) cosα i sin(kx + 2πΦn) sinα

−i sin(kx + 2πΦn) sinα cos(kx + 2πΦn) cosα

)

,

(8.16)

and

B ≡ Bky ≡ Jeiky

(

cosα i sinα

i sinα cosα

)

. (8.17)

Since the interaction part is diagonal in k and n, it enters the equation of motion

only in the diagonal elements, which according to Eq. (8.7) are given by

Mkx,n(ωM) ≡ [G0(ωM)]−112x2 −Akx,n. (8.18)

With this, the equation of motion can be written in the Harper-like form:

Mkx,nΨk,n −BkyΨk,n−1 −B∗
ky
Ψk,n+1 = 0. (8.19)

For each n = 0, · · · , q − 1 this yields a two-component equation, so we totally

have 2q equations. Here we shall focus on Φ = 1/2, i.e. q = 2, which allows us

to find the solutions of these equations analytically via diagonalization of a 4× 4
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matrix Mk, which is explicitly given by

Mk =

(

Mkx,0 −2Re(Bky )

−2Re(Bky ) Mkx,1

)

. (8.20)

From this we now get four particle and four hole excitations, i.e. twice as in

the Φ = 0 case as discussed before. Accordingly, the presence of the magnetic

flux Φ = 1/2 can be seen to split each band. Again the most relevant bands

are the particle (hole) excitation at lowest (highest) frequency. The gap between

these excitations closes at J = Jc leading to a second-order QPT separating the

MI and the SF phases. The lobe structure of the phase boundary (and also the

universality class of the transition) remain unchanged by the flux, as can be seen

from Fig. 8.2. We note however that the plot of Jc(α) as a function of α, shown

in the bottom panel of Fig. 8.2, has a qualitatively different behavior compared

to the case without Abelian flux discussed previously; nonetheless, the system

will show similar re-entrant superfluid-insulator transitions as α is varied for a

fixed J .

The most interesting difference between Φ = 0 and Φ = 1/2 concerns the number

and positions of the extrema of the particle and hole excitations. We find that

within the first magnetic Brillouin zone (kx ∈ [−π/q, π/q], ky ∈ [−π, π]) and

in the absence of a non-Abelian field (α = 0), there are two extrema at k =

(0, 0), (0,±π), in agreement with Ref. [159]. Denoting these three points in the

Brillouin zone as k0, k+, and k−, the extrema for non-zero α can be shown

to occur at k0 + (±k,±k), k+ + (±k,−k), and k− − (±k,+k), where k as a

function of α is plotted in Fig. 8.3. From this plot, we find eight extrema as long

as α < π/4. When α = π/4, we get k = π/2 and the extrema are completely

shifted to the zone edges, i.e. again we have only two extrema per Brillouin

zone. For π/4 < α < 3π/4, a plateau with a single fixed extremum is found.

The derivative dk/dα diverges at α → π/4 which means that at this critical

value of the non-Abelian field the global minima of the excited bands abruptly

change their position. Thus a slight change in the gauge field strength is expected

to completely modify the dynamical behavior of the system. This remarkable

behavior can be directly observed in the momentum distribution shown in the

bottom panel of Fig. 8.4. In particular, the abrupt change in the pattern of the

momentum distribution when the flux is varied across π/4 reflects the sudden

change in the position of the band minima with small change in α. This behavior

is reminiscent of the QPT of excited states discussed in Ref. [164]. Also the
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Figure 8.4: Momentum distributions of the bosons at J ≈ 0.97Jc. Bright
regions correspond to high densities. The upper (lower) rows correspond to
Φ = 0(1/2). The non-Abelian field strengths α are, from left to right in each
panel, 0, 0.7, 0.8, andπ/2. From: [166].

abrupt sign reversal of the Hall conductivity at half filling in a system of hard-core

bosons subjected to a gauge field as studied in Ref. [165] falls into this category

of phenomena where some control parameter modifies the system’s dynamics in

a discontinuous way.

8.2.3 XY configuration

In this section, we consider the case where λ > 0 such that the ground state

of the two-species model without the gauge field correspond to the XY phase

discussed in Ref.[162] where the bosons are in a superposition of both the states.

Consequently, Ĝ0 will have non-zero off-diagonal components and one needs to

diagonalize the full matrix (Ĝ0)−1 − Jk in the presence of the non-Abelian flux.

We begin by computing the elements of Ĝ0 at T = 0 which are given by

Ĝ0 =

(

〈T̂τ â
†
i (τ)âi(τ

′)〉GS 〈T̂τ â
†
i (τ)b̂i(τ

′)〉GS

〈T̂τ b̂
†
i (τ)âi(τ

′)〉GS 〈T̂τ b̂
†
i (τ)b̂i(τ

′)〉GS

)

. (8.21)
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Figure 8.5: The excitation spectrum of the bosons in the XY phase system
for α = 1, Φ = 0, µ/U = 0.15, λ = 0.3, and J/U = 0.021.

