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Abstract: We perform a method to shortcut the adiabatic evolution in spin-1 Bose gas with an
external magnetic field as the control parameter. An initial state, easy to achieve experimentally,
with almost all bosons in the Zeeman sublevel m = 0, is evolved to a final state very close to a
macroscopic singlet. In order to apply the shortcut protocol, some approximations are made for
obtaining an harmonic oscillator Hamiltonian, where this protocol can be applied. The shortcut
method is compared to a linear variation of the control parameter as a test to prove its improvement
in the construction of the final states.

I. INTRODUCTION

Quantum cold gases have provided an excellent tool
to study quantum properties at a macroscopic level. For
both bosons and fermions, it has been possible to pro-
duce controlled many-body correlated quantum states.
Boson gases at low enough temperatures tend naturally
to form Bose-Einstein condensates (BEC). BEC’s are sys-
tems where a macroscopic amount of atoms occupy the
same single-particle state. There are situations where si-
multaneous macroscopic occupations of different single-
particle states occur, producing a fragmented conden-
sate. This fragmentation can be caused by different rea-
sons such as internal (internal Josephson junctions) or
orbital (Bose gases in optical lattices) degeneracies [1].

A spin-1 Bose gas is a trapped Bose-Einstein conden-
sate in which atoms can populate three hyperfine states
[2]. In the antiferromagnetic case, with repulsive inter-
actions, the macroscopic ground state of the system is a
singlet. Under the action of an external magnetic field,
the ground state is modified. While the linear term of
the magnetic field only shifts the energy, the quadratic
Zeeman (QZ) effect plays a key role in the determina-
tion of the equilibrium state. This interaction between
the atoms and the external field favours an unfragmented
condensed state, with all atoms with the third component
of spin along the field direction equal to zero.

There is a huge experimental interest in preparing the
singlet state, which means total spin S = 0. Unfortu-
nately, it is not easy to achieve. However, a condensate
with its total third component M = 0, but not a singlet,
has been already performed [3]. Therefore, setting this
last state at the beginning of the experimental prepara-
tion and slowly decreasing the magnetic field, one could
adiabatically arrive to the singlet state. However, it is of
a high interest to develop methods for producing macro-
scopic quantum states in small time intervals, by short-
cutting the adiabatic following [4, 5]. The process we
propose can be used for the spin-1 Bose gas allowing the
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fast production of these states.

The shortcut protocols respond to the necessity of pro-
ducing controlled quantum states efficiently in a finite
time. These protocols manage to arrive to a desired final
state, which is usually the ground state of the system, in
a shorter time than if the adiabatic evolution would have
been followed.

The adiabatic following implies very small variations
of a control parameter over time. Therefore, the system
is able to adapt to such slow modifications, so that it
is always in the ground state of the Hamiltonian. The
shortcut protocol, on the other hand, consists on chang-
ing the control parameter in such a way that at the end of
the evolution, the system arrives to the same final state
in a shorter time. The process, then, does not follow
the adiabaticity, so the system is not always in the in-
stantaneous ground state of the Hamiltonian. However,
at the final time, the protocol arrives to the same state
than the obtained with the adiabatic evolution but much
faster, which makes this method very efficient. It is also
possible to control or limit other quantities during the
evolution, such as setting a maximum energy during all
the process, reducing the noise excitations...

In this study, a shortcut protocol already known for an
harmonic oscillator will be adapted for an approximated
Hamiltonian of a spin-1 Bose gas. This method implies
controlling the external magnetic field over time, which
is experimentally easy to perform, being the QZ energy
our control parameter. We will set as our initial state a
ground state very close to a BEC with totalM = 0, which
has been already produced in previous experiments. By
using the shortcut protocol, the QZ energy will be modi-
fied in order to produce a final state similar to the singlet
state, which is the ground state in absence of a magnetic
field. The main purpose is, therefore, to produce this last
state with good precision the fastest as possible.

The paper is organized as follows. In section II, a
theoretical approach to the system is presented. First,
we will explain the mathematical tools necessary to jus-
tify our approximations until reaching the desired har-
monic Hamiltonian, for which already exist shortcut pro-
tocols. An explanation of the shortcut protocol will be
also made. Section III contains a brief comparison be-
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tween the exact and the approximated equations. Then,
results of the shortcut protocol will be compared to a lin-
ear variation of the control parameter. In the end of the
section, some realistic values results are shown. Conclu-
sions will be given in section IV.

