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Abstract: We consider a system of two trapped density-coupled Bose-Einstein condensates in 1D,
described by the coupled Gross-Pitaevskii equations. We perform numerical simulations to study the
stability of two stationary states: the ground state and a dark-antidark soliton state. By perturbing
these states we characterize their oscillation frequency and find that it decreases for increasing
interspecies interaction. Our numerical results are in agreement with analytical predictions found
in the literature.

I. INTRODUCTION

Bose-Einstein condensates (BECs) spark great inter-
est because they allow for the observation of quantum
physics on the macroscopic scale. This phenomenon is re-
lated to several branches of physics such as superfluidity,
superconductivity, lasers, nonlinear optics, and physics
of nonlinear waves [1]. The BEC was predicted by S.N.
Bose and A. Einstein in 1924 [2], and it was only af-
ter 70 years that a BEC was experimentally observed in
trapped atomic clouds [3]. Since then, a large amount
of both theoretical and experimental studies have been
realised [4].
Nowadays, it is possible to cool down and trap atoms by
use of electromagnetic fields. This allows for a very pre-
cise tuning of the physical properties of BECs [5]. Low
dimensional BECs have been experimentally realised in
atom traps, such as cigar-shaped 1D condensates and
disk-shaped 2D condensates [6]. Mixtures of BECs have
also been obtained [7], using two hyperfine states or two
atomic species. This recently acquired control over the
characteristics of the BEC, motivates its further study-
ing in different configurations. In particular, a 1D two-
component configuration that will be analysed in this
study.
This present work consists on the analysis of two density-
coupled BECs in 1D described by the coupled Gross-
Pitaevskii (GP) equations. Specifically, the stability of
the ground state (GS), and the excited dark-antidark
state will be studied.
This study is organised as follows. In Section II, the
theoretical framework of the system under study is de-
scribed. In Section III we expose and test the numerical
algorithms used to solve the GP equations. In section IV
the two analysed configurations are defined and results of
the simulations are presented. In Section V, conclusions
are drawn.

II. SYSTEM DESCRIPTION

A. Single component condensate

At zero temperature, a one-dimensional Bose-Einstein
condensate can be described in the mean-field approxi-

mation by the Gross-Pitaevskii equation,
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where ψ1 is the wave function normalized to 1 and V (x) is
an arbitrary trapping potential. The interaction between
the bosons is represented by a contact delta potential,
with strength g. The time-independent GP equation is
then [
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]
ψ = µψ. (2)

Where µ corresponds to the chemical potential.
If we consider a harmonic potential trap V (x) =
mω2x2/2, it is convenient to rewrite the equations us-
ing the harmonic oscillator units: t = t/tho, E = E/eho,
x = x/aho, g = g/ehoaho and µ = µ/eho, where

tho = ω−1, eho = ~ω and aho =
√

~/mω. In these
units, Eq. (1) reduces to,
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and Eq. (2), to:[
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When the interaction term is much larger than the kinetic
energy term, that is for large g, we can neglect the latter.
This is known as the Thomas-Fermi approximation, in
which Eq. (4) becomes:[

1

2
x2 + g|ψ|2

]
ψ = µψ. (5)

Eq. (5) can be solved analytically and yields the following
wave function,

ψTF(x) =
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√

2µ,
(6)

called the Thomas-Fermi solution (TF). Where µ =(
3g/4

√
2
)2/3

is found by normalization.



Dynamical simulations of two density-coupled 1D Bose-Einstein condensates Sandra Coll-Vinent

In the framework of an untrapped BEC, i.e. V (x) = 0,
there is an analytical solution for Eq. (2) with the form

ψDS(x) =
√
n0 tanh

(
x/ξ
)
, (7)

where n0 is the background density [8]. This stationary
solution is called a dark soliton. It has been long-known
by nonlinear optics and it receives that name because it
describes a dark spot in a light pulse [9]. The quantity
ξ = ~/

√
mgn0 is known as the healing length and it is a

measure of the length scale of the soliton [10].

B. Two density-coupled components

In our study, we will consider two density-coupled
BECs in a harmonic potential trap. Therefore from now
on all the expressions will be written in harmonic oscil-
lator units.
Two density-coupled BECs are well described by the fol-
lowing coupled GP equations:
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(8)

where ψ1 and ψ2 are the wave functions that describe
each component. g11, g22 and g12 represent the inter-
action strength between bosons of the first component,
second component and the cross interaction between
them, respectively. These equations can be pictured as a
set of nonlinear Schrödinger equations. The expressions
in brackets can be understood as an effective hamilto-
nian, where −∂2x/2 is the kinetic energy term and the
rest can be viewed as an effective potential.