For the XY ground state |GS〉 = 1√
2
(|10〉 + |01〉), discussed in Ref.[162], this

matrix reads

Ĝ0(iω) =

[

1

2Uλ− 2(µ+ iω)
+

1

U − µ− iω
+

1

2µ+ 2iω

]

1

+

[

− Uλ

2(µ+ iω)(−Uλ+ µ+ iω)

]

σx. (8.22)

Inserting Eq. (8.22) into Eq. (8.7), and considering the case Φ = 0, we find that

the presence of the off-diagonal elements in Ĝ0 leads to two independent equations

for the band dispersions given by

M1 +Ak +
√

M2
2 + |Bk|2 +M2(Bk +B∗

k) = 0

M1 +Ak −
√

M2
2 + |Bk|2 +M2(Bk +B∗

k) = 0 (8.23)

where

M1 =
(ω + µ− U)(U2λ+ Uλ(ω + µ)− 2(µ+ ω)2)

2U2λ− 2(µ+ ω)2

M2 =
Uλ(µ+ ω − U)2

2U2λ− 2(µ+ ω)2

Ak = 2J cosα(cos kx + cos ky)

Bk = 2J sinα(sin ky + i sin kx) (8.24)
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Figure 8.6: Left: The critical hopping Jc marking the tip of the lobe for
λ = 0.3 (solid line) and λ = 0.6 (dashed line) as a function of α. Right: The
minima (maxima) of the lowest (highest) particle (hole) excitation are found
at kya = −α and k = ±kx as shown in the plot (the solid line corresponds to
λ = 0.3, the dashed line to λ = 0.6). It is different from 0 or ±π only within
a small region around α = π/2, in which the single extremum suddenly splits
into two. From: [166].

Solving the first of these equations, we find two positive (E > 0) and one negative

(E < 0) solutions, while the second equation has solely one positive solution which

is the second highest band. The resulting bandstructure is shown in Fig. 8.5. Note

that here the presence of the off-diagonal component of the Green function which

originates from the XY ground state leads to more particle-like than hole-like

excitations. This feature is a consequence of particle-hole asymmetry originating

from Uab 6= U . Also, the splitting of the two highest particle-like excitations is

a consequence of the non-Abelian nature of the hopping. This splitting vanishes

in the limit α → 0.

For the QPT into the SF state these higher modes again do not play a role.

The Mott lobe, on which at least one mode becomes gapless, now extends from

0 < µ < λU . The value of Jc marking the height of the lobe depends on both α

and λ, as illustrated on the left panel of Fig. 8.6. Furthermore, as in the cases

studied before, we find that the minima of the dispersion occur at finite wavevec-

tors. However, in contrast to the cases studied before, the band spectrum in the

XY phase is not symmetric under ky → −ky. This property of the dispersion

can be traced back to G since Bk in Eq. (8.24) is not invariant under such a

transformation.

The above-mentioned properties of the dispersion of the particle- and hole-like

excitations are reflected in the nature of the momentum distribution of the bosons

in the Mott phase near the quantum critical point. We find that for any given

α, the condensing modes are located at ky = −α. As shown in Fig. 8.7, there

are no analogous peaks at ky = α which clearly reflects the breaking of the

parity symmetry discussed above. Also we note that for the range 0 ≤ α . 1.5
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Figure 8.7: Momentum distributions at J ≈ 0.97Jc in XY system for λ =
0.3. The bright regions correspond to high densities. The field strengths α
are, from left to right, 0, 1, 1.4, 1.5, π/2, 1.65, 1.75, and π. From: [166].

Figure 8.8: The momentum distributions of the bosons at J ≈ 0.97Jc in
the XY system with Φ = 1/2 for λ = 0.3 and field strengths α, from left to
right, 0, 0.7, 1, and 1.5. From: [166].

(1.65 . α ≤ π), there is a single condensing mode at kx = 0 (kx = ±π). Around
α = π/2, however, the condensing mode splits into two at momenta k = (±k,−α),
where k is plotted on the right panel of Fig. 8.6 as a function of α. We note that

such a splitting can modify the dynamical behavior of the system.

Finally, we study the influence of a magnetic flux on the XY system, as done

before for λ = 0. As expected we find the Abelian flux Φ = 1/2 to split each

band into two, such that the system exhibits two hole and six particle excitations.

As before, for α = 0, the presence of this flux provides the band structure with

two extrema at k = (0, 0) and (0,±π). The resulting momentum distribution

near condensation is shown in Fig. 8.8. As α is increased, the position of the

peaks of the momentum distribution initially shifts along ky. However, close to

α = π/2, the peaks split along kx leading to four peaks which finally reach the

zone edge k = (±π/2,±π/2) at α = π/2. These features, as in the case of Φ = 0,

should be experimentally observable via standard TOF experiments.



Chapter 8. Mott transition in synthetic gauge fields 165

8.3 Superfluid phase

In this section, we investigate the nature of the SF phase into which the transition

takes place. We note that, as pointed out in Ref. [159, 170], the quadratic action

(Eq. (8.5)) does not capture the physics of the ordered phase but needs to be

supplemented by the quartic term at the mean-field level. These terms can be

directly computed using the methods of Ref. [159, 170] within a strong coupling

expansion; however, it is often enough to guess their forms from the symmetry of

the underlying Hamiltonian. In this section, we are going to take the latter route

and chart out the characteristics of the resulting SF phase.