II. THEORETICAL MODEL

A. Description of the system

Our system is an ultracold gas of spin-1 bosons in a
trap under the action of an external magnetic field. We
assume a single mode in the trap, that is, all bosons con-
dense in the same spatial orbit irrespective of their inter-
nal state. Therefore, there are only three single-particles
states, | + 1〉, |0〉 and | − 1〉, corresponding to the Zee-
man component m = +1, 0,−1 respectively. The linear
Zeeman effect acts only as a shift in the energy and does
not contribute to determine the equilibrium state. The
main contribution of the magnetic field is the quadratic,
or second order, Zeeman (QM) effect. The system is thus
well described by the Hamiltonian [2]

Ĥ

~
=

US

2N
Ŝ2 − qN̂0 , (1)

where US > 0 is the spin interaction term, N is the
number of atoms, Ŝ2 is the total spin operator, q is the
quadratic Zeeman energy and N̂i is the number operator
of the Zeeman state i (0,±1).

In this Hamiltonian there are only two terms that com-
pete. The first one is caused by the antiferromagnetic
interactions between two atoms, U12 = gSs1 · s2 with si
being the spin of the particle i (gS > 0). The density
and momenta of BEC are so little that there is no need
of including three-particle interaction corrections because
such collisions are highly improbable. On the other hand,
the other piece of the Hamiltonian is due to the interac-
tion of the atoms with the external magnetic field. The
linear effect of the magnetic field shifts the energy of the
Zeeman sublevelsm = ±1 by the same value but opposite
sign. In our case, which will be M = 0 as we will explain
later, it gives a null contribution to the total energy and
can be omitted from the Hamiltonian. The same cannot
be applied to the QZ effect, which has the form q(m2−1)
for each atom. Looking at this expression, one sees that
only the particles with zero third component of spin con-
tribute to the energy, with a negative value of −q. Both
+1 and −1 Zeeman components of the spin give a null
contribution in this expression. Actually, it is the level
with m = 0 that does not change the energy. However,
rewriting the QZ effect in this way allows to write the
many particle expression of this interaction as −qN̂0.

Case US-dominated q-Dominated

Limit US ≫ qN US ≪ qN

Ground Fragmented Unfragmented

State Condensate Condensate

|N,S,M〉 = |N, 0, 0〉 |φ >=
(

a†0

)N

|vac〉

Table 1. The ground states of the different limiting cases.

There are two limit cases for this Hamiltonian (see Ta-
ble 1), when either the inter-atomic interaction is zero
or when there is no magnetic field applied. For the last
situation, which means q = 0, the Hamiltonian is ruled
by the total spin operator. In such case, the system tries
to minimize the total spin by coupling all pairs to spin
zero.

In the two particle case, the ground state is given by

the singlet of two particles,|s〉 ≡
(

(â†0)
2 − 2â†+1â

†
−1

)

|vac〉
where the two atoms are coupled to total spin 0. There-
fore, the many-body ground state is |s〉⊗N/2, for N even.
This state has three macroscopically populated states,
as 〈N+1〉 = 〈N0〉 = 〈N−1〉 = N/3. When simultaneous
macroscopic occupations of single-particle states happen,
the system is called a fragmented condensate.

On the contrary, when the interactions between parti-
cles can be neglected, the Hamiltonian is q dominated.
The QZ effect makes all spins to change into the m = 0
Zeeman component. The total ground state is a BEC
of the form |0〉⊗N . Such a state has 〈N0〉 = N and
〈N+1〉 = 〈N−1〉 = 0, so it is an unfragmented conden-
sate.

Experimentally, this second ground state is the easiest
to prepare. Then, the evolution proposed for this sys-
tem will be from the q-dominated state, where a strong
magnetic field will be required, to a situation where it is
almost zero.

When q vanishes, the eigenstates are known ana-
lytically and are given by the total spin eigenstates
|N,S,M >, where S is the total spin and M the to-
tal projection of S in the z-axis direction. During all the
study, this basis will be used. A general state φM will be
then written as,

|φM 〉 =
N
∑

S=|M|

cS |N,S,M〉 . (2)

It is worth noting that M keeps fix when changing q,
because the Hamiltonian commutes with the total spin
third component operator. This is a good approxima-
tion to the real behaviour due to the experimental con-
ditions of the atomic quantum gases, which are highly
isolated from the environment, and to the microscopic
rotational invariance of spin exchange interaction. For
practical convenience, from now on N will be set to an
even number.

The construction of these states is not trivial and they
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are built as follows [2],

|N,S,M〉 = 1

Z(N,S,M)1/2

(

Ŝ−

)P (

Â†
)Q (

â†+1

)S

|vac〉 ,
(3)

where P = S − M , 2Q = N − S, â†i and âi are the
creation and annihilation operators of the state i respec-

tively, Ŝ− =
√
2(â†−1â0+ â†0â+1) is the lowering total spin

operator and Â† = (â†0)
2−2â†+1â

†
−1 is the singlet creation

operator.
The expression of these states involves three operators.

