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Abstract

This thesis focuses on dissipative quantum neural networks, a subfield of quan-
tum machine learning. Classical neural networks and the fundamental concepts
of quantum mechanics, crucial for understanding quantum machine learning, are
introduced from a mathematical perspective. We exhibit the parallelism between
the training algorithms of classical neural networks and dissipative quantum neu-
ral networks and establish a mathematical framework to describe classical and
quantum neural networks.

Resum

Aquesta tesi se centra en les xarxes neuronals quàntiques dissipatives, un sub-
camp de l’aprenentatge automàtic quàntic. Les xarxes neuronals clàssiques i els
conceptes clau de la mecànica quàntica, crucials per entendre les xarxes neuronals
quàntiques, són introduïts des d’una perspectiva matemàtica. Exhibim també el
paral.lelisme entre els algorismes d’entrenament de les xarxes neuronals clàssiques
i quàntiques i establim un marc matemàtic per descriure-les.
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0.1 Introduction

Have you ever wondered how a quantum computer operates? Analogously to
classical bits in computers, quantum computers make use of the so-called qubits. A
qubit is a two-level system represented by |0⟩ and |1⟩. These qubits give quantum
computers interesting and powerful features. Pure qubits are a coherent superposi-
tion of the basis states. Meaning that we can describe the pure qubit as

|ψ⟩ = α |0⟩+ β |1⟩ .

This, alongside other properties of qubits, such as the so-called entanglement, al-
lows for a parallelization of the calculations performed by the quantum computer
[1, 2]. When two qubits are entangled, a single operation can be performed on
those two qubits simultaneously, which doubles the computational power of the
system. Such parallelization of the calculations is not possible for classical com-
puters.

There are various models for implementing quantum computers, such as the
adiabatic model, the gate model, and measurement-based quantum computing
[3]. The most widely used approach, and the one focused on in this thesis, is the
gate model of quantum computers. The gate model is based on quantum gates,
which are analogous to logic gates. Quantum gates are described as 2n × 2n uni-
tary matrices acting on n qubits [4]. In this model, algorithms are performed by
arranging a sequence of quantum gates in a particular order.

Quantum computing has rapidly evolved. The early work in quantum com-
puting during the 1980s was purely theoretical. The first quantum algorithms
were developed at the time. During the 1990s, scientists developed the first ex-
perimental quantum gates, and in the early 2000s, the first small-scale quantum
computers were built. Recently, there has been an increased interest in the field [5].
Companies like IBM are building some of the most advanced quantum computers
to date. IBM has currently built the largest quantum processor, composed of 433
functional qubits [6]. Despite the progress made, quantum computing is still in
its early stages, and there are limitations on the number of gates and qubits that
can be used. However, the potential for quantum computing to expand the lim-
its of what can be calculated and revolutionize computation has led to continued
research and development in the field.

On the other hand, machine learning is a field that is present in our lives in many
ways and has significantly impacted the use of data. Machine learning algorithms
enable the implementation of tasks such as decision-making, pattern recognition,
and prediction [7]. Neural networks, which are a subfield of machine learning, are
the focus of this thesis. They can be thought of as a network of neurons, each
applying a parametrized function to its input. The parameters are then optimized
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so that the network’s final output approximates the desired output. To build an
effective neural network, the algorithm must "learn" by being run numerous times
with different training data [8, 9].

Quantum machine learning is a recent field of study that aims to combine quan-
tum science and machine learning. There are several approaches to achieving this
goal, including using classical machine learning algorithms to process quantum
data, quantum-enhanced machine learning, and quantum algorithms that resem-
ble classical machine learning algorithms [10, 11, 12]. In this thesis, we concentrate
on quantum neural networks, a combination of quantum computing and artificial
neural networks. The building blocks of quantum neural networks are the quan-
tum perceptrons composed of a set of qubits. It is important to note that there
is no unified approach to building quantum neural networks. For example, some
models are based on the use of quantum systems to represent the probability
distribution of a classical neural network [13]. In this work, we focus on the math-
ematical formulation of the recently developed dissipative quantum neural networks
introduced by K. Beer in 2020 [14]. These networks have an architecture similar to
that of classical neural networks, but with the equivalent quantum neurons and
algorithm implementations [15]. Quantum machine learning is a rapidly grow-
ing field of interest being explored by leading companies in the field of quantum
computing.