For determining the order parameters in the SF phase we need to construct the

quartic part of the effective action in terms of the order parameter fields and

minimize it. To this end, we first rewrite the quadratic action by diagonalizing

its kernel as shown in Section 8.2. Let us denote the eigenvalues and eigenmodes

of the quadratic action as mn,k(ω) and Ψn,k(ω), respectively. In the case when

the Abelian flux is Φ = p/q, n varies from 0 to 2q − 1. Note that here we

have adopted the convention that for Φ = 0, the system remains with only two

eigenmodes, so that we have n = 0, 1. In the zero-temperature limit we may then

write,

SMI =

2q−1
∑

n=0

∑

k

∫

dω mn,k(ω)|Ψn,k(ω)|2. (8.25)

Here, the sum over k is restricted to the first magnetic Brillouin zone. The

fourth-order term can be written in this basis as

S(4) = g/2

2q−1
∑

n=0

∑

i

∫ β

0

dτ |Ψ̄n(ri, τ) ·Ψn(ri, τ)|2, (8.26)

where we have transformed the Ψn and Ψ̄n fields to real space. Here, g > 0 is

the exact two-particle vertex function of the bosons in the local limit, which has

been computed in Refs. [168, 170] and i denotes lattice sites.

With this the SF action may be written as

SSF = SMI + S(4). (8.27)
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Now we note that at the onset of superfluidity only one of the eigenmodes con-

denses; therefore, it is possible to analyze the SF phase within a mean-field ap-

proximation by ignoring the other modes. This observation allows us to get rid

of the n-sum over all bands in Eq. (8.26):

S(4) = g/2
∑

i

∫ β

0

dτ |Ψ̄(ri, τ) ·Ψ(ri, τ)|2. (8.28)

In the presence of a non-Abelian gauge field with magnetic flux Φ = 0, or flux

Φ = p/q = 1/2, we have one or more than one minima of the boson energy

spectrum depending upon the non-Abelian field strength α. If the particle/hole

modes consist of s degenerate minima, then the corresponding Ginzburg-Landau

theory can be expressed by s low-energy fluctuating two-component fields (order

parameters) φn(r, t) around these minima [159, 160]:

Ψ(ri, t) =
s
∑

n=1

χn(ri), φn(ri, t), (8.29)

where we have Wick rotated to real time. The coefficients χ(ri) are the real space

eigenfunctions corresponding to the minimum energy band at k = (kmin
x , kmin

y )

which can be expressed as:

χn(ri) =

q−1
∑

l=0

cle
(ikmin

x +2πl/q)xieik
min
y yi , (8.30)

Note that the sum in the above expression is restricted to q terms, since the

functions χn(ri) describe only the part of the spatial dependence of Ψ(ri, t) that

can be factored out for each term in the sum in Eq. (8.29). Here cl denotes

the components of eigenvectors corresponding to the minimum energy band at

k = (kmin
x , kmin

y ).

In general, the quartic part of the Landau-Ginzburg action is difficult to obtain,

since it is restricted only by the invariance under projective symmetry group

(PSG) of the underlying square lattice [171]. The elements of PSG include in

this case translations along the x and y axes, rotation by π/2 around the z axis,

and reflections about x and y axes. In our case, the situation is, however, much

simpler, since we know the microscopic form of the quartic action, Eq. (8.26). We

may therefore substitute Eq. (8.29) into Eq. (8.26), and obtain the explicit form

of the quartic action in terms of the order parameters φn(ri, t). We can then find
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the saddle point of the total action with respect to φn(ri, t), and thus directly

calculate the order parameters in the SF phase.

Let us first consider the case where the number of both flavors at each site is

equal, as discussed in Sec. 8.2.2. If the boson spectrum has one minimum in the

magnetic Brillouin zone, then the corresponding low-energy field can be written

as

ψ(ri, t) = χ1(ri)φ1(ri, t), (8.31)

and thus the SF density reads

ρs = |〈ψ〉|2 =

∣

∣

∣

∣

∣

q−1
∑

l=0

cle
(ikmin

x +2πl/q)xieik
min
y yi

∣

∣

∣

∣

∣

2

|φ1|2. (8.32)

For Φ = 0, we can get rid of the sum in Eq. (8.30) and ρs is simply equal to |φ1|2,
which has no modulation along x. In contrast, for Φ = p/q = 1/2, we find that

ρs displays a spatial pattern.

Next, we consider the case where there are two minima at kmin
1 = (π/2, π/2) and

kmin
2 = (π/2,−π/2) within the magnetic Brillouin zone for α = π/4 and Φ = 1/2.

Note that these are on the zone edge, such that the minima at the opposite edge

are equivalent. In this case, ψ(ri, t) = χ1(ri)φ1(ri, t)+χ2(ri)φ2(ri, t). Following

the coarse-graining procedure charted out in Ref. [159], we find that the SF ground

state corresponds to the condensation of any one of the low-energy fluctuating

fields 〈φ1〉 6= 0, 〈φ2〉 = 0 or 〈φ1〉 = 0, 〈φ2〉 6= 0. The corresponding plot for

α = π/4 and Φ = 1/2 in Fig. 8.9a, shows a similar periodic pattern as found for

a single minimum for Φ = 1/2. Similar analysis can be done for four minima at

(±π/2,±π/2) for α = π/2 and Φ = 0; in this case we find that only one out the

four field condenses; consequently there is no modulation of SF density. Note that

we have restricted ourselves so far to the minima occurring at the wavevectors

(π/s1, π/s2), where s1,2 = ±1. In principle the analysis can be extended to the

situations when the minima occur at (γπ/2, δπ/2) with rational and small γ and

δ; however, the analysis becomes technically involved and we have not attempted

that in this work. We do not have general understanding of implementing the

above-mentioned coarse-graining procedure for irrational γ, δ.

