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Abstract. Ultracold atomic gases in optical lattices have provided a highly

controllable environment in which many-body e�ects can be explored, going from

weakly-interacting gases to strongly-correlated systems. Besides that, the recent

development of quantum information theory has provided a new perspective for

studying these systems, introducing entanglement notions which can fully characterize

the phases at which the system can be found. In this work we want to provide

an introduction to all these concepts using well-established theoretical techniques

and comparing with numerical simulations carried out with a Density Matrix

Renormalization Group (DMRG) algorithm.

First of all, we present a study of the single-component Bose-Hubbard model,

using basic analytical theories, mean-�eld, perturbation theory, etc, accompanied with

accurate DMRG results. We characterize the phase diagram with usual condensed-

matter properties like the excitation spectrum but we also introduce entanglement

properties like the von Neumann entropy. Furthermore, we perform a study of the

two-component Bose-Hubbard where we present the entanglement spectrum (ES) of

the system in the strong-coupling regime. Analytical results for the ES are obtained

through perturbation theory and we also provide a direct comparison with DMRG

results. At the critical point, where phase separation takes place, a drastic change on

the ES structure is observed. We relate this new structure in the ES with the tower of

states (TOS) expected in the energy spectrum of the Hamiltonian. We then study how

these structures evolve with the system size and with the interactions between bosons

as one approaches to the thermodynamic limit and the strong-coupling regime.
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1. Introduction

Since the experimental discovery of Bose-Einstein condensation (BEC) [1, 2, 3] there

has been a lot of e�ort to understand the physics of ultracold many-body quantum

systems [4, 5]. Among the multiple scenarios where ultracold atoms have been studied

one of the most intriguing ones is loading the atoms into an optical lattice [6].

This phenomena can be accurately described by Hubbard-type models, which are

fundamental descriptions taking into account the interplay between kinetic energy and

interactions. These type of models were originally introduced to study solid-state physics

and strongly correlated systems [7, 8] (e.g. dynamics of electrons in solids), but they are

just an approximation to the real dynamics. Instead, it turns out that the Bose-Hubbard

model [9] is an accurate description of the physics in an ultracold atomic system trapped

in an optical lattice. Moreover, the e�ective parameters of the system can be derived

from microscopic principles and they can be controlled experimentally [6, 10]. Which

allows for a study from the weakly interacting regime (where BECs have been conceived)

to the strongly interacting regime. Not only that, the dimensionality of the system and

its geometry can be modi�ed and controlled [11, 12, 13], even the strength of the atomic

interactions is tuned using the famous Feshbach resonance [14, 15, 16]. Then, ultracold

atomic gases in optical lattices o�er the possibility to study a wide variety of physical

problems in an unprecedented controlled way [17, 10].

One of the most interesting phenomena in quantum many-body systems are

quantum phase transitions (QPT) [18]. These are phase transitions which occur at

zero temperature and are therefore driven solely by quantum �uctuations stemming

from Heisenberg's uncertainty principle. The Bose-Hubbard model presents a QPT [19]

due to the interplay between kinetic energy and interactions. Two di�erent phases have

been described: a super�uid phase (SF) and a Mott insulator (MI). Due to the high

control on the parameters of the model, this phase transition has been studied over the

last decades in an experimental and theoretical way and nowadays is one of the best

established ones.

Since the development of quantum information theory there has been an e�ort

to connect its tools to the physics of strongly correlated systems. Usually, QPT are

characterized by a series of order parameters, properties of the excitation spectrum, etc.

But quantum information theory has provided new magnitudes, mainly related with the

entanglement of the system, which can characterize the di�erent quantum phases of the

system [20, 21, 22]. In the last decades a great deal of work has been performed in that

direction, trying to introduce entanglement properties into condensed matter systems

and see how universal they are. On the other hand, many-body physics has o�ered to

quantum information theory the possibility for implementing the high controllability of

those systems into the task of building a quantum computer [23].
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2. Ultracold atoms in optical lattices

Optical lattices are created by interfering optical laser beams [24] and they act as

external periodic potentials for ultracold atoms (fermions, bosons and mixtures). They

have allowed to study many-body e�ects with an unprecedented level of precision and

control, speci�cally there is a full control on the lattice dimensionality and geometry,

the lattice depth controlling tunneling e�ects and the interactions between ultracold

atoms [17].

2.1. Single-particle problem

The behavior of a single-particle in a periodic external potential is a standard problem

in quantum mechanics. In this section, we concentrate on the one-dimensional case.

However, the extrapolation to higher-dimensional systems is straightforward. The

Schrödinger equation reads,

i~
∂φ(x, t)

∂t
=

(
− ~2

2m
∇2 + Vopt(x)

)
φ(x, t). (1)

Since the optical potential has a periodicity Vopt(x+ a) = Vopt(x) our Hamiltonian will

commute with the translation operator T̂ = e−ip̂a. Therefore, we can �nd simultaneous

eigenfunctions of the two operators. According to Bloch's theorem [25]

φ(n)
q = eiqxu(n)q (x), (2)

where u
(n)
q (x) = u

(n)
q (x + a) are Bloch wavefunctions satisfying the same periodicity

than the optical lattice. Here q stands for the quasi-momentum of the particle, and is

con�ned to the �rst Brillouin zone −π/a < q < π/a, and n denotes a quantum number

characterizing the eigenstate (e.g. the band number). The Schrödinger Eq. (1) reduces

to Hφ
(n)
q = E

(n)
q φ

(n)
q which yields to an equation for the Bloch wavefunctions[

(p̂+ ~q)2

2m
+ Vopt(~x)

]
u(n)q (x) = E(n)

q u(n)q . (3)

The typical optical lattice potential is Vopt(x) = V0 sin2(kx) where k = π/a, it has a

periodicity a where 2a is the wavelength of the laser light. V0 is the depth of the optical

lattice and it is an experimental parameter that can be tuned. A typical characteristic

frequency of the system is the trapping frequency de�ned as wT =
√

4V0ER/~ where

ER = ~2k2/(2m) stands for the recoil energy [6]. In Fig. 1 we represent the band

structure for di�erent optical depths V0. The case V0 = 0 is a trivial one which represents

the free particle with a quadratic spectrum. As long as V0 is increased the band gap

increases and the band width decreases. The typical band gap between the two lowest

bands is characterized by the energy ~wT .
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Figure 1. Band structure in a typical optical lattice acting as an external periodic

potential Vopt(x) = V0 sin2(kx). On the left the untrapped case V0 = 0 and on the

right a trapped one with V0 = 5ER.

2.2. Microscopic derivation of the Bose-Hubbard model

Once the problem of the single-particle in an optical lattice is solved we can focus

on the many-body problem. In the language of second quantization the many-body

Hamiltonian describing a gas of N interacting bosons is given by [26]

Ĥ =

∫
drΦ̂†(r)

[
− ~2

2m
∇2 + Vopt(r)

]
Φ̂(r) +

1

2

∫
drdr′Φ̂†(r)Φ̂†(r′)V (r− r′)Φ̂(r)Φ̂(r′),

(4)

where the optical lattice Vopt(r) =
∑3

i=1 Vi,0 sin2(kxi) is a 3-dimensional generalization

of the one described in the previous section. We have introduced Φ̂(r) and Φ̂†(r), the

bosonic annihilation and creation �eld operators, respectively. In a general way, they

are de�ned as

Φ̂(r) =
∑
n

φn(r)b̂n,

Φ̂†(r) =
∑
n

φ∗n(r)b̂†n.
(5)

The coe�cients φn(r) and φ∗n(r) are single-particle wavefunctions corresponding to

the n eigenstate and b̂n, b̂
†
n are the bosonic annihilation and creation operators. If

{φn(r)} forms a complete basis, the �eld operators obey the commutation relations[
Φ̂†(r), Φ̂(r′)

]
= δ(r− r′).