The first one, â†+1 is the creation operator of a spin 1 par-
ticle with m = +1. This operator acting S times over the
vacuum leads to the many-particle state |S, S, S〉 (we are
omitting constant multiplying factors). This state has S
particles and both the total momentum and its projec-
tion over the z-axis are S. The following acting operators
(Â† and Ŝ−) commute with the total spin momentum op-
erator and therefore do not modify this quantity, which
is already the final one.
The singlet creator operator creates pairs with total

spin 0, so it only changes the number of particles. Then,
repeated actions of this operator add enough pairs so
that the final number of particles is fulfilled, while both
S and M remains unaltered. This leaves the state as
|N,S, S〉. The number of pairs Q added has to follow
the expression 2Q = N − S. For the case where there
is no magnetic field applied, this is the only operator
involved in the expression of the ground state, which is
(

Â†
)Q

|vac〉 = |s〉⊗Q.

Finally, the only quantum number that has to be mod-
ified is M . For that, the lowering momentum operator
S− is used, as it reduces the third component by one
unit while not modifying neither N nor S. The number
of times P that this operator acts over the states has
to fulfil the relation P = S −M . Hence, the final state
|N,S,M〉 is obtained, multiplied by a constant. The nor-
malization factor has been analytically calculated using
commutation relations and the few operators for which
these states are eigenstates. The resulting factor is,

Z(N,S,M) = S!
(N − S)!!(N + S + 1)!!

(2S + 1)!!

(S −M)!(2S)!

(S +M)!
.

(4)
The action of the Hamiltonian in Eq. (1) over these

states is also not easy to compute. Its first term, corre-
sponding to the total spin momentum, is diagonal for the
considered basis, as we are using eigenstates of the total
spin momentum. However, it does not happen the same
for the second piece, related to the quadratic Zeeman

effect. The action of the operator N̂0 = â†0â0 over the
|N,S,M > states requires some calculations, based again
on operators whose action over these states is known and
commutation relations. N̂0 connects states with them-
selves and two by two, where the total spin S differs by
two units. It means that the total Hamiltonian is tridi-
agonal in this basis and, therefore, easier to solve numer-

ically. The action of N̂0 is [2],

qN̂0|N S M〉 =
= q

√

A−(N,S + 2,M)A+(N,S,M)|N S + 2 M〉+
+ q

√

A+(N,S − 2,M)A−(N,S,M)|N S − 2 M〉+
+ q [A−(N,S,M) +A+(N,S,M)] |N S M〉 , (5)

where

A+(N,S,M) =
(S +M + 1)(S −M + 1)(N − S)

(2S + 1)(2S + 3)
,(6)

A−(N,S,M) =
(S +M)(S −M)(N + S + 1)

(2S + 1)(2S − 1)
. (7)

For simplicity, M = 0 will be taken. As |M | ≪ N , this
assumption can be made and the results will not differ
qualitatively. The results can be extrapolated to M 6= 0
situations. From now on, the N index will be omitted,
as it is a fixed quantity. Thus, every general state φ is
written as

|φ〉 =
∑

S

cS |S〉 . (8)

Combining these last results with the Schrödinger
equation Ĥ |φ〉 = E|φ〉 we arrive to the following discrete
eigenvalue equation,

hS,S+2 cS+2 + hS,S−2 cS−2 + hS,S cS = E cS , (9)

with

hS,S+2 = −q
√

(N + S + 3)(N − S)

× (S + 1)(S + 2)

(2S + 3)
√

(2S + 1)(2S + 5)
,

hS,S−2 = −q
√

(N + S + 1)(N − S + 2)

× S(S − 1)

(2S − 1)
√

(2S + 1)(2S − 3)
, (10)

hS,S =
US

2N
S(S + 1)

− q

[

S2(N + S + 1)

(2S − 1)(2S + 1)
+

(S + 1)2(N − S)

(2S + 1)(2S + 3)

]

.

B. Continuum approximation

There are well established shortcut protocols for one-
body harmonic potentials. Therefore, it is convenient to
explore the possibility to write our eigenvalue equation in
such a way that known protocols can be applied. A first
step is to transform Eq. (9) into a continuum approxima-
tion. Afterwards, some more justified simplifications on
the system will be required until arriving to a harmonic
shape of the Hamiltonian which will allow us to perform
the shortcut protocol.
Some considerations can be made to the previous re-

sults. In the studied situation, 1 ≪ S ≪ N . As long as
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FIG. 1: In panel (a) energy discrepancy, |[(Eex −Eap)/Eex]|,
of the ground states between the approximated and exact
Hamiltonian is plotted for different values of q. Panels (b)
and (c) show the ground state for the exact and approxi-
mated Hamiltonian for q = 10−3 and 10 respectively. Note
the difference in the x axis for these two plots. For all these
plots, N = 1000 and US = 10.