Mathematics plays a significant role in this field of study, but there is a lack of
literature that provides a unified mathematical approach. To my knowledge, no
reviews cover the mathematical basis of classical and quantum machine learning,
and most reviews are oriented from a physics perspective. This thesis aims to pro-
vide a mathematical framework for both classical neural networks and dissipative
quantum neural networks. It presents a mathematical-oriented approach to the
field, which is easily accessible to those with a background in mathematics.

Let us summarize the structure followed in this thesis. Chapter 1 provides a
mathematical approach to classical neural networks, including their structure and
different types of artificial neurons, as well as an introduction to the training prob-
lem and algorithms. Chapter 2 introduces the foundations of quantum computing
and the mathematical definitions necessary for understanding Chapter 3. We re-
view key concepts such as the definition of quantum states, the gate model and
the universality theorems, and the concept of fidelity of quantum states, among
others. Chapter 3 focuses on the review of dissipative quantum neural networks,
including the introduction of quantum neurons and the network’s structure, the
training problem and algorithm, and the implementation of these structures on
current quantum computers. Finally, appendix A reviews the study’s results on
the impact of the learning rate on the accuracy of neural networks for handwritten
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digit recognition.



Chapter 1

Neural networks and deep
learning

Machine learning aims to use data to get computers to develop specific tasks.
Neural networks are a subset of machine learning and were first introduced in
the mid-20th century as a model for simulating the behavior of biological neurons
computationally [16]. Machine learning is a fast-growing field with numerous
applications. This growth is linked to the increase of data collected nowadays,
needed to increase the efficiency of such structures, and the growing interest in
the field.

Neural networks can be thought of as abstract mathematical concepts. This
chapter illustrates this based on the definitions provided in [7, 8, 9], and high-
lights the structural similarities between classical and dissipative quantum neural
networks presented in Chapter 3. First, we introduce artificial neurons and give
a definition for neural networks. We then present the training algorithm and re-
view the training problem, the feed-forward algorithm, backpropagation, and the
network’s updating procedure.

1.1 Artificial neurons

The so-called artificial neurons are the building blocks of neural networks.
Such structures transform a set of inputs into a given output.

Definition 1.1. An artificial neuron is a quadruple (x, w, φ, y), with xT = (x0, x1, . . . , xn) ∈
Rn+1, x0 = −1, and with input values x1, . . . , xn, wT = (w0, w1, . . . , wn) ∈ Rn+1 is
the so-called weights vector with bias w0 = b, φ is the activation function, and the
output function y : R → R is defined as y = φ

(
xTw

)
.

4
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Figure 1.1: Schematic representation of a perceptron with three inputs x1, x2, x3;
bias b, and weights w1, w2, w3.

Remark 1.2. Note that the output function is y = φ
(
xTw

)
= φ (∑n

i=0 wixi) =

φ(−b + x1w1 + . . . + xnwn).

1.1.1 Perceptrons

A perceptron neuron is an artificial neuron with the following properties

• xi ∈ {0, 1}, i ∈ {1, . . . , n}.

• φ(x) = H(x), where H(x) is the Heaviside function.

Recall that

H(x) =

{
0, if x < 0

1, if x ≥ 0
.

Now, the output function of a perceptron neuron

y = φ
(

xTw
)
=

{
0, if ∑n

i=1 wixi < b

1, if ∑n
i=1 wixi ≥ b

.

A comprehensive approach to visualize the action of a perceptron is to represent
it as shown in figure 1.1. This approach will be useful in section 1.2 when we
represent networks of neurons.

Perceptrons can be interpreted as devices that perform decision-making by
weighing up the evidence. Suppose we want to implement a decision between
choice 0 and choice 1. Then, the weights can be thought of as how much each
factor xi contributes to making a decision 0 or 1 given a threshold b.

Example 1.3. Suppose we want to decide whether or not to join a bachelor in math-
ematics at UB. Zero represents choosing not to join, and one represents joining the
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bachelor. Then, we weigh up different factors that influence our decision-making.
We might be influenced by a set of factors: the closeness of UB to our house,
whether we like the coursework, and the alumni reviews. For instance, we will
have 0 if UB is far from our house and 1 if it is close. On the other hand, if we
like the coursework, we input a 1, and if we dislike it, we input a 0. Lastly, if the
reviews of alumni are reasonable, we input a 1, and if they are bad we input a 0.
Then, it is time to decide how important each factor is. For example, the proximity
is not very important to us, the alumni reviews are somehow important, and the
coursework is critical. Therefore, we choose w1 = 1, w2 = 4, w3 = 6. Finally, we
choose a bias b=7. Now the perceptron implements the model outputting 1 or 0
depending on the different factors and their importance. By changing the weights
and biases, we can get different decision-making devices.