Finally, we briefly comment on the SF density in the XY phase. Following the

procedure discussed before, we again find a constant SF density for any non-

Abelian gauge field with Φ = 0. For α = π/2 and Φ = 1/2, there are two
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Figure 8.9: Left: Plot of SF density ρs/ρ0 for Φ = 1/2 and α = π/4 at
k
min ≡ (π/2,±π/2) for even filling. Right: Same plot for Φ = 1/2 and

α = π/2 at kmin ≡ (π/2,±π/2) for XY phase. From: [166].

minima of the spectrum, and we find that the SF ground state corresponds to

the condensation of both fields around these minima. The corresponding plot for

α = π/2 is shown in Fig. 8.9b.

Thus we generically find that in the presence of a non-Abelian gauge field, the

SF density displays a spatial periodic pattern if there is a finite flux (Φ = 1/2);

however, there is no such modulation without flux, Φ = 0. The method that

has been discussed here can be used for any filling fraction Φ = p/q. We expect

different spatial patterns of the SF density for other Φ, and leave the detailed

analysis of it for future study.



Chapter 9

Gauge fields for cold atoms -

Where, when, and why?

This thesis has studied a variety of cold atomic systems where the atoms are ex-

posed to a synthetic gauge field. As we have argued in the beginning, the interest

in quantum gases is triggered by their immense controllability. This makes them

particularly useful for realizing exotic phases or doing quantum simulations. In

Chapter 2 of this thesis, we have presented different proposals to engineer Hamil-

tonians with static gauge potentials acting on cold atoms. These proposals widely

extend the range of systems which are accessible with cold atoms, covering also

quantum Hall systems, which we have studied in Part I of this thesis, or Bose-

Einstein condensates with spin-orbit coupling, which we have studied in Part

II.

Thus, by summarizing these two parts of this thesis in Sections 9.1 and 9.2, we

shall be able to answer the first of the three questions posed in the title of this

final chapter: Where, or in which contexts, may we futurely find cold atoms with

artificial gauge fields? Also the third question, why?, should be addressed by this

summary.

We note that the systems we have investigated are realizable with techniques not

far from those which are already available. By pointing out the recent exper-

imental development in Section 9.3, we shall also answer the second question:

When? - Now! However it is tempting to think of longer timescales, decades

169



170 Chapter 9. Gauge fields for cold atoms - Where, when, and why?

maybe. Then, the answers to the last question, why?, become particularly allur-

ing. Giving a brief outlook on technological applications of topological quantum

states, we shall answer it in Section 9.3.

9.1 Summary of Part I

In the first part of the thesis, we have focused on fractional quantum Hall systems,

that is, repulsively interacting, two-dimensional systems exposed to a sufficiently

strong artificial magnetic field perpendicular to the atomic cloud. We have stud-

ied fractional quantum Hall effect in various contexts, illustrating the versatility

of the cold atoms: In Chapter 3 fermionic gases with dipolar interactions have

been considered, while in Chapters 4–6 bosons with contact interactions have

been studied. While the particles in Chapters 4 and 5 have no internal degree

of freedom, a pseudospin- 12 degree of freedom has been assumed in Chapter 6.

The pseudospin can also be coupled to the external motion via a non-Abelian

gauge field, a scenario which we have discussed for fermions in Chapter 3, and

for bosons in Section 6.5.

The proposal for realizing a synthetic magnetic field by rotating the system has

been known for a long time (cf. [79]). However, it has so far not been possible

to reach experimentally the parameter region in which fractional quantum Hall

states are expected to occur. This failure has been due to the weak effective

trapping in this region, which requires a configuration where the rotation fre-

quency falls into a tiny window just below the instability limit. In this thesis

we have therefore discussed in detail an alternative proposal, where the gauge

field is obtained by a laser-dressing of the atoms. In this scheme, the analog of

the rotation frequency is given in terms of the wavenumber of the laser. This

should allow for a more precise tuning. A drawback of any proposal based on

dressed atomic states is the inclusion of more internal states than the simulated

system is supposed to have. Thus, the desired Hamiltonian is only obtained after

an adiabatic approximation, neglecting those additional degrees of freedom. By

means of exact diagonalization we have studied the validity of this approxima-

tion in Chapter 4. We show which consequences waiving this assumption has

on the fractional quantum Hall states. As shown in Fig. 4.9 focusing on the

Laughlin state regime, significant changes in the wave function occur when the

Rabi frequency of the atom-laser coupling is decreased. The physical behavior of
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the system, however, seems to change less (see Fig. 4.4), and can, up to a cer-

tain degree, be understood by generalizing the Laughlin wave function according

to Eq. (4.19). This makes the proposal a promising scheme to mimic fractional

quantum Hall physics. In Section 4.3.3, we have also discussed its experimental

feasibility with respect to larger system sizes. Possible difficulties which might

arise in the thermodynamic limit could be answered by increasing the interaction

strength by means of Feshbach resonances.

The most fascinating property of fractional quantum Hall states are certainly

their anyonic excitations. As exotic theoretical predictions, they strongly mo-

tivate the realization of fractional quantum Hall effects in an environment like

cold atoms, where detecting their intriguing properties, including the fractional

quantum-statistical behavior, might become possible [92]. In Section 5.1 we have

investigated the properties of quasihole excitations above the generalized Laugh-

lin state obtained in Chapter 4. Although an anisotropy due to the non-adiabatic

term in the Hamiltonian will also show up in the Berry connections of the cor-

responding quasiholes, this will not affect their effective “charge” and statistical

phase, as these quantities must be defined by moving the quasiholes along closed

contours, see Fig. 5.5. Furthermore, we have shown that systems of sizes as

small as N = 6 have a bulk which is large enough to pierce two Laughlin-type

quasiholes, see Fig. 5.3. This is important in view of the conclusions drawn from

Chapter 4, favoring experiments on finite systems rather than in the thermody-

namic limit. We also note that very small systems have already been claimed to

be brought into the Laughlin regime [172].