The interaction V (r − r′) plays a key role in the many-body problem. In the

context of ultracold atoms, many degrees of freedom are frozen and the scattering of

two particles can be reduced to only s-wave channels. In this situation, the exact shape

of the interparticle two-body potential is not needed and it can be replaced by a short-

Treball de Fi de Màster 5 Barcelona, June 2018



Entanglement in ultracold atomic gases Ivan Morera Navarro

ranged pseudopotential [27, 28]

V (r− r′) =
4π~2as
m

δ(r− r′), (6)

being m the atomic mass and as the s-wave scattering length. The scattering length

as characterizes the strength of the interactions: attractive (repulsive) for negative

(positive) values and it can be tuned in present experiments by using Feshbach

resonances [14, 15, 16]. Usually one de�nes the coupling constant as g = 4π~2as
m

and

the many-body Hamiltonian is reduced to

Ĥ =

∫
drΦ̂†(r)

[
− ~2

2m
∇2 + Vopt(r)

]
Φ̂(r) +

g

2

∫
drΦ̂†(r)Φ̂†(r)Φ̂(r)Φ̂(r). (7)

In the dilute regime (nas � 1 being n the gas density) the above problem can be

approximately solved using the Bogoliubov approximation [29]. This consists in writing

the �eld operators as a sum of a mean value and a �uctuation Φ̂(r) = Φ(r) + δΦ̂(r).

Using the Heisenberg picture and neglecting quantum and thermal �uctuations an

evolution equation for the mean value can be obtained, the so-called Gross-Pitaevskii

equation [30, 31] which is a good approach for zero temperature and assumes that all

bosons condensate.

Since we are interested in the many-body problem where the external potential is

given by a periodic optical lattice it is convenient to expand the �eld operators in Bloch

functions

Φ̂(r) =
∑
n,q

φ(n)
q (r)b̂(n)q . (8)

Another complete orthogonal basis is provided by the Wannier functions wn [32]. Using

these functions, the Bloch ones can be rewritten as

φ(n)
q (r) =

∑
i

eiqriwn(r− ri), (9)

where ri = ia is the lattice position. Wannier functions are not uniquely de�ned since

Bloch functions are de�ned up to a global phase, which introduces large changes on

Wannier functions. This freedom is often used to obtain highly localized functions at

the point ri which rapidly decay away from it. Taking into account this consideration,

the �eld operator is rewritten

Φ̂(r) =
∑
n,i

wn(r− ri)b̂
(n)
i , (10)

and it can be interpreted as annihilating a particle at position r. On the other side,

b̂
(n)
i is the annihilation operator of a particle in the proper Wannier state w

(n)
i (x) at site

i and band n. Working in the ultracold regime we consider that the energies of our

system are not enough to provoke excitations over di�erent bands which are separated

by the typical trapping frequency wT =
√

4ERV0/~ previously introduced (see Fig. 1),
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then we are mainly left with the lowest band, n = 0. Introducing the expansion (10) on

the Hamiltonian (7) we obtain

H =
∑
i,j

b̂†i b̂j

∫
drw∗(r− ri)

[
− ~2

2m
∇2 + Vopt(r)

]
w(r− rj)

+
g

2

∑
i,j,i′,j′

b̂†i b̂
†
i′ b̂j b̂j′

∫
drw∗(r− ri)w

∗(r− ri′)w(r− rj)w(r− rj′),

(11)

where we have dropped the band index since we only consider the lowest one (n = 0). As

the Wannier functions are localized at a particular site i and rapidly fall away from the

site (approximately exponential decay) we will neglect contributions such that |i−j| > 2

for the �rst integral, which is equivalent to consider tunneling only between nearest

neighbors. We can also neglect o�site interactions for the second integral and only

consider on-site interactions (i = i′ = j = j′). With these assumptions we obtain the

famous Bose-Hubbard Hamiltonian

H = −
∑
<i,j>

tij

(
b̂†i b̂j + h.c.

)
+
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i, (12)

where we identify the following parameters:

tij =

∫
drw∗(r− ri)

[
− ~2

2m
∇2 + Vopt(r)

]
w(r− rj),

Ui = g

∫
dr|w(r− ri)|4,

εi =

∫
drw∗(r− ri)

[
− ~2

2m
∇2 + Vopt(r)

]
w(r− ri),

(13)

which describe a tunneling matrix, an on-site interaction and an inhomogeneous term,

respectively. If the external optical potential is isotropic (as it will be in our case) the

subindexes can be omitted and εi can be dropped out. Finally, let us emphasize that this

Hamiltonian will describe the physics of ultracold atoms in periodic optical lattices if the

condition U, t, kBT � ~wT is ful�lled, which is the case in current experiments [6]. The

most important point of this derivation is that the parameters of the Hamiltonian (12)

are directly controlled by the depth of the optical lattice V0 and the recoil energy ER,

then we have a high experimental control on the physics of the system.
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3. Physics of the Bose-Hubbard model

The Bose-Hubbard model is considered one of the minimal models which includes many-

body e�ects. It is a convenient point to start developing the quantum many-body theory

which includes concepts like entanglement, quantum phase transitions, etc. As we have

said, there has been an enormous technological progress and presently we have a very

large experimental control on the parameters characterizing the model. The control is

such that one can use these systems as quantum simulators, both from the experimental

and theoretical point of view, of the physics in other �elds: spin systems, etc [33].

It is important to realize that the Bose-Hubbard Hamiltonian contains a

competition between kinetic energy introduced by the tunneling term t and the on-

site interactions U . The kinetic energy tends to delocalize particles over the lattice. If

this term dominates, the ground state of the system is in a super�uid (SF) phase. This

one is characterized by large �uctuations in the number of particles per site, a divergent

correlation length (critical phase) and a gapless spectrum. In the limit t/U → ∞ we

can write an exact super�uid wavefunction for the ground state withM lattice sites and

N bosons

|ΨSF 〉 =

(
1√
N

M∑
i=1

b̂†i

)N

|0〉. (14)

In the limit N,M →∞ at �xed N/M the wavefunction tends to

|ΨSF 〉 =
M∏
i=1

[
eb̂
†
i |0〉i

]
, (15)

which is nothing else than a coherent state for each site (an eigenfunction of b̂i) and a

superposition of di�erent particle number on each site following a Poisson distribution.

In the opposite limit t/U → 0 we found a total localization of particles in each site. The

ground state has a well de�ned number of particles per site and it can be written as a

Fock state with commensurate �lling n = N/M

|ΨMI〉 =
M∏
i=1

(b̂†i )
n|0〉. (16)

This phase is called the Mott Insulator (MI) and is characterized by a �nite correlation

length and a gapped spectrum.

