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Abstract
It is known that a maximally entangled state, GHZ state, is generated by the one-axis
twisting Hamiltonian. Recently, it has been numerically shown that a Hamiltonian having
neighboring interactions and a field only produces the same dynamics. It is intriguing
because it was believed that all-with-all interactions are required for one-axis twisting.
The purpose of this work is to reveal how such simple Hamiltonians can show the one-
axis twisting and mimic all-with-all interactions. In particular, we apply the many-body
protected manifold technique to the Heisenberg XXX model with a staggered field in
attempt to recover all-with-all interactions. We begin with a thorough review of one-axis
twisting without and with decoherence. Then, we introduce the many-body protected
manifold technique and apply it to the Heisenberg XXZ model, which acquires all-with-all
interactions and can generate one-axis twisting. We apply this technique to the Heisenberg
XXX model.
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1 Introduction
An effective method for studying many-body quantum physics is to trap cold atoms in
an optical lattice. Experimentally, this provides flexibility that allows one to finely tune
parameters such as periodic potential depth or interaction strength between particles -
essentially researchers can tailor the system to their needs. Furthermore, trapped cold
atoms can be represented by canonical Hamiltonians (such as the Bose-Hubbard model)
allowing for relatively straightforward cross-checking between theory and experiment. The
process of trapping the cold atoms begins by creating a lattice-like interference pattern
with two laser beams i.e. a periodic potential. Then introducing the atoms imposes an
AC-Stark interaction between the atoms and the electric field which makes the energy
levels of the atoms dependent on the light intensity. In this way, one can trap the atoms
in the optical lattice Ref.[BZ06, Rey21]. There are many practical applications of cold-
atom lattices, however, for the purpose of this thesis, we focus on sensing and metrological
uses. These are two platforms which not only utilize cold atoms trapped in optical lattices
but they are also primary candidates for using one-axis twisting induced entanglement to
enhance sensitivity Ref.[SHH21]. We briefly introduce inertial sensors and atomic clocks
as two particular examples.

An atomic interferometer is known as the matter-wave counterpart to the optical Mach-
Zehnder interferometer. Both optical and atomic interferometers are structured such that
the incoming wave is split into two paths − one of which receives an additional phase
shift. After a period of time or length, the two waves are then recombined producing an
interference effect which can be measured typically via the difference in populations of
states. More precisely, atomic interferometers obtain a phase shift when the interferometer
accelerates making them ideal candidates for highly sensitive accelerometers, gravimeters,
and gyroscopes Ref.[WPW99].

Atomic clocks currently provide the most precise measurement of any physical quantity,
this of course being time. In particular, Caesium fountain clocks hold the standard in
international time-keeping by maintaining a stability of one part in 1016 Ref.[LBY+15].
These devices function by comparing the ultra-stable frequency of an atomic transition in
the microwave domain with the frequency of a local oscillator. Soon after microwave atomic
clocks were introduced, it was postulated that clocks in the optical domain could produce
an improvement of a factor of 106. At that time, however, it was extremely difficult to
measure the much fast oscillating frequencies in the optical domain Ref.[RGK+14]. This
eventually was solved with the invention of a frequency comb which opened a wide variety
of new atomic clock research including trapping ions in optical lattices.

The sensitivity of both systems mentioned above are fundamentally limited by the shot
noise limit (SNL), that is, how precise one can measure a quantum mechanical observable.
For interferometers, the observable is commonly mapped to a phase shift so the limit
is defined as ∆ϕ = ξ/

√
N where ξ is the squeezing parameter and N represents the

number of particles. Classically, the lowest this limit can be is 1/
√
N . However, by

introducing squeezed states (ξ < 1) one can detect below this limit. For instance, recently
the use of entangled states in atomic clocks achieved a metrological enhancement of 4.4
dB Ref.[PPCS+20]. On the other hand, squeezing has yet to demonstrate improvement
for cold-atom inertial sensors.

Clearly, entanglement can be quite a valuable tool for the future development of cold-
atom devices. The general purpose of this thesis is to study the generation and maintenance
of entangled states in many-body spin-1/2 systems. In particular, we analyse why all-for-
all interactions are produced by evolving nearest neighbour interacting Hamiltonians. The
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remainder of this work is structured as follows. In Section 2, we provide an in-depth re-
view of one-axis twisting. This is the fundamental technique used to generate squeezed
states which we use throughout the paper. From Section 3-5, we closely follow the meth-
ods outlined in Many-body protected entanglement generation in interacting spin systems
Ref.[RJF+08] which provide a framework for developing noise-resistant entangled states
which can be used for optical lattice systems such as the Heisenberg XXZ model. Finally,
in Section 5 we apply these techniques to the Heisenberg XXX model with a staggered
field in an attempt to explain why squeezing occurs as was demonstrated numerically in
Ref.[GUDB21].

2 One-axis twisting
Measurements of quantum observables are inherently limited by the noise of the correlated
quantum fluctuations in a system. For instance, in an optical system the phase and am-
plitude quadratures of the radiation field are conjugate variables in which the preciseness
of their measurement is governed by the Heisenberg uncertainty principle (HUP). From
the HUP, one finds the highest precision possible is obtained when the two conjugate vari-
ables are equal, also known as the standard quantum limit (SQL). To avoid this, one can
introduce a squeezed radiation field making it possible to measure a conjugate variable
below the SQL Ref.[XWK87]. Four-wave mixing is a common technique for generating
a squeezed light source where one injects a weak probe beam and a pump into a 85Rb
vapor cell causing nonlinear interactions and thus the output beams become correlated
Ref.[MBPL08]. Experiments have demonstrated the effectiveness of light-squeezing for
various applications including but not limited to atomic force microscopy, gravitational
wave detection, and spin-noise spectroscopy Ref.[LP18, AAA+13, LLMP19].

One can demonstrate similar noise-reduction techniques in collective spin systems
through non-classical state preparations. In particular, we focus on pseudo spin-1/2 parti-
cles represented by two-level systems or qubits. Initially, we have a system of uncorrelated
particles aligned in one direction where the uncertainty of the spin along an axis orthog-
onal to the mean spin vector equals the sum of each individual elementary spins. In this
case, the SQL is defined as J/2 where J represents the total spin. However, introducing a
nonlinear Hamiltonian produces an infinite range interaction between the particles creating
correlations. The subsequent states are known as spin squeezed states (SSS) where the
variance of one spin component normal to the mean spin vector can be less than the SQL.
The SSS were first proposed by Kitagawa and Ueda in 1991, in which they showed the
derivation and effects of one-axis twisting (OAT) and two-axis countertwisting Ref.[KU93].
Since then these have been studied extensively both in theory and experiments including
but not limited to entanglement detection, spin squeezing in a Bose-Einstein condensate,
and enhancement of optical atomic clocks Ref.[MWSN11].

2.1 Mathematical formalism
In this section, we introduce the necessary background for building a coherent spin state
because allows us to easily demonstrate the spin-squeezing. Furthermore, these states are
built in the coupled basis and it is important to understand the clear differences between
this and the uncoupled basis which we introduce later. For the sake of brevity, we reserve
the Appendix for the more rigorous derivations.