III. NUMERICAL METHODS

A. Solution of the GP equation

The aim of this work is to study the dynamical stability
of two density-coupled BECs for different configurations.
For that purpose, we have numerically solved Eq. (8).
First we have obtained a stationary state of the equa-
tion, and after that, we have perturbed it to study its
dynamical stability.
To achieve a stationary state of Eq. (8) we have used the
imaginary time method. For section IV A, this method
has been used to obtain the GS. And for section IV B
it has been used to produce an excited state with a
displaced soliton in one component, known as a dark-
antidark soliton, which will be discussed further below.
Interestingly enough, we have found that the imaginary
time method can yield a quasi-stationary state with a
displaced soliton. That is achieved when we start the
one component imaginary time method with

ψ0
sol(x, d) = ψTF(x) tanh (x− d), (9)

FIG. 1. On the left panel, energy convergence of the imagi-
nary time evolution of ψ0

sol(x, 2). On the right panel, initial
density profile corresponding to the wave function ψ0

sol(x, 2)
(solid blue line), and profile density corresponding to the state
evolved in imaginary time for 1 tho (dashed magenta line).

where the hyperbolic tangent adds a zero in the density
profile at d. When we let this state evolve in imaginary
time, we see that its energy quickly converges and stays in
a quasi-stable plateau, as shown in Fig. 1. The state re-
sulting after the energy convergence is a quasi-stationary
state with a displaced soliton, also shown in Fig. 1.
For section IV A, after having obtained the desired ini-

tial state through the imaginary time method, we pro-
ceed to perturb it and evolve it in real time. For section
IV B, the imaginary time evolution already provides us
with a perturbed quasi-stationary state (a soliton dis-
placed from the center in one component), so we directly
proceed to evolve it in real time.

B. Numerical solver

In both cases, imaginary and real time evolution, we
solve Eq. (8) using the Crank-Nicolson method. This
method is a finite difference method used to solve partial
differential equations, which considers the spatial second
derivative as the mean of its calculation in two consecu-
tive time-steps. A tridiagonal system of algebraic equa-
tions must be solved at every time-step, and for that
purpose we use the tridiagonal matrix algorithm [11]. As
the effective hamiltonian contains |ψ1(t)| and |ψ2(t)|, we
use their values from the previous time step at every iter-
ation, starting with the given initial states. The method
has been shown to be stable for r = dt/dx2 ≤ 1/2 for
the heat equation [12], but for our equations it gave
instabilities as far as for r = 0.1, so for all our calcu-
lations we used r = 0.01, which proved to be stable.
The discretization used for this present work has been
dx = 0.1 and dt = 0.0001 in a box of length L = 15
with g11 = g22 = 500. In what follows, we will use
g11 = g22 = g.

C. Numerical tests in a single component case

We have tested both the imaginary time and the real
time program to work under some known conditions.
For example, if we set g = 0 in Eq. (3), we recover the
Schrödinger equation with a harmonic potential. For
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FIG. 2. The solid blue line shows the numerical results for the
time evolution of the mean position of the GS in one compo-
nent (with frequency νGS = 0.1578). The dashed yellow line
shows the soliton minimum time evolution in one component
(with frequency νsol = 0.1109).

FIG. 3.
√
〈x2〉 − 〈x〉2 is shown in function of g11 for the GS

of Eq. (3) (blue crosses) and for ψTF (x) (solid green line).

that case, the imaginary time method has been tested to
return the harmonic oscillator (HO) GS when starting
from a wider initial Gaussian wave function. And to
return the first HO excited state when starting from a
state orthogonal to the GS. When evolving the obtained
GS in real time, it has been tested to remain stationary,
and when displaced from the centre it has been tested
to oscillate at a frequency ν = 0.158 ≈ 1/2π = νtrap
(shown in Fig. 2).
Setting again g = 500, and starting the imaginary time
from ψ0

sol(x, 2), we obtain an off-centered soliton in one
component. Then we evolve this quasi-stationary state
in real time and see that the soliton minimum oscillates
with a frequency νsol = 0.111 ≈ νtrap/

√
2, (also shown in

Fig. 2). This soliton oscillation frequency in the trapped
case is well known for the TF limit [13].