S is neither too large, S ∼ N , nor too little S ∼ 1, cS can
be assumed to vary smoothly. Hence, cS can be approxi-
mated to a continuous function c(x), where x ≡ S/N and
it varies from 0 to 1. Then, ǫ = 2/N can be taken as a
small parameter and a Taylor expansion is made,

cS±2 = c(x)± ǫc′(x) +
ǫ2

2
c′′(x) +O(ǫ3) . (11)

This expression can be substituted into Eq. (9) and the
following continuum Shcrödinger equation is obtained

α(x)c′′(x) + β(x)c′(x) + (γ(x)− E) c(x) = 0 , (12)

where

α(x) =
ǫ2

2
(hS,S+2 + hS,S−2) ,

β(x) = ǫ(hS,S+2 − hS,S−2) , (13)

γ(x) = hS,S + hS,S+2 + hS,S−2 .

Taking into account that 1 ≪ S ≪ N , one can set
the order until which we want to approximate. Perform-
ing Taylor expansion over the Eqs. (11), neglecting the
elements of higher order in S/N , 1/S and 1/N , and sub-
stituting the resulting expressions in Eqs. (13) one arrives

to

α(x) ≈ − q

N

(

1− x2

2
+

3

2N

)

,

β(x) ≈ −q

4N2x2

(

1− x2

2
+

3

2N

)

, (14)

γ(x) ≈ N

2
USx

2 − qN

(

1− x2

4
+

1

2N
+

1

8N2x2

)

.

We had a general state |φ〉 =
∑

S cS |s〉, whose coef-
ficients have been approximated to a continuous func-
tion c(x) with x = S/N , as S ≪ N . Performing
Taylor expansions and keeping the resulting expressions
up to first or second order of the quantities 1/S, S/N
and 1/N , we have arrived to a continuous expression of
the Schrödinger equation and, as a consequence, of the
Hamiltonian. It is now convenient to compare these ap-
proximated results with the exact ones.
The solution of the exact Schrödinger equation,

Eq. (9), has two independent families, even and odd,
of solutions as the equation only connects the states in
jumps of spin 2. The two solutions, however, are degen-
erated and have the same shape. For that reason, and
taking into account that an even number of particles have
been assumed, only the even solution will be considered.
The basis |S〉 = |0〉, |2〉...|N〉 will be then used, resulting
in a (N/2 + 1)-dimensional space.
Fig. (1) illustrates the comparison between the approx-

imated and the exact Hamiltonian. The approximation
for the ground state gives a very good energy although
fails to reproduce the shape of the state. The main dis-
crepancy takes place at low values of x, where the consid-
eration 1 ≪ S ≪ N is not fulfilled. For the approximated
case, the value of c(x) at the origin always tends to zero
due to numerical reasons, while it does not happen the
same in the exact solution. This zero value at the origin,
modifies the function so the final resulting state has a
similar shape, with light discrepancies on the maximum.
Nevertheless, as it will be seen later, this does not affect
so much the shorcutting procedure.
Further approximations have to be performed for get-

ting an harmonic-like Hamiltonian. This can be done
just by neglecting more terms in Eqs. (14). The final
expressions are [2]

α(x) ≈ − q

N
,

β(x) ≈ 0 , (15)

γ(x) ≈ N

2
USx

2 − qN

(

1− x2

2

)

.

These approximations may seem too severe, but neither
the energy nor the shape are strongly modified. Also, the
final result will be highly satisfactory and they are needed
for applying the already known shortcut protocols.
The final Schrödinger-like equation is

− q

N
c′′(x) +

N

4
(q + 2US)x

2c(x) = (E +Nq)c(x) . (16)
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C. Shortcut protocol to adiabatic evolution

In this section we will derive the approximate method
to shortcut the adiabatic evolution for our many-body
Hamiltonian (1). The idea is the following, first we con-
sider that the system is initially prepared at time t0 = 0
in the ground state for a certain initial value of the con-
trol parameter, which in our case is q(0) = qi. Then, we
want that at a given time tf the system is exactly in the
ground state of the system for a different value of the
control parameter, q(tf ) = qf . The goal is thus to find
a function q(t) which does the job. If the final time is
sufficiently large a linear ramping of the control param-
eter should work, as the evolution would be essentially
adiabatic. In contrast, if the desired final time is made
shorter, the linear ramping eventually ceases to work as
it produces the excitation of many modes, besides the
ground state, at the final time. This problem has been
solved exactly for the single-particle harmonic oscillator
in Ref. [6]. The protocol obtained there has been adapted
to other problems in which a harmonic approximation of
the original Hamiltonian is justified [4, 5].
In our case, we have checked that the approximate