As we have seen the Bose-Hubbard model (12) presents a ground state with very

di�erent properties as a function of the ratio t/U . One expects that these two regimes

will not be continuously connected and a QPT will appear at a �nite value of t/U . In

the following sections we will present a study of di�erent properties deeper inside each

phase and we will characterize the QPT between them.
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3.1. Super�uid phase

In this section we show how to deal with the Bose-Hubbard model Eq. (12) near

the non-interacting limit t/U → ∞. In order to do that, we perform a Bogoliubov

approximation [34, 35]. In this non-interacting limit all bosons condensate into the

zero momentum state and the number of bosons occupying this state (N0) is equal to

the total number of bosons N . Using this information we rewrite the Bose-Hubbard

Hamiltonian introducing new operators b̂k

b̂i =
1√
M

∑
k

b̂ke
ikri , (17)

where ri represents the position of the site i and k is the momentum discretized over

the �rst Brillouin zone. Using the fact that
∑

i e
−i(k−k′ )ri = Mδk,k′ we obtain the

total number of bosons as N̂ =
∑

i b̂
†
i b̂i. In the Bogoliubov approach one expands the

bosonic operators using a mean-�eld approach b̂k =
√
N0δk,0 + δb̂k and substituting in

the Hamiltonian Eq. (12) (in the grand canonical ensemble) one obtains, up to quadratic

�uctuation terms

H = N0

(
−zt− µ+

U

2

)
+
√
N0 (−zt− µ+ Un0)

(
b̂0 + b̂†0

)
+
∑
k

(εk − µ) b̂†kb̂k +
Un0

2

∑
k

(
4b̂†kb̂k + b̂kb̂−k + b̂†−kb̂

†
k

)
,

(18)

where n0 = N0/M is the condensate density fraction, z is the number of nearest-

neighbors. The lattice dispersion reads as εk = −2t
∑d

i cos(kia) where we are considering

a general d-dimensional lattice.

Linear terms in bosonic operators can be removed setting the chemical potential

to µ = Un0 − zt. This expression tells us that the necessary energy to add a particle

into the system is given by the on-site interactions between the added boson and the

n0 bosons at each site, minus the energy due to the possible hopping to one of the z

�rst-neighbors. Then the Hamiltonian of Eq. (18) is rewritten as

H =− Un0N0

2
+
∑
k

(εk + zt− Un0) b̂
†
kb̂k

+
1

2
Un0

∑
k

(
4b̂†kb̂k + b̂kb̂−k + b̂†−kb̂

†
k

)
.

(19)

This quadratic Hamiltonian can be solved using the so-called Bogoliubov-de Gennes

transformation (
ĉk
c†−k

)
=

(
uk vk
v∗k u∗k

)(
b̂k
a†−k

)
, (20)

where the new operators ĉk, ĉ
†
k represent quasiparticle �elds which follow the

commutation rules
[
ĉk, ĉ

†
k′

]
= δk,k′ and the coe�cients satisfy the normalization
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condition |uk|2 − |vk|2 = 1. Using these new operators the Hamiltonian of Eq. (19)

is written as:

H = −Un0N0

2
+

1

2

∑
k

(~wk − εk − zt− Un0) +
∑
k

~wkĉ
†
kĉk, (21)

where we have required that o�-diagonal terms vanish, leading to the conditions(
u2k + v2k

)
Un0 − 2 (εk + Un0 + zt)ukvk = 0,(

|uk|2 + |vk|2
)

(εk + Un0 + zt)− Un0 (u∗kvk + ukv
∗
k) = ~wk.

Using the normalization condition for uk and vk we �nd the solution

~wk =

√
(εk + zt)2 + 2Un0 (εk + zt),

|vk|2 = |uk|2 − 1 =
1

2

(
εk + zt+ Un0

~wk

− 1

)
.

(22)

In the long-wavelength limit |k|a � 1 the quasiparticles behave as phonons with a

dispersion

~wk ≈ |k|a
√
t
√
t|k|2a2 + 2Un0, (23)

showing the gapless nature of the spectrum in the SF phase, note that this approach

cannot characterize the MI phase which is gapped.

Within the Bogoliubov approach the original system is described in terms of

quasiparticles with an annihilation operator ĉk and a characteristic excitation spectrum

~wk. At zero temperature the vacuum of the system ful�lls ĉk|vac〉 = 0. At non-zero

temperature di�erent excited states are occupied through thermal activation, satisfying

the well-known Bose-Einstein statistics

〈ĉ†kĉk〉 =
1

eβ~wk − 1
. (24)

One can compute the average �lling at non-zero temperature as

n =
〈N〉
M

=
1

M

∑
k

〈b̂†kb̂k〉. (25)

Using the Bogoliubov-de Gennes transformation Eq. (20) and the thermal occupation

of the quasi-particles Eq. (24) we obtain:

n = n0 +
1

M

∑
k 6=0

[(
|uk|2 + |vk|2

) 1

eβ~wk − 1
+ |vk|2

]
, (26)

where we have separated the �lling contribution in two parts: n0 which represents

the condensate contribution to the total �lling and the contribution from higher non-

condensate states. Using Eq. (22) we obtain

n = n0 +
1

M

∑
k 6=0

(
εk + zt+ Un0

~wk

1

eβ~wk − 1
+
εk + zt+ Un0

2~wk

− 1

2

)
. (27)
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At zero temperature β → ∞ the term with the thermal occupation goes to zero

and taking the continuum limit analytical results can be obtained depending on the

dimensionality of the system. The strategy is to see at �xed integer �lling number n the

amount of condensation n0 that is present in the system. It is expected that at �nite

t/U there will be a critical point where n0 goes to zero and this will mark the SF-MI

phase transition. Here we do not provide the full derivation and just sum up the main

results depending on the dimension of the system. In d = 2, 3 the system does not show

any critical point at �nite t/U at which the condensation goes to zero, only the limit

t/U → 0 shows a vanishing condensation n0 = 0 since there is no hopping parameter.

That leads to the conclusion that the Bogoliubov approach is unable to predict a QPT

from SF to MI (it only works when n ∼ n0) and a more sophisticated formulation has to

be performed as we will see in following sections. An special case is the one-dimensional

one, where the integration over momenta diverges, which indicates that there are no

true Bose-Einstein condensates in one-dimensional systems. This is formalized in the

Mermin-Wagner-Hohenberg theorem [36, 37, 38], where it is shown that there are no

Bose-Einstein condensates at any temperature in one-dimensional systems and only

at zero temperature in two-dimensional systems. The assumption that there is Bose-

Einstein condensation in these forbidden situations leads to the conclusion that it must

have an in�nite density, which is inconsistent. Note that the non-existence of Bose-

Einstein condensation does not forbid the existence of a SF phase. In fact, super�uidity

does not require the existence of a Bose-Einstein condensate with a totally coherent

phase, it only requires a quasi-condensation [39].

3.2. Mott Insulator phase

Before introducing a theory which can capture the transition from MI to SF we will

inspect some properties of the pure MI phase. In the limit t/U = 0 the Hamiltonian

Eq. (12) can be decomposed as a sum of single sites. Therefore we will study only the

single site problem

h =
U

2
n̂(n̂− 1)− µn̂. (28)

This Hamiltonian is directly diagonal in the basis of eigenstates of the particle number

operator n̂|n〉 = n|n〉, then h|n〉 = εn|n〉 where

εn =
U

2
n(n− 1)− µn. (29)

The ground state |n0〉 of the system can be found minimizing εn with respect to the

particle number n. This leads to the condition on the number of particles{
n0 = 0 if µ ≤ 0

n0 − 1 ≤
[
µ
U

]
≤ n0 if µ ≥ 0,

(30)

where [.] stands for the minimum integer part greater than the argument. This shows

that the number of bosons per site is a step function of the chemical potential, denoting

the incompressible nature of the MI phase.
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3.3. Mean-�eld approach

In previous sections we have studied speci�c properties of the Bose-Hubbard model (12)

in two limiting cases t/U → ∞, 0. However, this can not explain how the transition

between these two phases takes place. Therefore, we have to develop a method to solve

the Hamiltonian for any value of t/U . The most straightforward technique is the so-

called mean-�eld approach. The basic idea is to replace the many-body interactions

with an e�ective mean-�eld which reduces the problem to a single-particle. This can

be achieved by expanding operators in terms of �uctuations around their expectations

values (similar to the Bogoliubov approach). In the Bose-Hubbard model (12) we can

expand bosonic operators

b̂†i = ψ∗ + δb̂†i ,

b̂i = ψ + δb̂i,
(31)

where ψ∗ and ψ represent the expectation value of the bosonic operators b̂†i and b̂i,

respectively and δb̂†i , δb̂i represent quantum �uctuations over these expectation values.