We have also checked that the GS of the GP equation
approaches the TF solution as g is increased. For
that, we have obtained the GS of Eq. (3) through the
imaginary time method for a range of g. In Fig. 3,
the size of the atomic cloud of the GS, measured by√
〈x2〉 − 〈x〉2, is compared with the analytical prediction

for the TF. It shows indeed an excellent agreement for
large g.

FIG. 4. The upper panels show the time evolution of the
relative mean position of each component (solid blue line), a
sine-wave fit (dashed magenta line) and the position of the
center of mass of the system (dotted black line). The lower
panels show |ψ1(x, t = 0.5)|2 and |ψ2(x, t = 0.5)|2, i.e. the
density profile of the states at the time signaled with a vertical
gray line in the upper panels. In the left panels g12/g = 0.08
and in the right panels g12/g = 0.6.

IV. DYNAMICAL SIMULATIONS

The aim of this section is to analyse the dynamics
of two interacting components when varying the inter-
species interaction g12.

A. Out of phase mode of the GS

In this subsection we are interested in studying the
dynamical stability of the GS. In particular, we want to
excite the out of phase mode by symmetrically displacing
each component from their equilibrium position, without
displacing the center of mass of the system. The aim is
to characterize the relative oscillation frequency of the
two components for a range of g12/g from 0 to 1. We
expect to find for g12/g = 0 a frequency νrel = 1/2π, i.e.
the frequency of the trap, and no oscillation (νrel = 0)
for g12/g = 1, as the two components will be immiscible.
To obtain the GS of the system under study we have
evolved the states ψ0

1(x), ψ0
2(x) = ψTF(x) in imaginary

time, for a certain g12/g. The resulting state of that
simulation, i.e. the GS, is a centered TF-like density
profile in each component, widdened by the interspecies
interaction. To excite the out of phase mode, we have
displaced each component a distance 2 from the center
in opposite directions. Subsequently, we have evolved the
perturbed GS in real time. The upper panels in Fig. 4
show the evolution of the relative position of the mean
of each component in time for two different g12/g. They
also show that the center of mass of the system remains
still, so we have indeed excited the out of phase mode.
We see that the two components oscillate, so we verify
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FIG. 5. Numerical results for the dependence of the relative
oscillation frequency on g12/g (blue dots) compared to the
analytical prediction of Eq.10 (cyan dashed line).

the stability of the GS. To obtain the main frequency of
that relative oscillations we have fit a sine wave to the
relative mean position data, as depicted in the figure.
We can see that other oscillation frequencies appear for
the higher interspecies interaction, as the data is slightly
deviated from the sine fit. The density profile of each
component is deformed from its initial state as it evolves
in time, as expected, for the system is no longer in its GS.
As the relative interaction increases, the density profiles
of each component suffer during the evolution a larger
symmetric deformation from their initial TF-like shape.
This can be seen in the lower panels of Fig. 4, where
for lower relative interaction the states are less deformed
than for higher relative interactions, where we can see
bumps growing on the sides due to the mutual repulsion
of the approaching components. It is these symmetric
deformations that lead to the appearance of other fre-
quencies. In any case, we will only consider the main
frequency obtained through the sine fit, for all g12/g.
We can now study the dependence of the relative oscil-
lation frequency on g12/g (Fig. 5). For that purpose we
have run the previously described simulations for g12/g
from 0 to 1 every 0.04, with a duration of 25 tho each.
As we expected, νrel(g12/g = 0) = 0.159 ≈ νtrap and
νrel(g12/g = 1) = 0. We see that for greater g12/g the
relative oscillation frequency decreases. This decrease is
due to the increasing repulsion that each component has
to overcome to cross over the other.
In reference [14] they provide the following prediction for
the studied oscillation mode of the GS:

νrel/νtrap =

√
1− g12/g
1 + g12/g

. (10)

In Fig. 5 we compare our numerical results with that
prediction and find a reasonable agreement.