Schrödinger equation, Eq. (16), reproduces reasonably
the full many-body results. Thus, in this section we will
first build a harmonic approximation to Eq. (16) which
will be valid in a certain range of parameters. Then we
will adapt the protocol of Ref. [6] to our problem.
The evolution of the system will be described by the

time-dependent Schrödinger equation

Ĥ |φ〉 = i~∂t|φ〉 . (17)

The Schrödinger-like equation in Eq. (16) is already
very similar to an harmonic oscillator. The QZ energy
is our control parameter, so it will change over time,
q = q(t). It appears three times in the Hamiltonian.
However, only one of them is relevant. The term on the
right acts only as a shift in the total energy and, although
it changes during the evolution, it does not affect to the
determination of the equilibrium state. Also, the regime
studied is where q ≪ US , so q can be neglected in front
of US . Then, q+2Us ≈ 2US. This may seem a limitation
for the Hamiltonian to be q dominated, but it is not that
case. In the exact Hamiltonian, US is divided by N , so as
long as q ≪ US ≪ qN , the conditions are fulfilled. Even
more, when the system is ruled by the quadratic Zeeman
energy, it means that most of the particles have the third
component of the spin set to zero (see Table 1). Then,

〈N̂0〉 ≈ N , so the conditions become q ≪ US ≪ qN2.
After all these considerations, the final Schrödinger-like
equation is an harmonic oscillator of the form,

−q(t)

N
c′′(x) +

NUS

2
x2c(x) = Ec(x) . (18)

In Ref. [5], the shortcut protocol has been used for the
following Hamiltonian,

Ĥ = −2J(t)η2∂2
z +

NU

4
z2 . (19)

Hence, applying the following change of variables,

q(t) ↔ 2J(t) (20)

1

N
↔ η2 (21)

US ↔ U

2
(22)

the control parameter J(t) can be directly mapped to
q(t). The shortcut protocol will require some modifica-
tions to the Schrödinger-like equation, which finally re-
sults in solving the following Ermakov equation,

2
(ḃ)2

b
− b̈+ 2NUSq(t)b =

k2

η′2
b5 , (23)

where k = NUS and η′ =
√

1/N . b(t) is an arbitrary
function which only has to fulfil the following frictionless
conditions,

bi ≡ b(t0) =

(

2q(t0)

N2US

)1/4

,

bf ≡ b(tf ) =

(

2q(tf )

N2US

)1/4

, (24)

ḃ(t0) = ḃ(tf ) = b̈(t0) = b̈(tf ) = 0 ,

where t0 will always be zero.
There is an infinite set of functions b(t) that can be

used for this purpose as the boundary conditions leave
a lot of freedom. This freedom can be used for control-
ling other quantities, such as the maximum or minimum
value of q(t) during the evolution or limiting the energy
in such a way that the condensate is not heated too much.
A polynomial ansatz for b(t) will be used. Taken from
Ref. [4],

b(t) = bi+10(bf−bi)s
3−15(bf−bi)s

4+6(bf−bi)s
5 , (25)

where s = t/tf .

III. RESULTS

The results presented in the previous sections have pro-
vided us a recipe to modify our control parameter, ruled
by the external magnetic field, for shortcutting the adi-
abatic evolution. In order to see the improvements of
this protocol, it will be constantly compared to a linear
variation of the control parameter, q.
The number of particles used for the simulations has

been N = 1000 and the interaction term US = 10. The
variation of q has been from qi ≡ q(0) = 1, until val-
ues very qf ≡ q(tf ) ≃ 0. Then, the initial state will be
q-dominated (Nq ≫ US), which is experimentally easier
to prepare. The final state, on the other hand, will have
almost no magnetic field applied, so it will be close to
the singlet state that we are trying to produce. We will
compare the shortcut protocol with the linear variation
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FIG. 2: These plots display the evolution of the QZ energy
over time, q(t), following the shortcut protocol. Different final
times and QZ energy are used: (a) qf = 10−3 and tf = 10;
(b) qf = 10−3 and tf = 0.1; (c) qf = 10−5 and tf = 10;
(d) qf = 10−5 and tf = 0.1. For all these plots N = 1000,
US = 10 and qi = 1.

of the QZ energy from qi to qf . Depending on the total
variation of q, ∆q ≡ qf − qi, and the final time, tf , the
shortcut protocol can be better or worse than the linear
ramping. If the final time is too long or the variation in
the QZ energy too little, both methods are almost adi-
abatic and no difference is observed between them. In
the opposite case, for very short time intervals or very
large ∆q, both methods fail to reproduce the desired fi-
nal state. Between these two limits, there is a wide region
where the shortcut can be a better option than the lin-
ear ramping for optimizing the production of the singlet
state.