Note that we have omitted a lattice position index for the mean values since we are

assuming an homogeneous e�ective �eld for the whole lattice. Now we can rewrite the

tunneling term of the Hamiltonian (12)

b̂†i b̂j =
(
ψ∗ + δb̂†i

)(
ψ + δb̂j

)
≈ |ψ|2 + ψ∗

(
b̂j − ψ

)
+ ψ

(
b̂†i − ψ∗

)
= ψb̂†i + ψ∗b̂j − |ψ|2,

(32)

where we have omitted second-order �uctuation terms. In this way, we can rewrite our

Hamiltonian in the grand-canonical ensemble as a mean-�eld one

HMF =
∑
i

(
U

2
n̂i (n̂i − 1)− µn̂i − 2tz

(
ψ∗b̂i + ψb̂†i

)
− 2tz|ψ|2

)
=
∑
i

hi, (33)

where z is the number of nearest-neighbours and µ is the chemical potential. Note that

we have decoupled the tunneling term between nearest-neighbours, then the problem

has been reduced to a single-site one and we only have to solve the single-particle

Hamiltonian hi, this technique is often called site-decoupling mean-�eld.

Notice that the original Hamiltonian (12) was invariant under a global U(1) phase

transformation b̂i → b̂ie
iφ which leads to the particle number conservation. But the

mean-�eld Hamiltonian (33) breaks this symmetry as long as ψ 6= 0. This is a

reminiscence that the Bose-Hubbard has two di�erent phases: one respecting the U(1)

symmetry with |ψ| = 0 (MI) and another one breaking U(1) with |ψ| 6= 0. Therefore

|ψ| can be seen as an order parameter characterizing the phase transition.

Following Landau theory [40] one can write the ground state energy in a general

form in powers of the order parameter |ψ|

E = a0 + a2|ψ|2 + a4|ψ|4 +O(|ψ|6). (34)

The MI phase will be stable as long as a2 ≥ 0, since the minimization of the energy

leads to ψ = 0 and there is a unique ground state. For a2 < 0 the previous mentioned
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ground state becomes unstable and the ground state becomes in�nitely degenerated with

a non-vanishing ψ 6= 0. The symmetry of the system is spontaneously broken selecting

a particular phase value and we will be in the SF phase. Then, the critical line can be

obtained through the condition a2 = 0.

In order to explicitly obtain the coe�cients in Eq. (34) we perform a perturbation

theory writing h = h0 + h1 where h1 ∝ t� U

h0 =
U

2
n̂ (n̂− 1)− µn̂,

h1 = −2tz
(
ψ∗b̂+ ψb̂†

)
+ 2tz|ψ|2.

(35)

The unperturbed ground state energy is easily obtained E(0)(n) = U
2
n (n− 1) − µn

which is just the energy of the pure MI, Eq. (29). Now, the �rst-order in perturbation

theory is zero because the expectation value of h1 over the MI ground state vanishes.

The second order is given by

E(2) = 2tz|ψ|2 +
∑
n6=n0

|〈n0|h1|n〉|2

E(0)(n0)− E(0)(n)
, (36)

where |n0〉 (|n〉) represents the ground state (an excited state) with well-de�ned number

of particles n0 (|n〉). The matrix elements are given by

〈n0|h1|n0 + 1〉 = −2tzψ∗
√
n0 + 1,

〈n0|h1|n0 − 1〉 = −2tzψ
√
n0,

(37)

and we obtain the second order correction to the ground state energy

E(2) = 2tz|ψ|2 + (2tz)2 |ψ|2
(

n0 + 1

µ− Un0

− n0

µ− U (n0 − 1)

)
. (38)

Once obtained the explicit form of Eq. (34), the condition at which a2 = 0 reads

1

2zt
=

n0

µ− U (n0 − 1)
− n0 + 1

µ− Un0

, (39)

and two branches can be obtained representing particle and hole excitations

µ± = −zt±
√

(zt)2 − 2zt (n0 + 1/2) + U2/4. (40)

In Fig 2 we represent the phase diagram obtained through the critical lines Eq. (40).

It exhibits di�erent Mott lobes with �xed number density n0 = 1, 2, 3, ... and the tip is

characterized by the condition µ+ = µ− which leads to

ztc
U

= 2n0 + 1− 2
√
n0(n0 + 1). (41)

This gives an approximate value for the tip of the �rst lobe ztc/U ≈ 0.17. In general,

the tip of the lobes is an special type of point, let's see why. Employing the Landau
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theory, Eq. (34), at fourth order, the minimization of the energy for the SF phase leads

to

E = a0 −
a22
2a4

. (42)

The boson density n̄ = −∂E/∂µ is given by

n̄SF = −∂a0
∂µ

+
a2
2a4

∂a2
∂µ
− a22

2a24

∂a4
∂µ

. (43)

For the MI phase (ψ = 0) following a similar procedure we obtain n̄MI = −∂a0/∂µ then,

at the SF phase the boson density can be expressed as

n̄SF = n̄MI +
a2
2a4

∂a2
∂µ
− a22

2a24

∂a4
∂µ

, (44)

which leads to the result that the phase transition from MI to SF leads to a change on

the boson density. This is true except when

∂a2
∂µ
− a2
a4

∂a4
∂µ

= 0, (45)

which is ful�lled at the tip of the lobes ∂a2/∂µ = 0. Then this is the point where

the transition from MI to SF is accompanied by a constant boson density. From these

expressions is easy to verify that the MI corresponds to an incompressible phase since

∂n̂MI/∂µ = 0.

In this section we have seen that the site-decoupling mean-�eld approach can give

insights about the phase diagram of the Bose-Hubbard model, shown in Fig. 2. As long

as the dimension of our system is large, the mean-�eld approach will be better, being an

exact approach for an in�nite dimensional system. Then for one-dimensional or quasi

one-dimensional systems where quantum �uctuations are very suppressed in transverse

directions we do not expect that the mean-�eld approach will be a reliable one.

3.4. A DMRG study

As we have anticipated the physics of one-dimensional quantum systems can be

really di�erent from the multidimensional ones. A very e�cient method to deal

with the peculiarities of the one-dimensional system is the so-called Density Matrix

Renormalization Group (DMRG). The basic idea of the DMRG (and any other numerical

renormalization technique [41]) is that in order to describe the physics of some many-

body system we do not need to know the full Hilbert space, instead we can remove some

degrees of freedom from our system and truncate the full Hilbert space. Indeed, starting

from a well-known microscopic Hamiltonian the size of the system is increased and new

degrees of freedom are added up while others are integrated out, thus modifying the

real Hamiltonian to an e�ective and simpler one which can capture the physics of the

system.
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Figure 2. Mean-�eld phase diagram of the Bose-Hubbard model Eq. (12) in the plane

µ/U − zt/U .