Collective spin operators:
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In an ensemble of N identical spin-1/2 particles, there are 2N orthogonal states. The
directional components of collective spin operators and the total spin operator are defined
respectively

Ĵα = 1
2

N−1∑
i=0

σ̂α
i , (1)

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , (2)

where we use natural units (ℏ = 1), α = {x, y, z}, and the i index denotes the position
of the particle. The σ̂α

i operator represents the canonical Pauli matrices which obey the
commutation relation [σ̂j , σ̂k] = 2iϵjklσ̂l where ϵjkl is the Levi-Civita symbol. The next
operator we define is the creation spin operator because it is used in the following derivation
for the Dicke state

Ĵ+ = 1
2

N−1∑
i=0

σ̂+
i . (3)

The creation operator Eq.(3) is also defined as Ĵ+ = Ĵx + iĴy.

Dicke state:
In order to build the coherent spin state, we need a well-defined state which acts as

an eigenstate simultaneously to the operators Ĵz and Ĵ2. These states are known as Dicke
states and can be constructed by applying the raising operator (J + M) times on the
ground state |J,−J⟩ Ref.[Dic54]. They are defined as

|J,M⟩ = 1
(J −M)!

(
2J

J +M

)−1/2

(Ĵ+)(J+M) |J,−J⟩ , (4)

where J = N/2, N/2 − 1, ..., 0 is the eigenvalue of total spin, and M = −J,−J + 1, ..., J −
1, J is the eigenvalue of Ĵz. Notice this state is defined analogously to a Fock state in
the conventional quantum mechanics formalism. With the angular momentum eigenstate
defined, we provide the eigenvalue equations for the collective spin operators mentioned
above

Ĵz |J,M⟩ = M |J,M⟩ (5)
Ĵ2 |J,M⟩ = J(J + 1) |J,M⟩ . (6)

Coherent spin state:
In quantum optics, coherent states are desirable because they hold several important

properties. First, they are minimum uncertainty states at the classical level - in the case
of radiation fields ∆x∆p = ℏ/2. Even more, coherent states are non-orthogonal, form an
overcomplete basis, and fulfil the closure relation. With these properties, coherent states
serve as an exceptional quantum representation of classical fields such as laser light. In
1972, Arrechi et al. Ref.[ACGT72] illustrated the relation between free atoms and radiation
fields. They showed that it is possible to replicate every property mentioned above but
with a system of free atoms - hence, the atomic coherent state. This state is derived by
applying a rotation operator Rθ,ϕ to the ground state |J,−J⟩ [Appendix A]

|θ, ϕ⟩ =
J∑

M=−J

(
2J

J +M

)1/2 (
cos θ

2

)(J+M) (
sin θ

2

)(J−M)
ei(J+M)ϕ |J,M⟩ , (7)
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where θ and ϕ are the polar and azimuthal angles about the Bloch sphere, respectively.
We recognize two important properties of the atomic coherent state which resemble the
canonical coherent states mentioned above. First, the non-orthogonality of the states which
in turn form an overcomplete basis

|
〈
θ, ϕ|θ′, ϕ′∣∣θ, ϕ|θ′, ϕ′〉 |2 =

[
cos

(
1
2Θ
)]4J

, (8)

where cos Θ = cos θ cos θ′+sin θ sin θ′ cos (ϕ− ϕ′). Next, the minimum uncertainty property
also holds for atomic coherent states

⟨Ĵ2
ξ ⟩⟨Ĵ2

ν ⟩ = 1
4⟨Ĵδ⟩2, (9)

where the spin operators have been rotated by (Ĵξ, Ĵν , Ĵδ) = Rθ,ϕ(Ĵx, Ĵy, Ĵz)R−1
θ,ϕ. With

the coherent spin state properly defined, we now fully utilize its properties to achieve spin
squeezing.

2.2 OAT Hamiltonian and time evolution
One of the primary models for spin squeezing is the one-axis twisting Hamiltonian. This
Hamiltonian introduces nonlinear infinite-range interactions to a spin system. The nonlin-
earity is essential because otherwise, linear interactions would simply only rotate the spins
without producing any correlation between them. The OAT Hamiltonian is defined as

Ĥz = χĴ2
z . (10)

The simplicity of this Hamiltonian makes the time evolution of the system straightforward.
We begin with aligning the initial state in the x-direction by setting the coherent spin state
angles to θ = π/2 and ϕ = 0

|π/2, 0⟩ = 2−J
J∑

M=−J

(
2J

J +M

)1/2

|J,M⟩ . (11)

Now we apply the squeezing Hamiltonian to the initial state using the time-evolution
operator Û(t) = e−iχĴ2

z t which results in

|ψ(t)⟩ = 2−J
J∑

M=−J

(
2J

J +M

)1/2

e−iχM2t |J,M⟩ . (12)

The Husimi-Q probability distribution is given by the functionQ(θ, ϕ) = | ⟨θ, ϕ|ψ(t)|θ, ϕ|ψ(t)⟩ |2
as seen in Figure 1.

2.3 Expectation value of collective spin operator
The effects of spin squeezing can also be demonstrated by calculating the expectation
value of the collective spin operator with the SSS. In the next section, we use this result
(an ideal system) as a comparison to a system with added noise. First, we calculate the
time evolution of the spin operators because we are working in the Heisenberg picture
[Appendix B]

Ĵ+(t) = Ĵ+(0)ei2χt(Ĵz+1/2). (13)

We now have the squeezed operator and so the next step is to apply this to the coherent
spin state aligned in the x-direction: ⟨π/2, 0| Ĵ+(t) |π/2, 0⟩ [Appendix B]. With the result
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Figure 1: We map Q(θ, ϕ) onto spherical coordinates using a Wolfram Mathematica package created
by Juan José García Ripoll Ref.[Rip16]. In other words, the time evolution of the quasi-probability
distribution for the spin squeezed state. From left to right the values for χt are 0, 0.199, 0.399.

of ⟨Ĵ+⟩, we make the realization that ⟨Jx⟩ = Re[⟨J+⟩] and so we have the final result for
the expectation value of the x-spin operator in a squeezed spin state

⟨Ĵx⟩ = J cos2J−1 µ

2 . (14)

Where µ = 2χt. An important consequence is that at times t = nπ/2, the expectation
value will be zero, which supports the theory of maximally entangled states being generated
from this Hamiltonian.

3 Decoherence
Decoherence is the process which transforms a quantum state into an apparent classical
state through interactions with an external environment. In complete isolation, the "quan-
tum nature" or coherence of the system remains unaffected. However, the true fragility of
the system becomes apparent once it couples with an environment as it tends to rapidly
lose its quantum behaviour. There are many studies of decoherence since it was initially
outlined in 1991 Ref.[Zur02]. Notable experiments that study the effect of quantum de-
coherence include microwave cavity experiments Ref.[RBH01], decoherence of ions due to
radiation Ref.[TKL+00], and matter-wave interferometers Ref.[HGH+12].

In this section, we follow the methods in Ref.[RJF+08] by first defining the type of
decoherence attributed to this system. Then we provide a qualitative description of how
the decoherence causes a depletion of the ground-state manifold. We then calculate the
expectation value of Ĵx with decoherence. This allows us to compare with our results from
the above section with no decoherence. Finally, we determine the fidelity of the GHZ state
generation with decoherence.