Apart from their anyonic properties, quasiholes can also be interesting as a tool for

detecting the Laughlin state. As we have discussed in Section 5.2, due to the zero

interaction energy of the Laughlin state for particles interacting via a two-body

contact potential, no decoherence of the quasiholes takes place in the Laughlin

regime, see Eq. (5.13). This is in contrast to less correlated systems, where a

collapse and revival of the holes can be observed, see Fig. 5.8 for a condensed

system and Fig. 5.13 for a system almost as correlated as the Laughlin state. We

have derived a relation for the revival period, which could prove useful for doing

spectroscopy, Eq. (5.21).

While the one-component systems considered in Chapters 4 and 5 should allow

for realizing the Laughlin state, or other states from the Read-Rezayi series (cf.

Chapter 4 and Ref. [79]), systems of particles with an internal degree of freedom,

considered in Chapter 6, are shown to support a new class of fractional quantum
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Hall states, the non-Abelian spin singlet (NASS) states, see Table 6.1. Like the

Read-Rezayi states, these quantum states are interesting due to their topological

excitations, which apart from being anyonic, also might behave in a non-Abelian

way upon braiding. One might see the additional spin degree of freedom as an

experimental obstacle, but considerable advantages arise:

• The NASS states appear at higher filling factors than their spin-polarized

counterparts, i.e. in a regime of lower angular momentum. This might favor

the experimental realization.

• The spin-degree of freedom allows for additional control. Interaction pa-

rameters within every spin component and between the components can be

tuned independently. As we have shown in Fig. 6.2, tuning the intercom-

ponent interaction strength while leaving the others constant, the system

undergoes several abrupt re-organizations. The observed behavior upon

tuning these quantities might turn out helpful for detecting the state.

• In the spinful system, the coupling of internal and external degrees of free-

dom via a non-Abelian gauge field can be studied. In the context of frac-

tional quantum Hall states, this scenario has been considered in Section 6.5,

where both Read-Rezayi and NASS states turn out to be relevant, depend-

ing on the coupling strength. New states, like the apparently very robust

gapped state at filling ν = 2, see Fig. 6.10, appear when the spin-orbit

coupling causes a degeneracy between different Landau levels.

9.2 Summary of Part II

In the second part of this thesis, we have considered Bose condensed systems in

the continuum (Chapter 7) and on a lattice (Chapter 8) subjected to some arti-

ficial gauge potential. In Chapter 7, we have considered a purely non-Abelian,

constant gauge potential, which effectively describes a Rashba spin-orbit coupling.

Calculating the dispersion relation of such a spin-orbit coupled Bose-Einstein con-

densate, we obtained a two-fold degeneracy on the mean-field level which is lifted

by quantum fluctuations considered in a Bogoliubov approximation. Quantify-

ing this degeneracy lifting, see Fig. 7.3, we have argued that this effect might

be observable in experiments. The feasibility of the setup has been proven by

calculating the quantum and the thermal depletion of the condensate, which
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remain finite in three spatial dimensions, see Fig. 7.4. For decades, the pos-

sibility of such an order-by-disorder, i.e. fluctuation-induced degeneracy lifting,

has been discussed in various contexts, but an experimental observation of this

phenomenon is still missing. Cold atoms might close this gap between theory and

experiment.

One of the milestone achievements in cold atomic physics has been the observa-

tion of a quantum phase transition of bosons on an optical lattice. In Chapter 8,

we have considered bosonic atoms in a square lattice, enriched by synthetic gauge

fields, for which we have chosen: 1) a purely non-Abelian form as in Chapter 7,

2) a non-Abelian gauge potential combined with a magnetic flux as in Chapter

6. Even in the simplest case without magnetic flux and no interactions between

different species, we have found an intriguing energy dispersion where the bands

touch each other in Dirac cones, see Fig. 8.1. As shown in Figs. 8.2 and 8.3, the

strength of the non-Abelian coupling modifies the position of the Mott-superfluid

phase boundary, and the wavenumber of the mode into which the system con-

denses at the phase transition. Thus, the gauge field allows for generating con-

densates of finite momenta, and of re-entrant superfluids, where the quantum

phase transition can be reached not only by tuning the hopping strength, but

also by varying the non-Abelian gauge potential. Taking into account an ad-

ditional magnetic flux, or interactions between the species, the behavior at the

phase boundary becomes even more interesting. Upon tuning the non-Abelian

field strength, the wavenumber of the superfluid abruptly jumps within the Bril-

louin zone, which is observable in the momentum distribution (Figs. 8.4 and 8.7),

or, on the experimental level, in time-of-flight absorptions pictures. The existence

of a magnetic flux might also give rise to spatial modulation of the SF density,

as shown in Fig. 8.9.

9.3 A brief perspective

With the fractional quantum Hall systems studied in Part I, a goal of fundamen-

tal relevance is addressed: Realizing fractional quantum Hall states can, in some

sense, be considered the discovery of a new world, the flat world. In the past

decade, the discovery of graphene has already been a Nobel awarded step into

this two-dimensional world, but still there is a lot to explore. Within a many-

body system, quasiparticle excitations have the status of elementary particles. In

a flat many-body system, thus, anyonic excitations represent elementary particles
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which are quite different from the bosonic or fermionic ones we used to know in

our three-dimensional world. Although we already know theoretically such exotic

properties of the flat world, proving them experimentally would significantly ad-

vance physics. As we have shown in this thesis, cold atoms with artificial gauge

fields could do this job.