1.1.2 The sigmoid neuron

A perceptron’s output is a discontinuous binary function. If we interpret per-
ceptrons as decision-making devices, an improved model should give an output
y = φ

(
xTw

)
∈ (0, 1), such that outputs close to 0 describe a small likelihood of

occurrence and outputs close to 1 describe a greater likelihood to occur. We define
an artificial neuron following such properties: the sigmoid neuron.

A sigmoid neuron is an artificial neuron with an input vector xT = (x0, . . . , xn),
weights and bias wT = (b, w1, . . . , wn), and with the logistic function,

σ(x) =
1

1 + e−x ,

as the activation function. The output function for a sigmoid neuron is given by:

y = σ(xTw) =
1

1 + exp
(
−∑n

j=1 wjxj + b
) .

1.2 The structure of neural networks

In this section, we consider sets of connected artificial neurons with the same
activation function, the so-called neural networks represented in figure 1.3. Let
us first introduce the notation we will use. We refer to each group of perceptrons
applied on the same input values as layers. As shown in figure 1.3, there are three
types of layers: the input layer, which is the first layer of the network containing
the initial inputs; the output layer, which is the last layer of a network, and the
hidden layers located between the input and output layers. We use wl

jk to refer
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Figure 1.2: Plot of the Heaviside function, H(x), and sigmoid function, σ(x).

Figure 1.3: Schematic representation of a 4-layer neural network.

to the weight coupling the kth neuron in the (l − 1)th layer with the jth neuron in
the lth layer. Additionally, the bias of the neuron located at position j in layer l is
represented by the symbol bl

j, and the output function of the jth neuron in the lth

layer is represented as xl
j.

Definition 1.4. A fully connected feed forward neural network is given by its architec-
ture a = (m, φ), where m ∈ NL+2 for L ∈ N, and φ is the activation function. L
is the number of hidden layers in the network, and ml for l ∈ {0, . . . , L + 1} is the
number of neurons in the lth layer.

We will use the term neural network to refer to fully connected feed-forward
neural networks.
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1.3 The training algorithm

1.3.1 The training problem

Neural networks improve their behavior via the learning process, where the
network is trained to solve a specific problem. Let us give a set of definitions to
understand this process further.

Definition 1.5. Let X ,Y , and Z be measurable spaces, and M(X ,Y) the set of
measurable functions from X to Y . X is denoted as the input space, Y as the
output space, and Z as the data space. Given C : M(X ,Y) × Z → R the so-
called cost function, and the training data (zj)n

j=1 ∈ Z . The learning process implies
finding the network’s output function f ∈ M(X ,Y) which minimizes the cost
function C( f , z).

In this work, we focus on supervised learning and assume X and Y are Eu-
clidean. For simplicity, we take X ⊂ Rd with d ∈ N, and consider Y ⊂ Rm with
m ∈ N.

Definition 1.6. A training data set is s = ((x0
j , yj))m0

j=1 ∈ X × Y = Z , where x0
j ∈ X

are the inputs of the network with their associated labels yj ∈ Y . The training data
set is used to train the network, i.e., it is used to minimize the cost function.

Example 1.7. A well-known problem solved through the use of neural networks
is handwritten digit recognition. In such a problem, the training data consists
of vectorized images of handwritten digits and associated labels indicating the
written number in the image taken from the MNIST data set. This problem is
presented and studied in Appendix A.

Figure 1.4: MNIST images of handwritten digits.

Aside from training data, there are two more types of data: validation and test
data. Validation and test data sets consist of data pairs different from each other
and different from the training data pairs. Those data sets are used to compute
the accuracy of the network. Given a labeling problem, such as the problem of
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example 1.7, we define the accuracy of the network given a set of data pairs as
the percentage of correctly labeled inputs. The resulting accuracy for the training
data is used to assess the network’s behavior and tune the network’s parameters.
On the other hand, the accuracy of test data is used after training to confirm that
the algorithm is trained effectively.

Definition 1.8. A prediction task entails finding f : X → Y s.t., for unseen data
(x0

j , yj) ∈ X ×Y , f (x0
j ) ≈ yj .