3.1 Single-particle dephasing
We define single-particle dephasing as the dominant source of noise which can result from
internal collisions, stray fields and laser in-stabilities Ref.[HMP+97]. This process causes
the off-diagonal density matrix elements to decay exponentially while maintaining the
populations. To model the decoherence we follow the procedure in Ref.[RJF+08],

Ĥenv = 1
2
∑

i

hi(t)σ̂z
i (15)

where hi(t) are assumed to be independent stochastic Gaussian processes with zero mean.
Furthermore, one can view the effect of dephasing in terms of the energy levels of the
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Hamiltonians. For instance, because Ĥenv commutes with both Ĵz and Ĵ2, coupling be-
tween degenerate energy levels of Ĥz is now possible. Thus, as the state evolves, transitions
between different J subspaces are allowed causing a depletion of the initially populated
ground-state manifold. See Figure 2. Consequently, the stability of the entangled states
diminish as they require the symmetric properties of the ground-state manifold.

Figure 2: Illustration of the effect of single-particle dephasing where the Pauli operator couples states
with different total spin J but same M . In a non-protected system, the leads to a depletion of the
ground-state manifold J = N/2 Ref.[RJF+08].

3.2 Expectation value for collective spin operators with decoherence
One method for evaluating the effect of decoherence on the system is to calculate the
expectation value of the collective spin operator. We then compare this calculation with
the result Eq.(14) which was the expectation value of the same collective spin operator
without the decoherence

⟨Ĵx⟩ = Tr
[
Ĵ+(0)ρ(t)

]
, (16)

where the overbar denotes averaging over the different random outcomes which is necessary
and is introduced because of the stochastic Gaussian term hi(t). Thus, we restrict the
overbar to just the exponential term which contains hi(t). Note that the coupled spin
basis {|J,M⟩} is not proper anymore since it does not diagonalize Ĥtot. This is because
Ĥz commutes with both Ĵz and Ĵ2, but Ĥenv only commutes with Ĵz. We switch to the
more general uncoupled spin basis defined as {

∣∣∣n(k)
〉

=
∣∣∣sk

1, s
k
2, ..., s

k
N

〉
} where sk

i = ±1 for
↑↓, and k = 1, 2, ..., 2N , and

σ̂z
i

∣∣∣sk
1, s

k
2, ..., s

k
N

〉
= sk

i

∣∣∣sk
1, s

k
2, ..., s

k
N

〉
, (17)

and the density matrix for this state is simply

ρ̂ =
∑
k,l

ρk,l(0)
∣∣∣n(k)

〉〈
n(l)

∣∣∣ . (18)

We define the time evolution operator in the uncoupled basis as

Û(t) = e
−i

[
χ(
∑

i
σ̂z

i )2
t+ 1

2
∑N−1

i=0

∫ t

0 dτhi(τ)σ̂z
i

]
. (19)

Now, we use Eq.(19) to find Eq.(16) which results in

⟨Ĵx⟩ =
∑
k,l

〈
n(l)

∣∣∣ ρk,l(0)e−iχt/4[(
∑

i
sk

i )2−(
∑

i
sl

i)
2]e

−i/2
[∑

i

∫ t

0 dτhi(τ)(sk
i −sl

i)
]
Ĵ+
∣∣∣n(k)

〉
. (20)
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To simplify this, we must recognize a crucial aspect of the raising operator − that is, in
the uncoupled basis it only connects states with one spin flipped Eq.(3). In other words,
the operator will flip one particle at a time of the k-state, so when this state connects with
the l-state,

∑
i(sk

i − sl
i) must equal −2. The decoherent term becomes

e
−i/2

[∑
i

∫ t

0 dτhi(τ)(sk
i −sl

i)
]

= ei
∫ t

0 dτh(τ) = e−Γ(t), (21)

where the property for Gaussian variables exp[−i
∫ t

0 dτh(τ)] = exp[−Γ(t)] is provided in
Ref.[RJF+08]. Therefore, the expression for the expectation value simplifies to

⟨Ĵx⟩ = e−Γ(t)∑
k,l

〈
n(l)

∣∣∣ ρk,l(0)e−iχt/4[(
∑

i
sk

i )2−(
∑

i
sl

i)
2]Ĵ+

∣∣∣n(k)
〉
.

We have effectively separated the decoherence term from the density matrix equation.
This shows everything within the density matrix is now the expectation value for the spin
operator with no decoherence, exactly representing the ideal case which we previously
calculated. We represent this in a simpler fashion

⟨Ĵx⟩ = e−Γ(t)⟨Ĵx⟩|Γ=0. (22)

The negative exponential acts as a decay to the expectation value of the operator with no
decoherence. This shows us the detrimental effect the noise has on the system.

3.3 Fidelity of the system
The fidelity of two quantum states is a measure of the distance between them i.e. how
closely related they are. We choose to compare an entangled state in an ideal system with
an entangled state in a system with added decoherence. This shows us exactly how the
decoherence effects the stability of the entangled state generation. In the following equation,
the outer product states are the ideal cases (no decoherence). Note, t0 is designated for
the time when the entangled GHZ states are produced

F(t0) = ⟨ψGHZ
x | ρ̂(t0) |ψGHZ

x ⟩ (23)

where

ρ̂(t0) =
∑
k,l

ρk,l(0)e−iχt0/4[(
∑

i
sk

i )2−(
∑

i
sl

i)
2]e− 1

2 Γ(t)
∑

i
(sk

i −sl
i)
∣∣∣n(k)

〉〈
n(l)

∣∣∣ . (24)

Next, we solve for the GHZ state in the uncoupled basis with no decoherence
∣∣∣ψGHZ

x

〉
which

is straightforward because we already know the eigenvalue for σ̂z when it is applied to an
arbitrary state in the uncoupled basis. Thus,∣∣∣ψGHZ

x

〉
=
∑

k

ck(0)e−iχt0/4(
∑

i
sk

i )2
∣∣∣n(k)

〉
. (25)

Upon applying Eq.(25) to Eq.(24) we find several of the eigenvalue terms cancel and we
then use statistical analysis to simplify the rest [Appendix C]. Finally we assert that at
t = 0, the atoms are all polarized in the x direction, so ρk,l(0) = 2−N . This results in the
final equation for fidelity Ref.[RJF+08]

F(t0) =
(

1 + e−Γ(t0)

2

)N

. (26)

This informs us that this entanglement is more fragile for more particles. This also provides
a viable comparison with systems we will discuss in the next chapter which attempt to
increase the stability of the entanglement.
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4 Many-body protected manifold
The many-body protected manifold (MPM) is a solution proposed by Ref.[RJF+08] to
reduce the effects of decoherence. The MPM is created by introducing an additional
Hamiltonian in the coupled spin basis, which is defined as

Ĥprot = −λĴ (0)2. (27)

The purpose for this protection is to isolate the ground-state manifold from the rest of the
Hilbert space by including a finite energy gap Eg = λN which acts as a barrier between the
degenerate states mentioned above. An important characteristic of this Hamiltonian that
should be noted is when the system is in the MPM, Ĥprot does not affect the dynamics of
the squeezing because of the commutation relation [Ĥz, Ĥprot] = 0.