Apart from physicists, however, many people might not care too much about

discovering the flat world. When a new generation of smartphones is launched,

however, this uses to attract a great deal of attention. So what about an anyonic

smartphone? In fact, from the hardware perspective, progress in information

technologies will be exhausted at some point in the future, if no quantum leap in

transistor technology is accomplished. Proposals for quantum gates are known

for a long time [173], but a problem with them is the handling of errors. It was

therefore proposed to use topological quantum states for quantum information

processing, as these states are robust against perturbations [27]. In this context,

quantum gates operating with (non-Abelian) anyons have been discussed. From

this point of view, realizing and controlling fractional quantum Hall states could

indeed be the first step towards a quantum smartphone.

What can be expected to turn out a problem still, is that such a quantum smart-

phone based on cold atoms might not fit into our pocket. It can be argued against

this point that also the first classical computers were of the size of a whole labo-

ratory. But in view of the sophisticated cooling techniques which are needed for

cold atoms, scaling down the setups to handy sizes indeed seems to be unrealistic.

Luckily, there might be alternatives. During the last years, spin-orbit coupling

in solids has turned out to be a very important ingredient of several materials,

which are called topological superfluids or topological insulators (TIs) [19]. Im-

portantly, these materials allow for a new kind of transistors [133] which achieve

spin-dependent information processing. As in the case of quantum Hall states,

also the properties of TIs are topologically protected. For non-interacting sys-

tems, TIs are well understood and classified, but the role of interactions remains

an important and widely open question. Systems of cold atoms in an optical

lattice with a non-Abelian gauge field, as discussed in Chapter 8, may be used to

simulate TIs [174]. The simulated TIs themselves might not be useful for practi-

cal purposes, especially if a desired property is offered as an intrinsic property of

some solid material. But for finding this material and understanding its intrinsic

mechanisms, cold atoms could turn out extremely helpful.
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Let us also note that fractional quantum Hall states or topologically insulating

states are by far not the only effects which can be implemented in cold atomic

systems by means of artificial gauge fields. Especially, we should keep in mind

that implementing static gauge fields would also be the first step towards much

more general applications with dynamical gauge fields. Once this is achieved, it

might also become possible to study any physical model in cold atomic systems.

These perspectives may sound unrealistic, prospecting quite sophisticated appli-

cations in a field which can be considered still in its infancy. But artificial gauge

fields for cold atoms are developing rapidly: Not counting the limited schemes of

rotation, only the group of I. Spielman had achieved an artificial magnetic field

when the work on this thesis was started in April 2010 [38]. In the meantime,

Spielman’s group has not only pushed forward their techniques now also covering

gauge fields in optical lattices [47] and synthetic spin-orbit coupling [42], but also

several other groups have successfully implemented artificial gauge fields [48, 175].

In view of this worldwidely growing number of experimentalists in the field, an

optimistic perspective as sketched here seems to be justified.





Appendix A

Strongdeco: Expansion of

analytical, strongly

correlated quantum states

into a many-body basis

In this appendix, we present a Mathematica code, published in Ref. [81], which

translates analytic trial wave functions in the lowest Landau level (LLL) on a

disk from a first-quantized representation into a Fock basis as defined in Eq.

(4.9). We have used this code extensively for obtaining many of the results pre-

sented in Chapters 4 and 5: Since trial wave functions like the Laughlin wave

function in Eq. (3.6) are given in first quantization, while the output of a nu-

merical diagonalization is in terms of second quantized states, overlaps can only

be calculated by switching from one to the other representation. Going from the

second-quantized expression to the first-quantized expression is straightforward,

but in first quantization the overlap is given as an integral over all coordinates.

We have thus pursued the opposite way: Translating the first-quantized expres-

sion into the Fock basis, overlaps are simply given as scalar products of the state

vectors. This translation is achieved by the code which we present here. Note

that there are also many other calculations which are facilitated by translating

from a first-quantized to a second-quantized notation. In Chapter 5 we have used

the many-body representation of the Laughlin quasihole state to explicitly find

177
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the normalization factor as a function of the quasihole position. From this we

have calculated the Berry connection of the quasiholes. A third application will

be given at the end of this appendix.

The Fock basis is constructed from the Fock-Darwin (FD) states, as given in Eq.

(3.5). Let us remind, however, that we will follow our convention for the length

scales given in chapter 4, according to which the exponential reads exp(−|z|2/2).
This is relevant for the normalization factors of the states, and thus for a correct

translation from one basis into another. We will restrict ourselves on the LLL.