From this basic idea many di�erent methods have been proposed, but in this work

we will focus on the traditional approach introduced by White [42]. The main idea is to

perform a truncation of the full Hilbert space retaining a �nite number of states which

maximally contribute to the reduced density matrix. A fully detailed review presenting

the method can be found in [43], also see [44] for a more pedagogical introduction.

Despite the fact that DMRG was created as a numerical renormalization group

nowadays it has been reinterpreted as a variational method in the subspace of matrix

product states (MPS) [45]. Indeed, the ground state and elementary excitations of a

system can be expressed in the thermodynamic limit as a proper matrix product state

ansatz which can be updated through a variational method. Quantum information

theory has provided insights about the e�ciency of DMRG, connecting it directly with

the entanglement of the system [46, 22, 47]. From this, it has been realized that one-

dimensional systems, critical or not, can be e�ciently simulated with DMRG being this

one the most powerful methods to deal with these systems. From this discovery, the

introduction of tensor networks has opened a range of possibilities for extensions of the

DMRG, allowing one to simulate the real time evolution of systems [48] and simulate

multi-dimensional systems, despite this is still an open problem since they are subjected

to an area law [49, 50].

From the DMRG perspective the Bose-Hubbard model presented in Eq. (12) can be

e�ciently simulated in the one-dimensional context and exact results can be obtained

and compared with our analytical solutions. Our study will be performed using the
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characteristic U(1) symmetry that presents this system, leading to the conservation of

number of bosons. This will not allow us to obtain the full phase diagram in the plane

µ/U − t/U , since we are working in the canonical ensemble, but the exact tip point of

MI lobes where the transition from MI to SF is produced at constant boson density, as

we have seen in previous sections. We will work at commensurate density ρ = N/L = 1

then we are examining the phase transition from MI to SF in the �rst Mott lobe.

As we have seen this transition corresponds to go from an incompressible to a

compressible phase, thus, it can be identi�ed by measuring the energy cost of adding a

particle or a hole

µ+
c = E0(N = L+ 1)− E0(N = L),

µ−c = E0(N = L)− E0(N = L− 1),
(46)

where E0(N = L) is the ground state energy with �xed number of bosons N = L. This

de�nes a particle-hole excitation gap, namely ∆c = µ+
c − µ−c , which characterizes the

incompressible MI phase by ∆c 6= 0 and the compressible SF phase by ∆c = 0. At

constant density in d dimensions the MI-SF transition is on the (d+1) XY universality

class [9]. In a one-dimensional system this leads to a Berezinskii-Kosterlitz-Thouless

(BKT) type transition for which the energy gap closes asymptotically according to [9]

∆ ∼ e
− C
|
√
tc−t| , (47)

where C is some non-universal constant and tc is the critical point at which the transition

is produced.

The DMRG requires a truncation on the number of states which are kept (de�ned

as m) based on the eigenvalues of the reduced density matrix [42]. The error introduced

by the DMRG method is directly related to the weights of the discarded eigenvalues in

the truncation process. In our situation we have observed that this error depends on the

phase in which the system is found. This is directly related to the entanglement of the

system. The SF phase is a gapless critical one characterized by an in�nite correlation

length, for �nite systems this correlation length is of the order of the system size and

one needs a huge number of m eigenvalues to describe the system which increases with

the system size. On the other hand the MI has a �nite correlation length and there

is no dependence on the system size, being tractable with DMRG with a few number

of states kept. In our simulations, we have taken m = 100 states and all the obtained

results are giving with an error lower than 10−8. Another truncation which has to be

performed in a bosonic system is to put a cuttof on the maximum number of bosons per

site. This cuttof has to be taken such that the �nite number of bosons per site does not

a�ect the results. A convergence study has been performed, obtaining that allowing for

a maximum of �ve bosons per site is enough to obtain a convergence of the same order

than the one introduced by the truncation error in DMRG.

Using DMRG (with open boundary conditions) we obtain the particle and hole

excitations Eq. (46) for �nite systems. In Fig. 3 we show the scaling for the energy
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Figure 3. Chemical potential as a function of the system's size. On the left (right)

we represent a case in the Mott insulator phase t/U = 0.1 (near the critical point

t/U = 0.3). The upper set of points corresponds to the energy required to add a

particle to the system µ+
c and the lower one to the energy of adding a hole µ+

c . Dashed

lines are linear �ts to the numerical results.

of the particle and hole excitations for two di�erent values of the ratio t/U . We have

extracted a leading scaling as 1/L for the two type of excitations. Deep inside the MI

phase the scaling is very weak and the properties of the system do not depend so much

on the system size, just opposed to the SF phase. From this scaling we can obtain

the energy gap Eq. (46) in the thermodynamic limit as is depicted in Fig. 4. We can

obtain the critical point at which the MI-SF is produced characterizing the closure of

the gap Eq. (46) which leads to the value tc = 0.30 ± 0.01. This value is compatible

with the ones obtained through Monte Carlo studies [51], exact diagonalization [52] and

other DMRG studies [53, 54, 55, 56]. We have to emphasize that these values are very

di�erent from the one predicted by the mean-�eld calculation in previous sections. As

we have pointed out we did not expect that the mean-�eld approach would capture the

physics of the one-dimensional system.

Among di�erent measures that have been de�ned in order to measure the amount

of entanglement in a system one of the most useful ones is the von Neumann entropy.

Given a system which can be decomposed into two subsystems, namely A and B,

the total Hilbert space can be de�ned as the product H = HA ⊗ HB and any state

can also be decomposed as |ψ〉 =
∑

i αi|φAi 〉 ⊗ |φBi 〉 which is usually called a Schmidt

decomposition. The coe�cients αi are positive de�ned and are called Schmidt values

and if |ψ〉 is properly normalized they satisfy that
∑

i α
2
i = 1. The states {|φAi 〉} ({|φBi 〉})

are orthonormal sets of HA (HB). One can also de�ne the reduced density matrix of

the subsystem A as ρA = TrBρ, where TrB means to tracing out the subsystem B and

ρ is the density matrix of the full state ρ = |ψ〉〈ψ|. Using the Schmidt decomposition

one can write

ρA =
∑
φBi

〈φBi |ψ〉〈ψ|φBi 〉 =
∑
i

|αi|2|φAi 〉〈φAi |. (48)
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Figure 4. Particle-hole excitation gap ∆c as a function of the ratio t/U . The data

is presented in the thermodynamic limit extrapolated using linear �ts as the ones

presented in Fig. 3.

The von Neumann entropy associated with the Schmidt values is de�ned as a Shannon

entropy

SV N = −
∑
i

α2
i logα2

i , (49)

and it is a direct measure of the entanglement between the two subsystems A and B.

If the total state can be written as a product state |ψ〉 = |φA〉 ⊗ |φB〉 then the von

Neumann entropy is null SV N = 0, since there is only one Schmidt value with α = 1

and there is no entanglement in the system. On the other hand fully entangled systems

have m equal Schmidt values α = 1/
√
m, being m = min (dim(HA,HB)), and the von

Neumann entropy has a value SV N = logm.