In this section, we first introduce the necessary mathematical formalism to utilize the
MPM. Then we solve for the density matrix projected onto the MPM using perturbation
theory. The result provides an analytical description of how the protection term reduces
the decoherence.

4.1 Mathematical formalism
Prior to this section, we constrained the discussion to coupled spin states within the sym-
metric spin space |J,M⟩. However, in order to completely label the set of 2N possible states
of the Hilbert space, we now introduce the quantum number β which distinguishes states
that have equal J and M but different internal permutations. We denote the new basis as
|J,M, β⟩. For instance, for N = 4 we can write the coupled basis |J = 1,M = 1, β = 1⟩
and |J = 1,M = 1, β = 2⟩ as

|1, 1, 1⟩ = 1√
2 (|↑↑↓↓⟩ − |↓↓↑↑⟩)

|1, 1, 2⟩ = 1√
2 (|↑↓↑↓⟩ − |↓↑↓↑⟩) .

We introduce a new definition of collective spin operators, which Fourier transform Pauli
operators on single particles,

Ĵ (k)
z = 1

2
∑

j

σ̂z
j e

i2πjk/N . (28)

For example, when N = 4 we have Ĵ (0)
z |2, 1⟩ = |2, 1⟩ but if we choose a different value for

k,
Ĵ (2)

z |2, 1⟩ = 1√
2 |1, 1, 1⟩ − 1√

6 |1, 1, 2⟩ + 1√
3 |1, 1, 3⟩ .

Finally, we re-write the definitions for all of the Hamiltonians in terms of the Fourier
transform of the operators.

Ĥz = χĴ (0)2
z , Ĥprot = −λĴ (0)2, Ĥenv(t) = 1√

N

N−1∑
k=0

gk(t)Ĵ (k)
z , (29)

where gk(t) = 1√
N

∑
j hj(t)e−i2πjk/N . With all of the possible states in the coupled basis

and the operators defined for the full Hilbert space, we proceed to perturbation theory to
solve for the time-evolution of the system.
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4.2 Analytical solution - perturbation theory
To begin the calculation, we first define the complete set of Hamiltonians that describe the
energy of the system

Ĥtot(t) = Ĥz + Ĥprot + Ĥenv(t). (30)

Then, we group the time-independent Hamiltonians into one term Ĥc ≡ Ĥz + Ĥprot and
leave Ĥenv(t) as the remaining time-dependent perturbation. Next, to make the strength
of Ĥenv, we introduce a parameter Λ to indicate its amplitude. Λ = g̃k(t)/gk(t) and assume
Λ ≫ λ. The unperturbed part Ĥc is diagonalised by the coupled basis |J,M, β⟩, and the
eigenvalues are given by

Ĥc |J,M, β⟩ = (χM2 − λJ(J + 1)) |J,M, β⟩ ≡ ξJ,M |J,M, β⟩ . (31)

We write the time evolved wavefunction as |ψ(t)⟩ =
∑

α aα(t) |α⟩ where α = {J,M, β}.
By plugging ψ(t) into the Schrodinger equation, the equation of the coefficient aα(t) is
obtained

aα′(t) − aα′(0) = λ

iℏ
∑

α

∫ t

0
aα(τ)H̃α′α

env (τ)eiωα′ατ/ℏdτ, (32)

where H̃α′α
env (t) = ⟨J ′,M ′, β′| H̃env(t) |J,M, β⟩. We then expand the coefficients such that

aα′(t) = a
(0)
α′ (t) + λa

(1)
α′ (t) + λ2a

(2)
α′ (t) + ... (33)

The approximations are listed below where the power of λ is represented by (#). We stop
at the 2nd order because any higher order terms are not necessary for the scope of this
project. This results in the following equations for the first two orders

(0) : a
(0)
α′ (t) − a

(0)
α′ (0) = 0 (34)

(1) : a
(1)
α′ (t) = 1

iℏ
∑

α

∫ t

0
a(0)

α (τ)H̃α′α
env (τ)eiωα′ατ/ℏdτ (35)

(2) : a
(2)
α′ (t) = 1

iℏ
∑

α

∫ t

0
a(1)

α (τ)H̃α′α
enve

iωα′ατ/ℏdτ. (36)

Notice, since the initial state is unperturbed we set a(l)
α′ (0) = 0 for l > 0. By plugging

Eq.(35) into Eq.(36) we have

aα′(t) = a
(0)
α′ (0) + 1

iℏ
∑

α∈{MPM}

∫ t

0
a(0)

α (0)Hα′α
env (τ)eiωα′ατ/ℏdτ

+ 1
iℏ
∑

α

∫ t

0

 1
iℏ

∑
α′′∈{MPM}

∫ τ

0
a

(0)
α′′ (0)Hαα′′

env (τ ′)eiωαα′′ τ ′/ℏdτ ′

Hα′α
env (τ)eiωα′ατ/ℏdτ.

(37)

First, at time t = 0 the system lies in the ground state manifold. This means a(0)
α (0) = 0 for

any α /∈ {MPM}. Second, we re-inserted the definition for H̃env. We are interested in the
MPM subspace so we calculate the reduced density matrix using the projection operator

9



P =
∑

M̃

∣∣∣N/2, M̃〉〈
N/2, M̃

∣∣∣. Thus,

Pρ(t)P† =
∑
MM̃

|N/2,M⟩⟨N/2,M |
∑
α′

aα′(t)e−iξJ′M′ t/ℏ ∣∣J ′,M ′, β′〉
∑
α′′

aα′′(t)eiξJ′′M′′ t/ℏ
〈
J ′′,M ′′, β′′|N/2, M̃

∣∣∣J ′′,M ′′, β′′|N/2, M̃
〉〈
N/2, M̃

∣∣∣
=
∑
MM̃

aM (t)e−iξN/2,M t/ℏ
∣∣∣N/2,M〉〈

N/2, M̃
∣∣∣ aM̃ (t)eiξN/2,M̃ t/ℏ. (38)

The index α = {J,M, β} originally spanned the entire Hilbert space but is restricted to
the ground state manifold, α = {J = N/2,M}. To keep the space simple, let us write
P |ψ(t)⟩ instead of Pρ(t)P†

P |ψ(t)⟩ =
∑
M

[
a

(0)
M (0) + 1

iℏ

∫ t

0
a

(0)
M (0) ⟨N/2,M | Ĥenv(τ) |N/2,M⟩ dτ

− 1
ℏ2

∑
J,β

∫ t

0

(∫ τ

0
a

(0)
M (0) ⟨J,M, β| Ĥenv(τ ′) |N/2,M⟩ eiωJMβ,M τ ′/ℏdτ ′

)

⟨N/2,M | Ĥenv(τ) |J,M, β⟩ eiωM,JMβτ/ℏdτ

]
e−iξN/2,M̃ t/ℏ |N/2,M⟩ , (39)

where we use the fact that Ĥenv conserves M . We use integration by parts to simplify the
last term in Eq.(39) and set ℏ = 1. The final result is given by

P |ψ(t)⟩ =
∑
M

a
(0)
M (0)

[
1 − i

∫ t

0
⟨N/2,M | Ĥenv(τ) |N/2,M⟩ dτ

− 1
2
∑
J,β

∣∣∣∣ ∫ t

0
⟨N/2,M | Ĥenv(τ) |J,M, β⟩ eiωJ,βτdτ

∣∣∣∣2
]
e−iξN/2,M t |N/2,M⟩ .