First, it is convenient to study how is the variation
of q(t) imposed by the shortcut protocol, according to
Eqs. (23)-(25). The final time and QZ energy are the
two variables that will modify the time dependence of q.
In Fig. (2), the shape of q(t) when the shortcut protocol
is applied is shown for different values of qf and tf . Two
different qf and tf have been used to study the influence
of both quantities. In general, if one do not consider
very little qf or very short times, the variation is smooth,
which is suitable for performing experiments. The figure
illustrates that for shorter final times, more deviation
from the linear ramping is obtained. Equally happens for
higher differences between initial and final QZ energies.
If tf or qf are small enough, then q goes through negative
values. However, this situation will not be considered in
our calculations.
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FIG. 3: Here, the overlap between the evolved state and
ground state of the Hamiltonian at each time is plotted, also
called fidelity. The shortcut protocol and the linear ramping
for q(t) are compared for different qf and tf : (a) qf = 10−3

and tf = 1000; (b) qf = 10−3 and tf = 10; (c) qf = 10−5 and
tf = 1000; (d) qf = 10−5 and tf = 10. For all these plots
N = 1000, US = 10 and qi = 1.

A. Shortcut protocol applied to the exact

Hamiltonian

The shortcut protocol does not have to be, in principle,
better than a linear variation for the exact problem, due
to all approximations that have been made. By applying
the variation of the QZ energy imposed by the previous
equations to the exact Hamiltonian we will see wheter it
is a better option than the linear ramping or not and,
therefore, a good method for experimental purposes.

Fig. (3) shows the fidelity during the evolution in four
cases, comparing the linear ramping and the shortcut
protocol applied to the exact Hamiltonian, as written in
Eq. (1). The fidelity here is defined as the overlap be-
tween the instantaneous ground state of the Hamiltonian
and the actual evolved state, 〈φ0|φevolved〉. This quantity
allows us to measure the quality of the final state and the
proximity to the adiabatic condition during the evolution
of the system.

If the variation of q(t) is slow enough, the evolution is
adiabatic. In this situation, the fidelity is always 1, as
the evolved state is at every moment the instantaneous
ground state of the system. However, the relevant feature
is how close to 1 is the final fidelity, which will mean that
the final state is close to the expected one.

Different behaviours are observed for both methods.
The shortcut protocol does not follow the adiabaticity
as much as the linear ramping during the evolution but
reaches a better final state. The fidelity of this final state
depends on both tf and qf . If we stress the conditions by
requiring very small values for tf and qf the performance
of both methods worsens. However, in all four cases con-
sidered the shortcut protocol gives better results than the
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FIG. 4: These plots show the evolution of the state when
modifying q according to the shortcut protocol for different
final times and QZ energies: (a) qf = 10−3 and tf = 1000;
(b) qf = 10−5 and tf = 1000; (c) qf = 10−3 and tf = 10.
The final desired state is also plotted. For all these plots
N = 1000, US = 10 and qi = 1.

linear ramping.
The shortcut protocol gives better results than the lin-

ear ramping when trying to reach states at very small q.
Fidelity one, or close, cannot be achieved for very short
time intervals. However, for larger intervals, our protocol
achieves very good results while the linear ramping still
fails to reproduce the final expected state.
In all cases shown in the figure, the linear ramping is

very close to the adiabatic following during the evolution
until just the end, where it drops dramatically to a final
value. To understand this behaviour, one should notice
that the important rate in the Hamiltonian is q/US, so
variations in orders of magnitude of q plays a key role.
The instantaneous ground state of the Hamiltonian

varies in a similar amount when q changes from 1 to
0.1 than when it changes from 10−4 to 10−5, as the ratio
q/US is modified by the same factor, although the total
difference is much lower in the last situation. However,
when q decreases linearly, the variation 1 → 0.1 lasts
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|c|
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FIG. 5: These plots show the evolution of the state when
modifying q linearly for different final times and QZ energies:
(a) qf = 10−3 and tf = 1000; (b) qf = 10−5 and tf = 1000;
(c) qf = 10−3 and tf = 10. The final desired state is also
plotted. For all these plots N = 1000, US = 10 and qi = 1.

104 times more than the variation 10−4 → 10−5. Hence,
in the last moments of the linear evolution is where the
instantaneous ground state changes more. The evolved
state, however, does not evolve so rapidly in the end,
where the process ceases to be adiabatic. When the QZ
energy approaches to zero in the end of the evolution, q
decreases by several orders of magnitude in very short
times and the system cannot accommodate so rapidly.
As a result, the final state differs substantially from the
expected ground state.
When the time interval is small and the variation of

the QZ energy is not too large, none of the methods re-
produce the final state with fidelity 1, although even here
the shortcut model is better. In this situation, although
the precision is not as good as for large times, it can be
adjusted to have a good enough result (fidelity higher
than 0.9 for example).
When tf is too short and qf is very close to zero, both

methods fail to reproduce the final expected state. As
can be seen if Fig. (3), the shortcut protocol still pro-
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vides better results than the linear ramping, this should
not be taken as a general statement. When the inter-
val of time is very short, the shortcut protocol gives q(t)
with very abrupt variations, even passing through neg-
ative values, which can lead to a final state worse than
the obtained with the linear ramping, although neither
of them with good fidelities. There are some cases where
the fidelity during the evolution can drop to zero. That
usually happens when q changes sign during the time
evolution, which makes the instantaneous ground state
to be almost orthogonal to the real evolved state.