The von Neumann entropy Eq. (49) has been used in many analysis of di�erent

physical situations. Therefore, it turns out to be a useful magnitude to characterize

a system. In a critical system characterized by a correlation length ξ → ∞, the low-

lying spectrum (long-distance physics) can be explained from a 1+1 Quantum Field

Theory (QFT) perspective, speci�cally from a massless one, a Conformal Field Theory

(CFT) [57]. In this situation the von Neumann entropy for a system with total size L
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Figure 5. von Neumann entropy SL(l) at �xed total size L = 128 as a function of

the subsystem size l. On the left we show case deep inside the Mott insulator regime

t/U = 0.15 and on the right in the super�uid one t/U = 0.4. The continuous orange

line on the right panel represents the CFT analytical result, Eq. (50), with central

charge c = 0.97.

with open boundaries, divided in some subsystem A with size l reads as [58, 59]

SL(l) =
c

6
log

(
L

π
sin

πl

L

)
+ log g + c

′

1, (50)

where c is the central charge characterizing the underlying CFT, log g is a boundary

entropy contribution [60] and c
′
1 is some non-universal constant. On the other hand,

for massive 1+1 QFT (with an energy gap) the von Neumann entropy will saturate

due to the �nite correlation length SL(l) ∼ log ξ [58]. Additional contributions to

Eq. (50) which go beyond the CFT universality have been found. These are Friedel-like

oscillations [61, 62] due to the open boundary condition, which decay away from the

boundary.

As we have seen the SF phase is characterized by being a critical one, in fact, the

low energy physics in the one-dimensional context can be described by the Luttinger

liquid theory [63] which is a CFT with central charge c = 1. On the other hand, the MI

phase has a �nite correlation length and we expect a saturation of the von Neumann

entropy at the point l � ξ. In Fig. 5 we show the von Neumann entropy SL(l) for a

system with L = 128 for two di�erent values of the ratio t/U , one corresponding to a

SF case and other to the MI one. The von Neumann entropy is obtained at �xed total

size L and varying the size l of the subsystem A. In the SF case our results are very

well described by Eq. (50), oscillation terms are expected at the boundaries, but we can

safely ignore them and obtain a value for the central charge c = 0.97 which is in very

good agreement with the analytical result. On the other hand, for the MI phase the von

Neumann entropy rapidly saturates for increasing values of the subsystem length l, this

remarks the gapped nature of the MI phase associated with a �nite correlation length.

Knowing the behavior of the entanglement in the two phases, now we can try to

determine the critical point using just the von Neumann entropy. In order to do that
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Figure 6. Dashed lines represent the magnitude ∆S = SL(L/2) − SL(L/4) as a

function of the ratio t/U for di�erent system's sizes L. The continuous line gives the

CFT prediction ∆S = c log(2)/6 which is expected to be followed at the super�uid

regime with central charge c = 1. Deviations from the CFT prediction are expected

at small systems due to the open boundary conditions.

we investigate the scaling of the entropy at a subsystem size l = L/2 and varying the

total size L→ 2L [64]

∆S = SL(L/2)− SL(L/4). (51)

We expect that the SF phase follows the CFT behavior, ∆S = (c/6) log 2 following

Eq. (50). For the MI phase we have seen that the entropy saturates due to the �nite

correlation length, then we expect that ∆S = 0 for L� ξ. In Fig. 6 we represent ∆S as a

function of the ratio t/U for di�erent system sizes. For increasing values of t/U di�erent

curves corresponding to di�erent system sizes converge to the CFT prediction, small

deviations from that are due to �nite size e�ects. On the other hand, for lower values

of t/U the curves tend to zero as the system size L is increased, revealing the gapped

nature of the MI. One should expect a step function-like behavior in the thermodynamic

limit, where ∆S = 0 as long as we are in the MI regime and ∆S = (c/6) log 2 in the

SF one. We can see that di�erent curves intersect the CFT result in the range (close

to t/U = 0.31) where we have predicted the MI-SF transition using the energy gap

tc = 0.30± 0.01, revealing an agreement between the two procedures: the one analyzing

the energy gap and the one resulting from entanglement properties.
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4. Two-component Bose-Hubbard model

A simple multicomponent bosonic system can be realized using two di�erent hyper�ne

states of the same element [65]. These systems have been loaded into optical

lattices [66, 67, 68] and it has been shown that are accurately described by a Bose-

Hubbard Hamiltonian, which not only takes into account the interplay between kinetic

energy and interactions for each species but it also includes a local coupling between

the two species. In these systems we have extra degrees of freedom with respect to the

single-component one, so a richer phase diagram is expected [69, 70, 71]. Speci�cally,

among the MI and SF phase in the two-component system a phase separated one has

been found [72, 73] and the e�ect of an extra linear coupling term between the two

components has been studied [74, 75]. These phenomena have been experimentally

observed in [76] using two hyper�ne states of Rb. Understanding the entanglement in

these multicomponent systems is still a challenge. Recent studies have considered the

entanglement between two components for a largely imbalanced case [77, 78].

The extended Bose-Hubbard model has two di�erent types of bosons, in a 1D optical

lattice can be written in a second quantized form as,

H =−
∑
<i,j>

(
tAb̂
†
iAb̂jA + tB b̂

†
iB b̂jB + h.c.

)
+

+
1

2

∑
i

(UAn̂iA (n̂iA − 1) + UBn̂iB (n̂iB − 1)) +

+ UAB
∑
i

n̂iAn̂iB,

(52)

where b̂iσ (b̂†iσ) are the annihilation (creation) bosonic operators at site i for species

σ = A,B, respectively, and n̂iσ are their respective number operators. The �rst line

represents the tight-binding Hamiltonian with hopping parameters tA and tB for each

species and < i, j > represents a sum over nearest-neighbors. The second line represents

intracomponent on-site interactions with strength UA and UB. The last line represents

the local coupling between the two components. For the rest of the work we consider

tA = tB = t > 0 and UA = UB = U > 0 and we will set the energy scale to t = 1.

In the following section we perform a study in the strong-coupling regime U � t

varying the intercomponent interaction UAB in the range UAB ∈ [0, U ]. We characterize

the entanglement between two subblocks of the total system and we relate the

entanglement properties with the physics of the system.

4.1. Entanglement spectrum in the two-component Bose-Hubbard model

As we have seen, entanglement properties like the von Neumann entropy allow to

characterize di�erent phases of the system. But this is a single number that comes

from an entire spectrum provided by the reduced density-matrix, and one should expect

to have more information encoded in this spectrum. This was �rst proposed by Li and
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Haldane in [79] where they de�ned the entanglement spectrum (ES) ξi = − log λi, which

is the spectrum coming from the so-called entanglement Hamiltonian HE ≡ − log ρA,

where ρA is the reduced density matrix associated to the subsystem A Eq. (48). Despite

the fact that the ES only contains information of the degrees of freedom of the subsystem

A [64, 80], there is a conjecture speculating that there is a correspondence between the

ES and the energy spectrum of the real Hamiltonian [81, 82]. Recent investigations have

provided further insights into this direction showing the boundary-like character of the

ES for gapped systems [83] and the bulk-nature at critical points and the correspondence

with a CFT spectrum [84].

The two-component Bose-Hubbard model in the strong-coupling regime (U � t,

U > UAB) presents a MI as the ground state with total �lling ν = νA+νB (we concentrate

on the case νA = νB = 1). This is a gapped phase and we expect that the boundary-

linked perturbation theory presented in [83] will be reliable. Within this theory the

ES is characterized by a low-lying value (the dominant one) which represents the MI

state. Excited states in the ES are given by excitations over the MI state which can

be obtained through ordinary perturbation theory on the wavefunction considering the

hopping Hamiltonian as a perturbation. First excited states in the ES are associated

with excitations over the boundary separating the two subsystems A and B. Higher

excited states in the ES are related with higher orders in perturbation theory associated

with processes further away from the boundary (bulk processes). This re�ects the

boundary nature of the ES because low-lying states correspond with excitations close

to the boundary.