We plug this back into the original density matrix equation as well as its complex conjugate.
Each element of the density matrix ρM ′M̃ ′(t) = ⟨N/2,M ′| ρ(t)

∣∣∣N/2, M̃ ′
〉

is given by

ρMM̃ (t) = ρMM̃ (0)eitχ(M2−M̃2)
(
1 + i(θM (t) − θM̃ (t)) − 1

2(γM (t) + γM̃ (t))
)

≈ ρMM̃ (0)eitχ(M2−M̃2)ei(θM (t)−θM̃ (t))e− 1
2 (γM (t)+γM̃ (t)), (40)

where we denote the phase and decay rate as

θM (t) =
∫ t

0
⟨N/2,M | Ĥenv(τ) |N/2,M⟩ dτ (41)

γM (t) =
∑
J,β

∣∣∣∣ ∫ t

0
⟨N/2,M | Ĥenv(τ) |J,M, β⟩ eiωJ,βτdτ

∣∣∣∣2. (42)

5 Heisenberg XXZ model
In this section, we apply the many-body protected manifold to a lattice system. In particu-
lar, we consider the Heisenberg XXZ model. Ref.[RJF+08] has shown that this neighboring
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interacting system can recover all-with-all interactions. We explain its analysis below. The
Heisenberg XXZ model we consider reads

Ĥlat = ĤH + ĤI = −β
∑
i,α

σ̂α
i σ̂

α
i+1 − χ

∑
i

σ̂z
i σ̂

z
i+1 (43)

where β and χ represent neighboring interactions in x, y directions and z direction, respec-
tively. The Heisenberg XXZ model can be mapped from Bose-Hubbard model by using
a low-energy approximation Ref.[Hew97] and thus can be realized in a one-dimensional
system of cold atoms. Similar to the previous section, the initial state is within the ground
state manifold and we assume β ≫ χ which allows us to use perturbative analysis. Then
as the system evolves, ĤH holds the dynamics within the ground-state manifold.

5.1 Collective spin operators
The first step is to write Eq.(43) in terms of collective spin operators. We first define their
Fourier transform and inverse Fourier transform as

Ĵ (k)
z = 1

2

N−1∑
n=0

σ̂z
ne

2πi
N

nk, (44)

σ̂z
n = 2

N

N−1∑
k=0

Ĵ (k)
z e− 2πi

N
nk. (45)

Then we have the interaction Hamiltonian written in terms of the collective spin operators.

ĤI = −χ
N−1∑
n=0

(
2
N

N−1∑
k=0

Ĵ (k)
z e− 2πi

N
nk

)(
2
N

N−1∑
k′=0

Ĵ (−k′)
z e

2πi
N

(n+1)k′
)

= − 4χ
N2

N−1∑
n=0

N−1∑
k,k′=0

Ĵ (k)
z Ĵ (−k′)

z e
2πi
N

n(k′−k)e
2πi
N

k′

= − 4χ
N2

N−1∑
k=0

Ĵ (k)
z Ĵ (−k)

z e
2πi
N

k,

where
∑N−1

n=0 exp[2iπn(k′ − k)/N ] = 0 for k′ ≠ k. Finally, the imaginary part is 0, and
thus, we have

ĤI = −4χ
N
Ĵ (0)2

z − 4χ
N

N−1∑
k=1

Ĵ (k)
z Ĵ (−k)

z cos
(2πk
N

)
. (46)

We perform the same calculation for the total spin Hamiltonian

ĤH = −4β
N

∑
α

Ĵ (0)2
α − 4β

N

N−1∑
k=1

∑
α

Ĵ (k)
α Ĵ (−k)

α cos
(2πk
N

)
. (47)

For β ≫ χ, the term −4β
N

∑
α Ĵ

(0)2
α in ĤH forces the dynamics to be in the ground state

manifold.

5.2 Projection into ground state manifold
We now project ĤI into the ground state manifold by using the projection operator

P =
∑
M

|N/2,M⟩⟨N/2,M | . (48)

11



Let us separate the Hamiltonian into its k ̸= 0 and k = 0 subsets

P
[
ĤI

]
= −4χ

N
P
[
Ĵ (0)2

z

]
− 4χ
N

N−1∑
k=1

P
[
Ĵ (k)

z Ĵ (−k)
z

]
cos

(2πk
N

)
. (49)

where P
[
Ô
]

=
∑

MM̃ |N/2,M⟩⟨N/2,M | Ô
∣∣∣N/2, M̃〉〈

N/2, M̃
∣∣∣. Note, the first term in (49)

does not change, so the second part is given by

P
[
Ĵ (k)

z Ĵ (−k)
z

]
=
∑
MM̃

|N/2,M⟩⟨N/2,M | Ĵ (k)
z Ĵ (−k)

z

∣∣∣N/2, M̃〉〈
N/2, M̃

∣∣∣
=
∑
M

|N/2,M⟩⟨N/2,M | Ĵ (k)
z Ĵ (−k)

z |N/2,M⟩⟨N/2,M | , (50)

where we use [Ĵ (0)
z , Ĵ

(k)
z ] = 0. Here, let us introduce a useful relation,

N−1∑
k=0

Ĵ (k)
z Ĵ (−k)

z = 1
4

N−1∑
k=0

N−1∑
n=0

N−1∑
m=0

σ̂z
nσ̂

z
me

2πi
N

k(n−m) = N2

4 . (51)

Next we project onto the identity above which returns

N−1∑
k=1

P
[
Ĵ (k)

z Ĵ (−k)
z

]
= N2

4 − Ĵ (0)2
z . (52)

Below, we show P
[
Ĵ

(k)
z Ĵ

(−k)
z

]
is independent of k. We rewrite P

[
Ĵ

(k)
z Ĵ

(−k)
z

]
in the uncou-

pled basis,

P[Ĵ (k)
z Ĵ (−k)

z ] =
N−1∑

n,m=0
⟨N/2,M | σ̂z

mσ̂
z
n |N/2,M⟩ e2iπk(n−m)/N . (53)

The above expectation value does not depend on position m,n due to the spin-symmetry
of the state |N/2,M⟩. For now, we can remove it from the sum and replace it with the
constant C,

P[Ĵ (k)
z Ĵ (−k)

z ] = C
N−1∑

n,m=0
e2iπk(n−m)/N . (54)

Next, we separate the sum into n ̸= m and n = m subsets, because the latter is not
dependent on k. The k-dependent part of the subset is

N−1∑
n ̸=m

e2iπk(n−m)/N .