Figs. (4) and (5) display the evolution over time of the
state when the shortcut protocol and the linear ramp-
ing, repectively, have been applied. Three of the cases
on Fig. (3) are shown. The final expected state is also
plotted. The case where the final fidelity was worse has
not been plotted, when qf = 10−5 and tf = 10.

For large evolved times, tf = 1000, the shortcut proto-
col allows the state to achieve a final state very similar to
the expected one for both smaller or larger ∆q. For the
linear case, however, large differences in the QZ energy
lead to bad results, as explained above. Actually the lin-
ear ramping leads to very similar states when qf = 10−3

and qf = 10−5. As during final times q(t) decreases sev-
eral orders of magnitude and the system does not adapt
quick enough, for every fixed time the linear variation has
a limit state until which it can arrive. Setting lower val-
ues of qf than the limit value, the system will reach prac-
tically the same state. On the other hand, the shortcut
protocol contains the information of the expected final
state, so the variation of the state is done earlier in time,
finishing with a good final fidelity, as can be seen in the
figures. If the desired final times are further decreased,
the state is not able to evolve fast enough to reach the
final state.

In the experimental set-up, one do not want to freeze
the dynamics, so it is good to observe what happens right
after q has arrived to its final value. It is preferable that
the quantities remain constant after finishing the short-
cut protocol (or the linear ramping) because the exper-
iment over the state may not be made instantaneously
after the end of the variation, but shortly after.

In Fig. (3) it can be observed that the fidelity remains
constant after the QZ energy has arrived to its final value.
Nevertheless, not all quantities remain constant after tf .
The energy is one of them, as the two parts of the Hamil-
tonian change over time once the protocol has been fin-
ished. The value 〈S2〉(t), which is the average value of
the total spin operator, is a good quantity to understand
this behaviour.

Plotting S2 over time, see Fig. (6), one observes that,
unlike fidelity, it does change after q has arrived to its
final value, for t > tf . After tf , S

2 starts to oscillate
around a value usually larger than the desired one, as can
be seen n Fig. (6b). The amplitude and period of this
oscillations depend on q. Here, the linear ramping leads
to oscillations with larger amplitudes than the shortcut
protocol. However, in Fig. (6a), the oscillations are not
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FIG. 6: Here, the average value of the total spin operator,
〈S2〉 is plotted when q is varied according to the shortcut
protocol and when it is linearly modifying. The comparison is
made for different final times and QZ energies: (a) qf = 10−5

and tf = 1000; (b) qf = 10−3 and tf = 1000; (c) qf = 10−3

and tf = 10. For all these plots N = 1000, US = 10 and
qi = 1.

observed because the amplitude is very little, due to a
smaller value of qf . Fig. (6c) does not show oscillations
as the time is too short to observe them, and only a
variation in S2 for t > tf is seen. What is relevant here, is
the amplitude and over which value occur the oscillations.
In all cases, the shortcut protocol gives a result closer to
the expected value and the oscillations right after tf are
smaller.

The figure of merit, |[(S2 − S2
ex)/S

2
ex]|, called relative

discrepancy, will be used to see how good the final values
of S2 are by comparing the exact ground state value,
S2
ex, and the actual one at t = tf , see Fig. (7). Fig. [7a)

shows the discrepancy depending on the final q for a fixed
tf . When qf is not so close to zero, both methods give
good results. As qf approaches zero, the performance
of the linear ramping deteriorates. In the end, for very
small qf the relative discrepancy increases also for the
shortcut protocol. For that region, S2 ≈ 0, small values
of S2 − S2

ex lead to large relative discrepancies.

When the final q is fixed and the times modified, a
similar behaviour is observed. For short enough times,
both differ substantially (note the difference in the y-
axis between the two plots), although the linear ramping
gives better results as the shortcut protocol leads to very
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FIG. 7: The plot above, (a), displays the discrepancy in S2,
which is defined as |[(S2 − S2

ex)/S
2

ex]|, for different values of
final q, with tf fixed at 1000. In (b), the analogous plot is
done but fixing qf to 10−4 and varying the final time. Note
the difference in the y axis. The values N = 1000, US = 10
and qi = 1 are used for both plots.

abrupt changes of q. There is a region where the short-
cut is clearly better than the linear ramping. If the time
interval is much larger, both methods produce the same
good results as the evolution is adiabatic for both. How-
ever, with the shortcut method the final times can be
reduced by up to three orders of magnitude retaining a
good performance.