Noting that the FD functions are orthonormal, we can generate the many-body

basis by considering products of the FD functions, which in the case of bosons

have to be combined in a symmetric way, while antisymmetric combinations must

be constructed in the case of fermions. Here, we will concentrate on the bosonic

case, but with only slight modifications which are explicitly shown in the code

file, fermionic systems can be treated in the same way. For the bosonic system

we write the many-body state as,

{ℓ1, ℓ2, . . . , ℓN} ≡ S
[

φFD0,ℓ1(z1)φ
FD
0,ℓ2(z2) . . . φ

FD
0,ℓN (zN )

]

(A.1)

where S symmetrizes over the N particles. These states are called permanents,

which are the bosonic analog of the Slater determinants, with the difference that

all terms have a positive sign. Without loss of generality we may assume that

ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓN . The orthonormality of the permanents then reads

{ℓ1, ℓ2, . . . , ℓN} · {ℓ′1, ℓ′2, . . . , ℓ′N} = δℓ1,ℓ′1δℓ2,ℓ′2 · · · δℓN ,ℓ′N
. (A.2)

For simplicity we will from now on suppress the exponential term which is com-

mon to all N -body states, and, as an overall Gaussian, fixes the center of mass

to the origin. We can then simplify the problem to dealing with permanents of

the form,

S
[

zℓ11 z
ℓ2
2 . . . zℓNN

]

. (A.3)

From Eq. (A.2) follows that, for a given N , all states of a fixed total angular

momentum L =
∑N

i=1 ℓi form a subspace which is orthogonal to the subspace with

total angular momentum L′ 6= L. We can therefore perform the decomposition

independently in each subspace, and thus restrict ourselves to a subspace with

fixed L. Its basis (up to normalization factors and the overall exponential term)

can be constructed through the command,
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ConjS[na_, L_] := Module[{poty, dimy},

poty = Pots[na, L];

dimy = Dimensions[poty][[1]];

Table[Perm[na, poty[[i]]], {i, 1, dimy}]]

which makes use of the function Perm [176], that builds the appropriate perma-

nent, and of Pots[N,L], which constructs the set of indexes ℓ1, . . . ℓN for a given

N and L, represented by na and L in the code,

cc[0] = 0;

tab[n_, l_] :=

Table[{cc[i], cc[i - 1],

If[i == 1, l, (l - Sum[cc[j], {j, 0, i - 1}])/2]},

{i, 1, n - 1}];

Pots[na_, L_] := If[na == 2, Table[{i, L - i}, {i, 0, L/2}],

Module[{pat},

Clear[pat];

pat[na] = Join[Table[

cc[i], {i, 1, na - 1}], {L - Sum[cc[i], {i, 1, na - 1}]}];

pat[a_] := Table[pat[a + 1], Evaluate[tab[na, L][[a]]]];

Flatten[pat[1], na - 2]]]

For instance, for N = 4 and L = 2 we have 1,

Pots[4,2]={{0,0,0,2},{0,0,1,1}}

and correspondingly,

ConjS[4, 2]=

{6 z[1]^2+6 z[2]^2+6 z[3]^2+6 z[4]^2,

4 z[1] z[2]+4 z[1] z[3]+4 z[2] z[3]

+4 z[1] z[4]+4 z[2] z[4]+4 z[3] z[4]}

As can be seen in this example, due to multiple occupation of the same single-

particle state, some of the permutations contributing to the symmetrized wave-

function are described by the same monomials which thus have prefactors given

1Note that the state {1, 1, 0, 0} is equivalent to {0, 0, 1, 1} due to the symmetrization of the

states.
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by the factorial of the number of permutations. These factors need to be taken

into account to correctly normalize the many-body states, and can be obtained

through, nami[N, L], which gives a table with the same ordering as Pots or

ConjS, for our previous example, nami[4,2]={6,4}, as could be inferred from

the obtained expressions.

nami[na_, L_] := Module[{potty, pp, inde, ta},

potty = Pots[na, L];

pp = Dimensions[potty][[1]];

inde = Table[Complement[potty[[i]]], {i, 1, pp}];

ta = Table[Table[Count[potty[[i]], inde[[i, j]]],

{j, 1, Dimensions[inde[[i]]][[1]]}], {i, 1, pp}];

Table[ Product[ta[[i, j]]!,

{j, 1, Dimensions[ta[[i]]][[1]]}] , {i, 1, pp}]]

Once these factors are known it is easy to build the normalization coefficient.

Therefore we first have to normalize the FD functions, yielding a factor 1/
√
πℓ!.

Then, the function tip[N, L] gives the normalization coefficients for the many-

body states. Their explicit coding is,

tip[na_, L_] := Module[{potty, nimy},

potty = Pots[na, L];

nimy = nami[na, L];

Table[Sqrt[nimy[[i]]]Sqrt[Product[Pi Gamma[potty[[i, jj]]+1],

{jj, 1, na}] ], {i, 1, Dimensions[nimy][[1]]}]]

The trial states described in Chapter 3, are, up to the common exponential factor,

polynomials in the z variables. To write down the states in terms of the many-

body ones, we can suppress the exponential and work out the decomposition of the

polynomial in terms of the permanents. While the Laughlin and the Pfaffian state

have a definite total angular momentum, for the quasi-hole and quasi-particle

states this is only true if we fix the position of the quasi-particle to the origin

ξ = 0. Otherwise, we must first sort the polynomial by the different contributions

with a definite order in z, and can then proceed, for each contribution separately,

in the way described here, where we assume an analytical state, Ψ(z1, z2, . . . , zN )
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with fixed N and L. We are looking for an expansion of the form,

Ψ(z1, z2, . . . , zN ) =

nD
∑

j=1

Cj{ℓ1,j, ℓ2,j, . . . , ℓN,j} (A.4)

where nD is the total size of the many-body basis, which can be computed as

nD = Dimensions[PotsN[N,L]][[1]]. (A.5)

To get a feeling of how this grows with N and L the dimension of these spaces for

the L corresponding to the Laughlin wave functions are, nD = 7, 34, 192, 1206, 8033, 55974

for N = 3, 4, 5, 6, 7 and 8, respectively.