The indices of the summation span −(N − 1) ≤ (n − m) ≤ +(N − 1) and provide a
symmetry such that there are an equal amount of terms with exp[2iπk(n − m)/N ] and
exp[−2iπk(n−m)/N ]. So regardless of k, the terms will cancel. For example, for N = 4
we have 3e− iπk

2 +3e
iπk

2 +2e−iπk +2eiπk +e
−3iπk

2 +e
3iπk

2 . This proves the projection Eq.(54)
is not dependent on k. So, referring back to Eq.(52) we have

P[Ĵ (k)
z Ĵ (−k)

z ] = 1
N − 1

(
N2

4 − Ĵ (0)2
z

)
. (55)
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The remainder of this calculation is straightforward as it is only a matter of plugging in
what we have just derived. The result of the projection of ĤI into the MPM is

P
[
ĤI

]
= χeĴ

(0)2
z + χN

N − 1 , (56)

where χe ≡ − 4χ
N−1 . The first term shows that the Hamiltonian has the all-with-all interac-

tion effectively. We now attempt to replicate this with the Heisenberg XXX model with a
staggered field.

6 Results
In this section, we summarize our results. First, we justify why all-with-all interactions
occur in a system with a nearest neighbour interacting Hamiltonian. Second, we apply
techniques from Section 5 to the Heisenberg XXX model, in attempt to recover all-with-all
interactions.

6.1 Recovering all-with-all interactions from Heisenberg XXZ
It is an important step to represent the neighboring interactions in the coupled basis. In
this basis, we then separate the spin-symmetric part from the non-spin-symmetric part of
ĤI . By confining the dynamics into the spin-symmetric space, the all-with-all interactions
appear solely. We use this as a guideline for the Heisenberg XXX model in the following
section.

6.2 Heisenberg XXX model with staggered field
We investigate the Heisenberg XXX model because in the presence of a staggered magnetic
field it has been numerically shown to produce all-with-all interactions Ref.[GUDB21]. The
difference between the XXX model and the XXZ model is simply the uniformity in the
strength of interactions across all components {x, y, z}. Thus, the Heisenberg XXX model
we consider reads

Ĥ = β

4

N−1∑
i=1

(
σ̂x

i σ̂
x
i+1 + σ̂y

i σ̂
y
i+1 + σ̂z

i σ̂
z
i+1

)
+ α

2

N−1∑
i=0

(−1)iσ̂z
i , (57)

where we represent the first term with ĤH and the second term with ĤSF . Following
Section 5, we first convert the Pauli operators in Eq.(57) to their respective collective spin
operators. Notice, ĤH in both the XXZ and XXX models are defined identically and so
we can simply use Eq.(47). Similarly, we use Fourier transform of ĤSF , which results in
the total Hamiltonian

Ĥ = β

N

∑
α

N−1∑
k=0

Ĵ (k)
α Ĵ (−k)

α cos
(2πk
N

)
+ α

N

N−1∑
j=0

N−1∑
k=0

(−1)j Ĵ (k)
z e− 2πi

N
jk. (58)

We make the assumption that β ≫ α, which causes ĤH to force the system in the ground-
state manifold. This is the same approximation as Ref.[GUDB21]. We calculate P[ĤSF ],
and let us look at ĤSF shown in Eq.(58). Without the the stagger term (−1)j , the
summation of the position j gives 0 except for the case of j = 0, and thus only Ĵ

(0)
z

remains. On the other hand, with the stagger term, only the term of j = N/2 remains,
and Ĵ

(N/2)
z survives. Figure 3 displays

∑
j=0(−1)jexp[−2iπjk/N ] for N = 4, where the
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blue/orange dots represent the cases without/with the (−1)j term, respectively. As a
result, the stagger field is given by

ĤSF = αĴ (N/2)
z . (59)

The issue here is that the above is a collective spin operator where k ̸= 0. These operators
only connect states outside of the MPM, so when projecting Eq.(59) into the MPM we
have 0.

Figure 3: Unit circle analysis with N = 4, where the blue dots represent the case with the stagger term
and the orange dots represent the case without the stagger term.

7 Conclusion
In conclusion, the primary objective of this thesis is to recover all-with-all interactions from
the Heisenberg XXX model. We thoroughly review the generation of maximally entangled
spin states first with the infinite range one-axis twisting Hamiltonian. We then derive the
coherent spin states and apply the OAT Hamiltonian. Then, to show the dynamics, we
plot the Husimi quasi-probability distribution.

Next, we closely follow the methods in the article Many-body protected entanglement
generation in interacting spin systems Ref.[RJF+08]. This entails the addition of single-
particle dephasing which models the decoherence of the quantum system. From which, we
apply the many-body protected manifold to show how the entanglement generation can be
protected from decoherence. Then, applying this technique to the XXZ model, we recover
the all-with-all interactions which are generated from the spin-symmetric properties of the
coupled basis.

Finally, we apply these methods to the Heisenberg XXX model with a staggered field
which was numerically demonstrated to produce all-with-all interactions in Ref.[GUDB21].
However, we find that applying the same approach straightforwardly only recovers ĤSF =
αĴ

(N/2)
z , which does not entail all-with-all interactions when projected into the spin sym-

metric space. One thing we can check is whether the spherically symmetric Hamiltonian

14



ĤH is affected by ĤSF = αĴ
(N/2)
z . The ĤH has a non-spin-symmetric part, and the stagger

fields may affect this part.

Future research
There are two potential methods for recovering all-with-all interactions from the Heisenberg
XXX model with a staggered field. The first thing is to can further investigate the role of the
total spin Hamiltonian as addressed above. The second thing is to study they entanglement
generation from the perspective of spontaneous symmetry breaking. It has been reported
that spontaneous symmetry breaking cause one-axis twisting in the Heisenberg XXZ model
with a staggered field in Ref.[CMRdSVR22] and perhaps this can applied to the XXX model
with a staggered field.
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A Coherent spin states
Let’s first rotate the frame of reference about the z-axis,

Jz = Jz, (60)
Jn = Jx sinϕ− Jy cosϕ, (61)
Jk = Jx cosϕ+ Jy sinϕ. (62)

Now we want to rotate about the new arbitrary n-axis by the angle θ

Rθ,ϕ = e−iθJn

= e−iθ(Jx sin ϕ−Jy cos ϕ)

= eξJ+−ξ∗J− , (63)

where ξ = θ
2e

−iϕ, and Jx = 1
2(J+ + J−), and Jy = 1

2i(J+ − J−). Now that we have the
rotation operator, we apply it to the ground (or excited) state, which gives us the coherent
spin state. Again, it is helpful to notice the direct similarities between the coherent spin
state and coherent field state

|θ, ϕ⟩ = Rθ,ϕ |J,−J⟩ ↔ |α⟩ = exp[αa† − α∗a] |0⟩ .

Our goal is to rotate the operators J−,+ which are dependent on Jn,k So let us begin with
rotating the latter. We can take the definitions from the ϕ-rotation, and apply them to
the θ-rotation. Let Rθ,ϕJαR

−1
θ,ϕ = J ′

α

J ′
n = Jn, (64)
J ′

k = Jk cos θ + Jz sin θ, (65)
J ′

z = Jk sin θ − Jz cos θ. (66)

Next, we find the ladder operators defined by the spin operators and the definitions of Jx

and Jy given above, but first

Jk = 1
2
(
J+e

−iϕ + J−e
iϕ
)

(67)

Jn = i

2
(
J−e

−iϕ + J−e
iϕ
)
. (68)

Now we find J+ and J−

J+ = eiϕ (Jk − iJn) (69)
J− = e−iϕ (Jk + iJn) . (70)

Finally, the rotated ladder operators are given by

J ′
+ = eiϕ (J ′

k − iJ ′
n

)
= eiϕ [(Jk cos θ + Jz sin θ) − i (Jn)]

= eiϕ[J+e
−iϕ cos2 (θ/2) − J−e

iϕ sin2 (θ/2) + Jz sin (θ)],
J ′

− = e−iϕ[J−e
iϕ cos2 (θ/2) − J+e

−iϕ sin2 (θ/2) + Jz sin (θ)].