Remark 1.9. f is the output function of the network and thus can be expressed
as a function of the weights and biases, as shown in section 1.3.2. The aim is to
modify the weights and biases to minimize the cost function.

A widely used cost function in machine learning is the mean square error
(MSE) function, also known as the quadratic cost function. It is defined as

C(w, b) =
1

2m0

m0

∑
j=1

( f (x0
j )− yj)2,

where w denotes the collection of all weights, and b all the biases.

1.3.2 Feed-forward

The first step in training a neural network is to compute the network’s output
given a certain set of inputs. Here, we derive the expression for the output of an
arbitrary neural network. First, note that output of the jth neuron of the lth layer is

xl
j = φ(

ml−1

∑
k=1

wl
jkxl−1

k − bl
j).

Now, we can rewrite the expression above in matrix form as

Xl = φ(W lT
Xl−1 − Bl),

where

Xl =
(

xl
1, . . . , xl

ml

)T
, W l =

(
wl

jk

)
j,k

, Bl =
(

bl
1, . . . , bl

ml

)T
.

Remark 1.10. Assume we have a neural network with a linear activation function,
a = (m, φ = nx + p). Now, the output of the network

Xout = φ(W lT
Xl−1 − Bl) =

(
n · wl

jk

)T

j,k

(
xl−1

1 , . . . , xl−1
ml−1

)T
−
(

n · bl
1 − p, . . . , n · bl

ml
− p

)T
=

= (W ′)lT
Xl−1 − (B′)l .

Thus given a linear activation function, the output is equivalent to a single neuron.
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1.3.3 Back-propagation

The second step of the training process is to implement the backpropagation
algorithm. Let us first define the signal

sl
j =

ml−1

∑
k=1

wl
jkxl−1

k − bl
j.

We aim to apply gradient descent to minimize the cost function. To do so, we
need to compute ∇C. As the cost function can be expressed as a function of the
variables wl

ij and bi
j, we can express ∇C = (∇wC,∇bC). Now, using the chain rule

∂C
∂wij

=
∂C
∂sl

j

∂sl
j

∂wij
,

where
∂sl

j

∂wij
= xl−1

i .

We now denote the sensitivity error with respect to sl
j as

δl
j =

∂C
∂sl

j
. (1.1)

Thus,
∂C

∂wij
= δl

j x
l−1
i .

Equivalently, given

∂C
∂bl

j
=

∂C
∂sl

j

∂sl
j

∂bl
j
,

we compute
∂sl

j

∂bl
j
= −1.

Thus,
∂C
∂bl

j
= −δl

j .

Thus, the gradient of the cost function

∇C = δl
j(xl−1

i ,−1).
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Next, we need to find the value of δl
j . To do so, we use the backpropagation

algorithm. To compute an arbitrary δl
j , we start computing δL+1

j and move back-
ward through the network. As expected, the expression for δl

j depends on the cost
function. In this section, we assume the cost function is the quadratic cost function

C(w, b) =
1

2m0

m0

∑
j=1

( f (x0
j )− yj)2.

Now, the expression above can be rewritten as

C(w, b) =
1

2mL+1

mL+1

∑
j=1

(xL+1
j − yj)2.

Using that xl
j = φ(sl

j) for any l, j and the chain rule, equation 1.1 becomes

δL+1
j =

∂C
∂sL+1

j

=
1

mL+1
(xL+1

j − yj)φ′(sL+1
j ),

for l = L + 1. Next, we express δl−1
i as a function of δl

j . First, applying the chain

rule and using that sl
j is a function of sl−1

k , we get

δl−1
k =

∂C
∂sl−1

k

=
ml

∑
j=1

∂C
∂sl

j

∂sj
l

∂sl−1
k

=
ml

∑
j=1

δl
j

∂sj
l

∂sl−1
k

. (1.2)

Now,
∂sj

l

∂sl−1
k

=
∂(∑

ml−1
k=1 wl

jk φ(sl−1
k )− bl

j)

∂sl−1
k

= wl
ij φ

′(sl−1
k ).

Lastly, substituting into 1.2

δl−1
k = φ′(sl−1

k )
ml

∑
j=1

δl
jw

l
ij.

This expression is known as the backpropagation formula.