To decompose a polynomial into these states, we have to find the monomials

which correspond to a given Fock state and read out their coefficients. Since we

know that the polynomial is symmetric (antisymmetric) under exchange of two

coordinates, it is sufficient to find only one monomial contributing to a given

Fock state, as all the others must have the same coefficient (up to a sign in the

antisymmetric case). This can be achieved by taking derivatives:

∂ℓ1,jz1 · · ·∂ℓN,j
zN Ψ(z1, z2, . . . , zN )|z1=0,··· ,zN=0 = cj , (A.6)

where cj is not yet the coefficient Cj in Eq. (A.4), but is directly related to it

through the normalization procedure described in the previous section. Hereby,

we have to take into account that an additional factor
∏N

i=1 ℓi,j ! occurs through

the derivatives. Thus we obtain

Cj = cj

(

P

N
∏

i=1

ℓi,j ! π

)−1/2

≡ αjcj , (A.7)

where the P is the factorial of permutations leading to the same expression, ob-

tained by nami[N,L]. We thus see that αj equals the inverse of the jth component

of tip[N,L]. The decomposition of, for instance, the Laughlin wavefunction can

therefore be obtained by the following piece of code:
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DDecoLaug[na_,nu_] :=

Module[{Lmin, Lmax, state, base, dim, fac, d, prf, outp},

Lmin = na (na - 1);

Lmax = na (na - 1);

state = Laughlin[na,nu];

base = Flatten[Table[Pots[na, i], {i, Lmin, Lmax}], 1];

dim = Dimensions[base][[1]];

fac = Flatten[Table[tip[na, i], {i, Lmin, Lmax}], 1];

d[0] = state;

prf = Table[

For[i = 1, i < na + 1, i++,

d[na] = 0;

d[i] = D[d[i - 1], {z[i], base[[j, i]]}];

d[i] = d[i] /. z[i] -> 0;

If[d[i] == 0, Break[]]

];

d[na]/fac[[j]],

{j, 1, dim}];

outp = prf/Sqrt[prf.prf]]

Here, Laughlin[N,nu] describes the Laughlin wavefunction for N particles at

filling ν. For even 1/ν, this is a symmetric function describing bosons, while odd

values yield an antisymmetric function for fermionic systems. In principle, we can

use the code for both the symmetric and the antisymmetric case. In the latter,

however, it is convenient to exclude states with multiple occupied single-particle

levels from the basis, as they obviously make no contribution. This can be done

by replacing Pots[N,L] by its fermionic analogue PotsF[N,L] defined in the

code file. Consequently, we will also have to replace tip[N,L] by tipF[N,L].

An alternative way to achieve the decomposition is by means of a particular,

built-in Mathematica function, PolynomialReduce. This function provides the

decomposition of a given multivariate polynomial in terms of a set of polynomials.

The code for decomposing the bosonic Laughlin state then reads
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LaugDeco[na_,nu_] :=

Module[{state, base, symb, laur, prf, outp},

state = Laughlin[na,nu];

base = ConjS[na, na (na - 1)];

symb = Table[z[i], {i, 1, na}];

laur = PolynomialReduce[state, base, symb];

If[laur[[2]] != 0, Print["Problem in reduction"]];

prf = laur[[1]] tip[na, na (na - 1)];

outp = prf/Sqrt[prf.prf];

outp]

For most states that we have considered, the decomposition by means of deriva-

tives is faster. However, making use of PolynomialReduce turns out to be

quicker for the fermionic Laughlin state as well as for quasiparticle excitations.

In figure A.1, a snapshot of the code for the decomposition of the Laughlin state

is provided for N = 3, N = 4 and N = 5. The code has been tested for N ≤ 7

on a laptop running on linux with 1Gb of RAM memory. The full notebook file

with some examples is provided on the journal webpage [81].

Figure A.1: Snapshot of the code where the decomposition of the Laughlin
state with ν = 1/2 is obtained for N = 3, N = 4 and N = 5.
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ℓ = 0 1 2 3 4 5 6 7 8 9

m = 2 257
553

264
553

303
553

446
553

447
553

330
553

165
553 0 0 0

m = 3 185
706

185
706

209
706

321
706

417
706

465
706

455
706

339
706

186
706

62
706

Table A.1: Angular-momentum distribution for Laughlin states of N = 4
particles for bosons (m = 2) and fermions (m = 3).

Applications Within this thesis, we have used the presented code in chapter 4

in order to calculate the overlap between states obtained by exact diagonalization

and first-quantized trial wave functions like the Laughlin or Moore-Read state.

Furthermore, this representation is often convenient to analyze properties of these

states. In chapter 5 we have translated quasihole states into the Fock basis in

order to study the effective charge and statistics of the excitations.

Here we briefly present a third application of the code: Our code can also be used

to calculate the angular momentum distribution of a test state in the LLL. From

this, one also gains insight into its one-body density matrix and other correlation

functions. For the fermionic Laughlin state this problem has been considered in

Ref. [177], where exact results are obtained by calculating the density and then

extracting the angular momentum distribution. This method, however, fails for

systems larger than N = 3, for which Monte Carlo methods have been applied.

By means of our code, we are able to reproduce these results by decomposing the

Laughlin state into a basis from which the angular momentum of each particle

can be directly read off. It is straightforward to go beyond the analytical results

of Ref. [177]. As an example, we give in Table A.1 the angular momentum

distributions for the fermionic Laughlin state at m = 3 and the bosonic Laughlin

state at m = 2 of a system with N = 4 particles.
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