Analytical expressions for the lowest eigenvalues of the ES are easily obtained, here

we present the results up to second-order perturbation theory (we set an energy scale

t = 1)

ξ1 = 2 logU − log 2,

ξ2 = 2 log
(
U2 ± UUAB

)
− log 4.

(53)

It is interesting to note that the �rst excited value is the same than the one given in the

one-component Bose-Hubbard [83]. This is directly related (in this perturbation theory)

with the fact that the energy of the �rst excitation does not depend on UAB. Then, the

associated ES value will remain constant if U does not vary. This �rst excited state has

a degeneracy equal to 4, corresponding to the fact that an A boson can jump over the

boundary to the left or to the right and the same for a B boson.

Since our Hamiltonian has a U(1)×U(1) symmetry (corresponding to the number

conservation for each type of bosons) we can use the number of bosons A and B

to characterize our ES, speci�cally since we are studying excitations over the MI we

introduce the quantum numbers δNA = NA−L/2 and δNB = NB−L/2 which represent

the excess (δNi > 0) or absence (δNi < 0) of bosons i = A,B with respect to the MI

with total �lling νA = νB = 1, on the left subsystem. For example, the four-degenerated

�rst excited states are characterized by δNA = ±1; δNB = 0 and δNA = 0; δNB = ±1.

Coming back to the second lowest eigenvalues in (53) we show the corresponding boson
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Figure 7. Con�gurations corresponding to the values labeled i and ii of the

entanglement spectrum Fig. 8.

con�gurations in Fig. 7. One can see that these are of two types: the ones with

δNA = δNB which favor the movement of two di�erent bosons over the boundary in

the same direction or the ones with δNA = −δNB which favor the hopping of two

di�erent bosons over the boundary in opposite directions. The �rst ones are associated

with the + solution and the second ones with the − one in Eq.(53). Con�gurations

with δNA = −δNB are very special since they separate the two components along the

boundary, and this is a reminiscent mechanism of the phase separation predicted at

UAB = U . In fact, from our analytical results Eq. (53) we predict that the ES value

associated with these con�gurations becomes of the same order than the MI one ξ0 ≈ 0

for UAB = U2−2
U
≈ U in the strong coupling regime U � t = 1. This is associated

with a closure of the Schmidt gap [85], namely the two largest Schmidt values become

degenerated. Therefore, we have shown a direct connection between the ES and the

phase separation of the two-component system.

In order to verify our analytical expressions (53) we present a DMRG study of the

two-component Bose-Hubbard model. We performed direct numerical simulations using

m = 150 states of the reduced density matrix, leading to discarded weights lower than

10−8 and we allowed for a maximum occupancy of 4 bosons of each type in every site.

First of all, we present a numerically obtained ES in Fig. 8 for null intercomponent

interaction, UAB = 0, using the good quantum numbers δNA and δNB. We can see that

the low-lying spectrum looks as predicted by the perturbation theory: an almost zero

value ξ ≈ 0 corresponding to the MI, 4 degenerated values given by ξ1 in Eq. (53) and

associated with �rst order perturbation theory in the hopping; and �nally the second

lower values are fully 4 degenerated at UAB = 0 and they are associated with second

order perturbation theory which is totally absent in the single-component case [83].

In Fig. 9 we present the ES but for a non-zero value of the intercomponent
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Figure 8. Entanglement spectrum for the Bose-Bose mixture with intracomponent

interaction UA = UB = 50, hopping term tA = tB = 1 and intercomponent interaction

UAB = 0. δNA and δNB represents the excess (δN > 0) or absence (δN < 0) of δN

particles in the left hand partition of the system. The �rst 'excited' levels correspond

to the typical con�gurations for a single Bose-Hubbard model, where a particle of

one species jumped across the boundary. The second levels i and ii correspond to

con�gurations where a particle of each species jumped across the boundary (these

con�gurations are not present in the single case). In Fig 7 we represent these

con�gurations. They are degenerated since UAB = 0 and particles from di�erent

species are not interacting.

interaction UAB = 5. As predicted, the degeneracy in the �rst levels remains unchanged

but in the second levels it is broken in pairs. Speci�cally, con�gurations with δNA =

−δNB = 1 are favored against δNA = δNB = 1. We expect that this mechanism will be

present in the higher part of the spectrum despite we are not presenting here explicit

calculations in perturbation theory for higher values than the second one. But we can

appreciate in Fig. 9 how multiple states break their degeneracy for non-zero values

of UAB, showing that some con�gurations are favored against other ones. Then, the

interpretation for this two-component system is not as simple as for the one-component

in the strong coupling limit. Despite the fact that we are in a regime where perturbation

theory is reliable, the spacing between di�erent levels corresponding to di�erent orders

in perturbation theory is not identical for all levels due to the interaction between the

two components. This creates a richer structure in the ES, for example the second

order in perturbation theory (decreases with UAB) at some point will cross the �rst one

(constant in UAB).

This richer structure of the ES has to be explored at �xed U varying the

intercomponent interaction UAB. This is presented in Fig. 10 where we show this

dependence of the ES comparing numerical results obtained through DMRG with our

analytical results Eq. (53). First of all we observe that our analytical predictions are in
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Figure 9. Entanglement spectrum for the Bose-Bose mixtures with intracomponent

interaction UA = UB = 50, hopping term tA = tB = 1 and intercomponent interaction

UAB = 5. Intercomponent interactions break the degeneration in the second level.

Now states with δNA = +1, δNB = −1 and δNA = −1, δNB = +1 are favored against

δNA = +1, δNB = +1 and δNA = −1, δNB = −1.

total agreement with the numerical results in all the range UAB < U and U � t. In fact,

we expect that the perturbation theory will be reliable as long as the intercomponent

interaction is lower than the critical point predicted from this one UAB <
U2−2
U

= 49.96

for U = 50. We observe how multiple degenerated states at UAB = 0 are split when one

turns on the intercomponent interaction. If this interaction is increased, di�erent orders

in perturbation theory decrease, speci�cally there is a crossing between the second and

�rst ones at UAB ≈ 49. As one approaches the critical point UAB = U , arbitrary higher

orders in perturbation theory become comparable to the MI state. This point which

marks the transition to phase separation is an special one and it has to be studied

independently.

Once studied the ES in the whole region U � t and 0 ≤ UAB < U showing the non-

trivial perturbative interpretation of the ES, now we move to the critical point UAB = U .

This is an special point because the symmetry of the interacting part of the Hamiltonian

(without hopping) Eq. (52) U(1)×U(1) is enlarged to U(1)×SU(2). This is re�ected in

the fact that any state with �xed number of total particles N is fully degenerated in the

thermodynamic limit with any combination NA +NB = N being NA = N −NB. Then

there is a submanifold where the ground state in the thermodynamic limit is in�nitely

degenerated, and it is constructed under the constrain of N constant. The important

point is that the DMRG is constructed implementing the symmetry U(1)×U(1) and we

�xed the number of particles for each species NA and NB. The ground state generated

by our algorithm will explicitly break the symmetry of the Hamiltonian at the critical

point (this is also expected in real experiments) selecting one particular direction of
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Figure 10. Entanglement spectrum ξ = − log λ at �xed total size L = 64 as a

function of the intercomponent interaction UAB for �xed value of the intracomponent

one U = 50. Continuous red lines represent analytical results Eqs. (53) obtained

through �rst and second order perturbation theory.

the fully degenerated subspace, speci�cally selecting the NA = NB = N/2 one. In �nite

systems the broken symmetry is partially restored and the low-energy spectrum acquires

a particular form, often called an Anderson tower or a Tower of states (TOS). The full

degeneracy is broken in a �nite system and in the energy spectrum appears a TOS

which becomes fully degenerated as one approaches the thermodynamic limit. This one

is often separated from a continuous high-energy part by a gap which remains �nite in

the thermodynamic limit. The observation of this TOS structure has been used (TOS

spectroscopy) to detect symmetry broken phases in �nite systems [86, 87, 88, 89].