Now we can properly define the coherent spin state, which is the rotated ground Dicke
state where J− |J,−J⟩ = 0. We start with projecting the rotation operator to the left of
this equation

Rθ,ϕ

(
J− |J,−J⟩

)
= 0.
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We also know
J−
(
R−1

θ,ϕRθ,ϕ

)
|J,−J⟩ = J− ⊗ 1 |J,−J⟩ = J− |J,−J⟩ .

Therefore, (
Rθ,ϕJ−R

−1
θ,ϕ

)
Rθ,ϕ |J,−J⟩ = 0,

and from the definition of a CSS: |θ, ϕ⟩ = Rθ,ϕ |J,−J⟩ we have the following eigenvalue
equation for the coherent spin state

J ′
− |θ, ϕ⟩ = e−iϕ[J−e

iϕ cos2 (θ/2) − J+e
−iϕ sin2 (θ/2) + Jz sin (θ)] |θ, ϕ⟩ = 0. (71)

Furthermore, we know the total angular momentum of the system eigenvalue equation
J2 |J,M⟩ = J(J + 1) |J,M⟩. Since the CSS is just a rotation of the initial ground state,
the eigenfunction for the total spin will still apply

J2 |θ, ϕ⟩ = J(J + 1) |θ, ϕ⟩ . (72)

We would now like expand the coherent spin state in terms of the Dicke states, similar
to the definition for a coherent field state |α⟩ =

∑ 1√
N
e−|α|2/2αn |n⟩. We begin with the

definition of the rotation operator acting on the ground state

|θ, ϕ⟩ = Rθ,ϕ |J,−J⟩ .

We can redefine the rotation operator using the disentangling theorem

eτJ+eln(1+|τ |2)Jze−τ∗J− |J,−J⟩ , (73)

where τ = tan ( θ
2)eiϕ. Next, breaking this into three sections, we begin with the right-most

term

e−τ∗J− |J,−J⟩ =
∞∑

n=0

(−τ∗J−)n

n! |J,−J⟩ = |J,−J⟩ ,

because the first term of the series is 1, and the rest are annihilated by the J− operator.
Now, the middle term applied to the state is

eln(1+|τ |2)Jz |J,−J⟩ = (1 + |τ |2)Jz |J,−J⟩ = (1 + |τ |2)−J |J,−J⟩ .

Now, we find the left-most term

eτJ+ |J,−J⟩ =
∞∑

n=0

(τJ+)n

n! |J,−J⟩ .

Note, we set better bounds for n because of our familiarity with the system. For instance,
we know when n = J +M the upper bound should be M = J because this would give us
(J+)2J |J,−J⟩ = |J, J⟩. And the lower bound is M = −J because (J+)0 |J,−J⟩ = |J,−J⟩

J∑
M=−J

τJ+M

(J +M)!J
J+M
+ |J,−J⟩ .

So now put together all three terms we just solved for separately

|θ, ϕ⟩ =
J∑

M=−J

1
(1 + |τ |2)

τJ+M

(J +M)!J
J+M
+ |J,−J⟩ .

Now we substitute the definition for Dicke states into this equation. This gives us the final
definition of a coherent spin state

|θ, ϕ⟩ =
J∑

M=−J

1
(1 + |τ |2)

(
2J

M + J

)1/2

τJ+M |J,M⟩ . (74)
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B Expectation value of collective spin operator
The definition for the time evolution of the ladder operator is Ĵ+(t) = Û †Ĵ+(0)Û . We want
to flip U † and J+(0) in order to get U †U = 1

∞∑
k=0

(iχt)k

k! (Jz)2k(J+).

Now we need the commutation relations between Jz and J+ to simplify. By definition

[Jz, J+] = J+,

JzJ+ − J+Jz = J+,

JzJ+ = J+ + J+Jz = J+(Jz + 1).

Let’s apply the Jz operator again

(Jz)2J+ = JzJ+(Jz + 1) = J+(Jz + 1)2.

Thus, we notice the pattern

(Jz)2kJ+ = J+(Jz + 1)2k.

Therefore, plugging back into the exponential function
∞∑

k=0

(iχt)k

k! (Jz)2k(J+) = (J+)
∞∑

k=0

(iχ)k

k! (Jz + 1)2k = (J+)eiχt(Jz+1)2
.

Now we can multiply this by the R.H.S.

J+(t) = U †J+(0)U = J+(0)ei2χt(Jz+1/2). (75)

Now we find the expectation value

=
〈
J,M ′∣∣ 2−J

J∑
M ′=−J

(
2J

J +M ′

)1/2 [
J+(0)e2iχt(Jz+1/2)]2−J

J∑
M=−J

(
2J

J +M

)1/2

|J,M⟩

=
〈
J,M ′∣∣ 2−J

J∑
M ′=−J

(
2J

J +M ′

)1/2 [√
J(J + 1) −M(M + 1)e2iχt(M+1/2)]2−J

×
J∑

M=−J

(
2J

J +M

)1/2

|J,M + 1⟩

= 2−2J
J∑

M=−J

(
2J

J +M

)1/2(
2J

J +M + 1

)1/2√
J(J + 1) −M(M + 1)e2iχt(M+1/2)

= 2−2J
J∑

M=−J

(2J)!
(J −M)!(J +M)! (J −M)eiµ(M+1/2).

Currently, in this form we have the same numerical results as Kitagawa. However, to
simplify the expression further, we need to make some adjustments to the summation.
The first thing we can do is shift the summation: let M ′ = J −M

= 2−2J
2J∑

M ′=1

(2J)!
(2J −M ′)!(M ′)! (M

′)eiµ(J−M ′+1/2).
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Note, we neglected the first term of the sum since it will be equal to 0. We notice a factorial
term divided by itself

= 2−2J
2J∑

M ′=1

(2J)!
(2J −M ′)!(M ′ − 1)!e

iµ(J−M ′+1/2).

Next, we notice the terms from M ′ = 1 to M ′ = J are equal to the complex conjugates of
the terms from M ′ = J + 1 to M ′ = 2J . Because we only consider the real terms, we can
make the upper bound of the sum M ′ = J and multiply the sum by 2. Furthermore, we
can reduce the exponential to its real term

= 2 · 2−2J
J∑

M ′=1

(2J)!
(2J −M ′)!(M ′ − 1)! cos (µ(J −M ′ + 1/2)).

Next, to set the lower bound equal to zero again, we can create another variable M ′′ =
M ′ − 1. This will give the new expression

= 2 · 2−2J
J∑

M ′′=0

(2J)!
(2J −M ′′ − 1)!(M ′′)! cos (µ(J −M ′′ − 1/2)).