B. Realistic values

In this section we will consider experimental values
of N , US , tf and qf taken from Ref.[2]. The experi-
ments have been done between 102 − 106 atoms. Then,
the simulations will be made with N = 1000 . The
interaction term ~US/kB is around 5nK, which means
US = 104.16s−1. The magnetic field and, therefore, q
can be tuned from values much larger than US to zero.
The initial QZ energy has to be lower than US for

the approximations made so qi = 0.1US. Then the initial
state has Nq = 100US, so it is very close to the limit case
where all bosons are in the m = 0 Zeeman sublevel. The
final state, on the other hand, will vary from qf = 10−3Us

to qf = 10−5Us. This last value is very close to the singlet
state, where S = 0.
In Fig. (8), the fidelities are displayed in a map for

different final times and final QZ energies. The shortcut
protocol gives better or equally good results than the
linear ramping in all the explored region. Where it gives
better results is when qf is lower, that means that is
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FIG. 8: In this figure the final fidelities of the evolved states
are plotted for the case where the shortcut protocol (a) has
been followed and when the linear ramping (b) has been used.
The fidelities, that is, the overlap between the final evolved
state and the desired ground state, are plotted for different
final times and QZ energies. The final times and QZ energies
are varied along the x and y axis respectively, while the initial
q is set to qi = 0.1US = 10.416s−1 . For both plots N = 1000
and US = 104.16s−1 .

better when we are closer to the singlet state. A tendency
can be observed and for very small qf , the linear ramping
needs much higher final times than using the shortcut
protocol for obtaining fidelities close to 1. For arriving to
the best considered state, which in our case is qf = 10−5,
following the shortcut protocol it can be done in less than
half minute. Using the linear ramping, however, for a
good enough state more than 100s should be used. If qf
is smaller, the difference between two methods increases
even more.

For smaller variations of q, the shortcut protocol still
gives better results, although the linear ramping can give
good results also. For example, for a difference of only
one order of magnitude in q, that is, from 0.1US to
0.01US, 1s is more than enough for both methods.

In Fig. (9) we plot the relative discrepancy in the total
spin. Comparing the results in Fig. (9) and Fig. (8), we
can see that, as expected, fidelities close to 1 correspond
to small discrepancies. Let us note that a small decrease
in the fidelity, e.g. 0.95, already produce relative discrep-
ancies of the order of 1.
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FIG. 9: In this figure the discrepancies between the final and
the expected value of S2 are shown. The figures display the
discrepancy in S2, which is defined as |[(S2 − S2

ex)/S
2

ex]|, of
the evolved states, for the case of the shortcut protocol (a)
and the linear ramping (b). The final times and QZ energies
are varied along the x and y axis respectively, while the initial
q is set to qi = 0.1US = 10.416s−1. For both plots N = 1000
and US = 104.16s−1 .

IV. CONCLUSIONS

In this master thesis we have presented a fast protocol
for the production of a macroscopic spin singlet state of a
spin 1 Bose gas. The initial state of the system is a taken
to be a BEC where almost all atoms populate the m = 0
Zeeman sublevel. This can be achieved by increasing
the quadratic Zeeman shift between the sublevels thus

favoring the condensation on the m = 0 manifold.

We have constructed a basis of states of well defined
total spin and obtained the exact discrete Schrödinger
equation governing the time evolution of the coefficients
of the state in this basis. To produce as final state the
spin singlet state we have adapted an exact protocol to
shortcut the adiabatic evolution originally developed for
a single-particle harmonic oscillator potential. The con-
trol parameter used has been the quadratic Zeemann
splitting between the levels, which can be tuned exter-
nally in current experimental setups. To obtain the pro-
tocol, i.e. the variation with time of the control parame-
ter, we have first built a continuum approximation of the
exact many-body Schrödinger equation which we have
further approximated by a harmonic oscillator potential.
Afterwards, we have turned into the original many-body
Hamiltonian and have studied the performance of the
protocol to produce the macroscopic singlet state com-
paring it to the result obtained by a linear ramping of
the control parameter. This we have done by solving the
exact many-body time dependent Schrödinger equation
with a time dependent Hamiltonian. The results show
that our proposed method provides in almost all situa-
tions a better final result than the linear ramping.

The improvement is particularly good when the final
desired value of the quadratic Zeemann energy is closer
to zero, which is needed to get a many-body state close
to the spin singlet. Importantly, the time dependence
needed for the control parameter is fairly smooth. This
makes it amenable for real experimental setups and al-
lows a fair amount of freedom which could be employed
to, e.g. reduce the transient energies or ensure that the
control parameter is bound to certain values.
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