We present the ES for the two-component Bose-Hubbard Eq. (52) at the critical

point U = UAB in Fig. 11 using linear combinations of the two quantum numbers δNA

and δNB. We have observed that there is a sudden change in the structure of the ES

as long as one approaches the critical point U = UAB. We can observe that there is a

correspondence between the energy TOS structure and this one. In terms of the total

number of particles δNA + δNB the entanglement spectrum re�ects a MI behavior, in

the sense that states at di�erent number of total particles are separated by a gap. The

fact that we have a two-component system is re�ected in the existence of an internal

structure in each sector with �xed δN , the TOS. This structure is given by any possible
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Figure 11. Entanglement spectrum of the two-component Bose-Hubbard model at the

critical point U = UAB = 50 at �xed system size L = 64. We use combinations of the

two quantum numbers δNA and δNB , the sum on the left panel and the subtraction on

the right one. On the right panel we represent (green color) the di�erent gaps de�ned

in text.

combination of δNA and δNB satisfying that the value of their sum is δN . These towers

are separated from a continuum by a gap. For example, the structure satisfying that

δNA+δNB = 0 presents a TOS which in the representation of δNA−δNB gives the lowest

branch which has a parabolic shape. The second ones are given by δNA + δNB = ±1

and in the representation δNA − δNB they give the second parabola which is double

degenerated.

This connection between the TOS structure of the energy spectrum and the ES

one has been recently observed. Speci�cally, in 2D systems with the ground state

spontaneously breaking a symmetry, the lower part of the ES is structured as a TOS

one [90, 91]. In our system, despite we have a one-dimensional system where this theory

does not seem applicable, the fact that we have two di�erent internal states has been

shown to play the role of an extra dimension[92]. The two internal degrees of freedom, A

and B, can be re-interpreted as playing the role of two one-dimensional systems coupled

forming a two-dimensional one, with, in this case, a very small second dimension.

Now we characterize the properties of the entanglement spectrum, see Fig. 11. In

order to do that we de�ne the envelope gap δ = ξ0(δNA− δNB = ±2)− ξ0(δNA− δNB =

0), the gap between two tower of states ∆1 = ξ0(δNA−δNB = ±1)−ξ0(δNA−δNB = 0)

and the gap with the continuum ∆2 = ξ1(δNA − δNB = 0) − ξ0(δNA − δNB = 0),

see Fig. 11. In Fig. 12 we represent the envelope gap δ and we can observe a linear

dependence with 1/L, which is expected for a two-dimensional system [90, 91]. In

general, for a d-dimensional system: δ ∼ L1−d. We observe that the gap is non-

vanishing in the thermodynamic limit, this is not surprising since despite the fact that
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Figure 12. Envelope gap (de�ned in text) at the critical point U = UAB as a function

of the inverse of the size chain L. The results are obtained through DMRG algorithm

(dots). We represent di�erent values of the intracomponent interaction at �xed t = 1.

Linear �ttings are represented by dashed-dotted lines.

we are in a strong-coupling regime the hopping part of the Hamiltonian is non-vanishing

and partially breaks the SU(2) symmetry between the components. Taking the limit

U/t → ∞ the SU(2) symmetry of our Hamiltonian will be restored. In Fig. 13 we

represent the envelope gap obtained in the thermodynamic limit δ(L → ∞) assuming

the linear dependence on 1/L. The linear dependence on 1/U comes from the fact

that in the strong-coupling regime a second hopping provides an energy proportional to

this factor. As we have anticipated, the envelope gap becomes totally vanishing in the

thermodynamic limit and for U/t→∞, where the SSB is fully produced. In this limit

we expect a full degeneracy in each TOS structure.

We have observed that the gaps ∆1 and ∆2 do not present an explicit dependence on

the system size, although we can not exclude a weaker dependence such as a logarithmic

one, but they remain �nite in the thermodynamic limit. On the other hand, there is

a strong dependence of these gaps on the intracomponent interaction U , in Fig. 14

we observe a linear dependence. This re�ects the MI nature of the system in terms

of the quantum number δNA + δNB. Adding a particle into the system gives a non-

vanishing energy proportional to the on-site intracomponent/intercomponent interaction
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Figure 13. Envelope gap in the thermodynamic limit δ(L → ∞) (dots) obtained

through linear extrapolations of Fig. 12. The dependence on the intracomponent

interaction U is linear in 1/U . Dashed-dotted line represents a linear �tting.

U = UAB.

The direct connection presented above between the ES and the true energy
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Figure 14. Gaps ∆1 and ∆2 (de�ned in text) at the critical point U = UAB as a

function of the intracomponent interaction U at �xed total size L = 64. Dashed-dotted

line represents a linear �tting.
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spectrum of the Hamiltonian can be used as a mechanism to detect phase transitions.

This is very useful in the sense that, we only need the groundstate of the system to fully

characterize the phase at which the system is present. Speci�cally, here we have shown

how the entanglement spectrum drastically changes at the critical point U = UAB which

is exactly the point at which the phase separation transition is produced.
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5. Conclusions and Outlook

In this work we have presented a study of the Bose-Hubbard model. First, we have

reviewed the single-component case introducing theoretical techniques to characterize

the two di�erent phases: the Mott insulator and the super�uid phase; and the quantum

phase transition (QPT) between them. We have also implemented a Density Matrix

Renormalization Group (DMRG) algorithm to numerically simulate this model and we

have introduced entanglement properties to characterize the QPT.

We have also studied the two-component Bose-Hubbard model via a DMRG

algorithm. More speci�cally, we have studied the entanglement properties in the

strong-coupling regime. The lower part of the entanglement spectrum has been

analytically obtained performing a linked-perturbation theory in the whole range

except at the critical point where the strength of the intracomponent interactions

equals the intercomponent one. These analytical results have been compared with

DMRG simulations, showing a very good agreement. We have observed a non-

trivial dependence on the entanglement spectrum as a function of the intercomponent

interaction, predicting a closure of the entanglement gap as one approaches the critical

point where phase separation is expected. In fact, the structure of the entanglement

spectrum drastically changes at this point, revealing an Anderson tower of states. This

one has been extensively studied as a function of the intracomponent interactions and

the system size.

To the best of our knowledge this is the �rst time that an Anderson tower of states

is reported in the entanglement spectrum of a multicomponent one-dimensional system.

We have argued how these systems can mimic higher dimensional ones and how this is

re�ected in the entanglement spectrum. In particular, the direct connection between the

entanglement spectrum and the energy spectrum in multicomponent systems could allow

for detecting phases which are explicitly connected with this multicomponent nature,

like we have done with the phase separation one. It would be interesting to extend

our results to the weakly-interacting regime. We know that the phase diagram of the

two-component Bose-Hubbard is very rich, presenting new phases like the super�uid-

counter�ow. Entanglement properties of these regions are still unknown.
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