We have the following definition for a combination(
2J − 1
M ′′

)
= (2J − 1)!

(2J − 1 −M ′′)!(M ′′)! = (2J − 1)!
(2J − 1 −M ′′)!(M ′′)! . (76)

Therefore,
(2J)!

(2J −M ′′ − 1)!(M ′′)! = (2J − 1)!
(2J −M ′′ − 1)!(M ′′)! (2J).

So now our equation is

⟨J+⟩ = J

22(J−1)

J∑
M ′′=0

(
2J − 1
M ′′

)
cos (µ2 (2J − 2M ′′ − 1)).

This can be simplified even further using a trigonometric power formula

cos2n−1 x = 1
22(n−1)

n∑
k=0

(
2n− 1
k

)
cos[(2n+ 1 − 2k)x]. (77)

And because ⟨Jx⟩ = Re[⟨J+⟩] we have the final definition for the expectation value of the
x-spin operator in a squeezed coherent spin state

⟨Jx⟩ = J cos2J−1 µ

2 . (78)

C Fidelity calculation
First we provide the proof for the Gaussian variable simplification in (24). The overline will
be restricted to the density matrix ρ(t0) because only it contains the Gaussian variables

ρ̂(t0) =
∑
k,l

ρk,l(0)e−iχt0/4[(
∑

i
sk

i )2−(
∑

i
sl

i)
2]e−i/2

∑
i

∫ t0
0 dτhi(τ)(sk

i −sl
i)
∣∣∣n(k)

〉〈
n(l)

∣∣∣ . (79)
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The following simplification e−i/2
∑

i

∫ t0
0 dτhi(τ)(sk

i −sl
i) = e− 1

2 Γ(t0)
∑

i
(sk

i −sl
i) is made with the

following justification. Consider an N -particle system

= e−i/2
∑

i

∫ t0
0 dτhi(τ)(sk

i −sl
i)

= e−i/2[
∫ t0

0 dτh1(τ)(sk
1−sl

1)+
∫ t0

0 dτh2(τ)(sk
2−sl

2)+...

= e−i/2
∫ t0

0 dτh1(τ)(sk
1−sl

1)e−i/2
∫ t0

0 dτh2(τ)(sk
2−sl

2)...

= e− 1
2 Γ(t0)(sk

1−sl
1)e− 1

2 Γ(t0)(sk
2−sl

2)...

= e− 1
2 Γ(t0)

∑
i
(sk

i −sl
i).

Therefore, the density matrix equation with decoherence is now

ρ̂(t0) =
∑
k,l

ρk,l(0)e−iχt0/4[(
∑

i
sk

i )2−(
∑

i
sl

i)
2]e− 1

2 Γ(t)
∑

i
(sk

i −sl
i)
∣∣∣n(k)

〉〈
n(l)

∣∣∣
=
∑
k,l

ρk,l(t0)
∣∣∣n(k)

〉〈
n(l)

∣∣∣ .
Now we provide the proof for (25) − the GHZ state in the uncoupled basis. To do this,
we consider the state where there is no decoherence and the time is also t = t0. So let us
begin with the time evolution of the initial state |ψ⟩ =

∑
i ci |ψi⟩,

|ψ(t)⟩ = U(t) |ψ⟩ =
∑

k

ck(0)e−iχt/4(
∑

i
σz

i )2
∣∣∣n(k)

〉
=
∑

k

ck(0)e−iχt/4(
∑

i
sk

i )2
∣∣∣n(k)

〉
.

Next, we let t = t0 because this is the time when the state is maximally entangled∣∣∣ψGHZ
x

〉
=
∑

k

ck(0)e−iχt0/4(
∑

i
sk

i )2
∣∣∣n(k)

〉
(80)

=
∑

k

ck(t0)
∣∣∣n(k)

〉
.

Now we provide the proof for the fidelity equation (26)

F(t0) =
∑

j

〈
n(j)

∣∣∣ c∗
j (t0)

∑
k,l

ρk,l(t0)
∣∣∣n(k)

〉〈
n(l)

∣∣∣∑
m

cm(t0)
∣∣∣n(m)

〉
=
∑

j

〈
n(j)

∣∣∣ c∗
j (t0)

∑
k,l

ρk,l(t0)cl(t0)
∣∣∣n(k)

〉
=
∑
k,l

c∗
k(t0)ρk,l(t0)cl(t0).

Now we plug back in the coefficients and let c∗
k(0)cl(0) = ρk,l(0)

F(t0) =
∑
k,l

ρk,l(0)eiχt0/4(
∑

i
sk

i )2
e−iχt0/4(

∑
i

sl
i)

2
ρk,l(0)

× e−iχt0/4[(
∑

i
sk

i )2−(
∑

i
sl

i)
2]e− 1

2 Γ(t0)
∑

i
(sk

i −sl
i)

=
∑
k,l

ρ2
k,l(0)e− 1

2 Γ(t0)
∑

i
(sk

i −sl
i).
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At t = 0, the atoms are all polarized in the x direction, so ρk,l(0) = 2−N . Furthermore,
we include an absolute value around the eigenvalues as to maintain the fact that Γ(t0) is
always negative

F(t0) = 2−2N
2N∑
k,l

e− 1
2 Γ(t0)

∑
i

|sk
i −sl

i|. (81)

To simplify this, we decompose it into the possible outcomes for each index k, l. First, we
know are a number of terms where ∑

i

|sk
i − sl

i| = 0.

The only time when this is possible is when k = l, because the two states are identical.
The next possibility is ∑

i

|sk
i − sl

i| = 2.

This happens when all the spins are aligned in the same direction between the two states
except exactly one. Continuing this pattern, we see the maximum amount is∑

i

|sk
i − sl

i| = 2N.

We arrive to this value because every spin of one state is oppositely aligned with the spin
of the other state. The next step is to calculate the number of times each of these scenarios
occur when applying the sum

∑2N

k,l . The first term is simple, because we know the amount
of times k = l when expanding the sum is 2N times. So, building the fidelity equation

F(t0) = 2−2N
(

2Ne− 1
2 Γ(t0)∗0 + ...

)
= 2−2N

(
2N + ...

)
.

The next term when the spins are all in the same direction except exactly one happens
N2N times. This can be explained by the fact that for every state, the ith particle can be
flipped once to achieve 2. So we multiply the number of states 2N by N

F(t0) = 2−2N
(
2N + 2NNe−Γ(t0) + ...

)
.

Moving forward, we can see this process of determining the amount of spins flipped per
state can be modeled with the combination formula. For instance, if we have a state of
N = 4, and we want to determine how many possibilities there are for an arbitrary state
to have exactly 2 spins flipped, we use 4C2 Thus, the fidelity becomes

F(t0) = 2−2N
(
2N + 2N (NC1)e−Γ(t0) + ...+ 2N (NCN )e−NΓ(t0)

)
= 2−N

(
1 + (NC1)e−Γ(t0) + ...+ (NCN )e−NΓ(t0)

)
= 2−N

(
N∑

n=0
NCne

−nΓ(t)
)

= 2−N
(
1 + e−Γ(t0)

)N

=
(

1 + e−Γ(t0)

2

)N

.
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