B. Dark-Antidark soliton

A dark-antidark soliton is a two-component configura-
tion that arises from the interaction between a dark soli-
ton in one component and a TF-like state in the other.
The absence of particles in the soliton attracts particles

FIG. 6. Dark-antidark soliton density profile, displaced a dis-
tance 2 from the center. In the left panel, g12/g = 0.48 and
in the right panel g12/g = 0.96.

from the other component, due to the lack of coupling re-
pulsion. Therefore, particles from the second component
will build up in the soliton dip, forming what is known
as a dark-antidark soliton [14].
In what follows, we are going to focus on studying the
stability of the dark-antidark soliton when displaced from
its equilibrium position. In particular, we want to char-
acterize how the oscillation of a dark-antidark soliton
on a TF-like background depends on g12/g. We expect
that for g12/g = 0, we will obtain a regular gray soli-

ton in one component, oscillating with ν = νtrap/
√

2.
The dark-antidark soliton configuration can only exist
for g12/g ≤ 1, as for g12/g = 1 we reach the miscibility-
immiscibility threshold, in which both components can-
not coexist. For g12/g = 1 we expect the system to
be stationary (ν = 0) with a summed density profile
of |ψ1(x)|2 + |ψ2(x)|2 = |ψTF(x)|2. This limiting sys-
tem can be thought of as a one component system (as
g = g22 = g12) which consequently has a TF as a total
density profile for the GS.
The off-centered dark-antidark soliton state is achieved
by letting evolve in imaginary time the initial states
ψ0
1(x) = ψ0

sol(x, 2) and ψ0
2(x) = ψTF(x) for a certain

g12/g. The initial state of the first component will yield
a displaced soliton profile after the imaginary time evolu-
tion. The second component will see an attractive poten-
tial well in the position of the soliton and will develop a
bump there, resulting in the off-centered dark - antidark
soliton shown in Fig. 6. As we increase the interaction,
more matter is accumulated inside the soliton and the
wider the soliton becomes, as can be seen comparing the
two panels in Fig. 6.

To study how the oscillation of the dark - antidark
soliton depends on g12/g, we obtain the described initial
states for a range of g12/g from 0 to 1 every 0.04. Sub-
sequently, we evolve each state in real time for 10 tho.
We verify that the dark and anti-dark solitary waves os-
cillate together through the background (the system is
therefore stable) without being deformed. Similarly to
the previous section, we fit a sine-wave to the minimum
position of the soliton to get the oscillation frequency of
the dark-antidark soliton. The sine-wave was well fitted
for all g12/g.
Fig. 7 shows the oscillation frequencies of the dark-
antidark soliton for the studied range of g12/g. We
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FIG. 7. Dependence of the oscillation frequency of the dark-
antidark soliton on g12/g (red crosses) and the analytical pre-
diction from Eq. (11) (magenta dashed line). Also compared
with the out of phase oscillation frequency of the GS from
Fig. 5 (blue dots).

have checked that for g12/g = 0 the frequency is in-

deed ν = 0.111 ≈ νtrap/
√

2 and that it tends to 0 for
g12/g = 1. We can see that the frequency of oscillation
decreases for increasing g12/g, which is the behaviour
that we would expect in between the limiting configura-
tions stated above. Solitons can usually be described as
quasiparticles [15]. The frequency decrease can be viewed
as a consequence of the increasing repulsive interaction
of the quasiparticle with its surroundings, which slows
down its movement.
We also compare our figure with a theoretical prediction
from [14]:

ν/νtrap =

√
1− g12/g

2
. (11)

A reasonably similar behaviour is found with our corre-
sponding numerical result.
It is also interesting to compare the relative oscillation

frequencies of the GS from the previous section with the
ones of the dark-antidark soliton. We can see in Fig. 7
that both frequencies merge near g12/g = 0.8. This con-
vergence can also be inferred from Eqs. 10 and 11 when
g12/g −→ 1. In Ref. [14], they also find this resonance
between the two oscillation modes.

V. CONCLUSIONS

We have studied the dynamics of two trapped density-
coupled BECs in 1D described by the mean-field theory
GP equations. In particular, the stability of the GS and
of an excited state known as a dark anti-dark soliton
has been analysed for different interspecies interactions.
We have shown that both states are stable (they oscil-
late) under off-center perturbations, for g12/g < 1. Their
oscillation frequencies have been found to decrease for
increasing interspecies interaction. This behaviour has
been intuitively explained as the result of an increasing
difficulty for the two components to overcome mutual re-
pulsive interaction. Our numerical simulations have been
shown to be in good agreement with the analytical pre-
dictions from Ref. [14].
Regarding the technical aspects of this work, we have
found that the imaginary time method, a part from giv-
ing stationary states of the GP equations, is also able to
yield a quasi-stationary displaced dark-antidark soliton.
Furthermore, we have verified that the Crank-Nicolson
method is useful to numerically evolve states in the GP
equations both in imaginary and real time.
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