1.3.4 Updating the network, gradient descent

Recall that we defined the cost function to fulfill C(w, b) ≈ 0, when f (x0
j ) ≈ yj

for all j. Thus, we aim to implement the learning process and find an algorithm
that finds weights and biases so that C(w, b) ≈ 0. To do so, we use the gradient
descent method. Let us first define ∆C given two arbitrary directions x1 and x2

∆C ≈ ∂C
∂x1

∆x1 +
∂C
∂x2

∆x2.
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Now recall

∇C ≡
(

∂C
∂x1

,
∂C
∂x2

)T

.

Using ∆x ≡ (∆x1, ∆x2)
T we get

∆C ≈ ∇C · ∆x.

Let us now define
∆x = −η∇C,

where η ⪆ 0. Therefore

∆C ≈ −η∇C · ∇C = −η∥∇C∥2.

Since
∥∇C∥2 ≥ 0 ⇒ ∆C ≤ 0.

This result shows that C will never increase when modifying x as ∆x = −η∇C.
This yields the "update rule" of gradient descent

x → x′ = x − η∇C.

Now, let us consider a neural network. Rewriting the expression above for
given weights and biases, we get

wl
ij(n + 1) = wl

ij(n)− ηδl
j(n)xl−1

i (n)

bl
j(n + 1) = bl

j(n) + ηδl
j(n),

where xl
i(n) and δl

j(n) are functions of the weights, wl
ij(n), and biases, bl

j(n), ob-
tained at the nth step and derived in sections 1.3.2 and 1.3.3.
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1.3.5 Algorithm overview

We have presented the different steps of the training process. The training
process is an iterative process that allows for "learning" to happen. We give a
schematic containing the training steps to allow the reader to understand the
training process. Before training an activation function, the learning rate and
cost function need to be chosen. Afterward, these parameters can be changed to
optimize the accuracy of the network.



Chapter 2

The foundations of quantum
computing

Classical computers have limited computational power. For example, model-
ing a many-body system, such as a molecule, can rapidly become computationally
impossible for classical computers. Quantum computation has the potential to
tackle solving complex systems problems. Although the implementation of quan-
tum computers is in its early stages and has to overcome multiple challenges, it is
a reality.

Understanding quantum mechanics is essential for understanding quantum
computers. Thus it is also crucial for understanding quantum neural networks.
Quantum mechanics has strong connections to many branches of mathematics,
particularly functional analysis, and Hilbert spaces.

This chapter aims to introduce relevant quantum mechanics concepts from a
mathematics perspective. These are the basic concepts of quantum computing that
are critical for the understanding of chapter 3. First, we introduce Hilbert spaces,
the quantum bit, and its characteristics and properties. Then, we present the
gate model in quantum computing and the universality theorems. Lastly, we de-
scribe the current limitations of today’s quantum computers and give two crucial
definitions for understanding the implementation of dissipative quantum neural
networks. In this chapter, the superscript ∗ represents the complex conjugate of a
given number.

2.1 The definition of a Hilbert Space

Hilbert spaces are the building blocks of quantum mechanics, as they appro-
priately describe the mathematical foundations of the theory. We illustrate the

14
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basic definitions of a Hilbert space described in [17].

Definition 2.1. Given a linear complex space X. We define the inner product

(·, ·) : X × X → C

such that for all x, y, z ∈ X

i (x, αy + βz) = α(x, y) + β(x, z); α, β ∈ C.

ii (y, x) = (x, y)∗.

iii (x, x) = 0 ⇔ x = 0.

iv (x, x) ≥ 0.

Note that it can be inferred that (·, ·) is antilinear in the first argument, i.e.,

(αx + βy, z) = α∗(x, z) + β∗(y, z).

Definition 2.2. A Hilbert space is a complete inner product space.

2.2 Dirac notation

In this section, we will delve into the details of the Dirac notation, the prevalent
method for expressing quantum states in quantum mechanics.

Given ψ = (α0, . . . , αn) ∈ Cn+1, we refer to the column vector

|ψ⟩ =

 α0
...

αn


as a ket |ψ⟩, and we represent its adjoint with the so-called bra ⟨ψ|

⟨ψ| = (α∗
0 , . . . , α∗

n) .

Let us now define the following inner product referred to as a bra-ket. Let φ =

(β0, . . . , βn) ∈ Cn+1, now

⟨ψ | φ⟩ = (α∗
0 , . . . , α∗

n)

 β0
...

βn

 = α∗
0 β0 + · · ·+ α∗

nβn.
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2.3 Quantum bits

A classical computer operates with strings of zeros and ones. Every position in
these strings is called a bit and can contain either a 0 or a 1. Quantum computers
operate with the so-called qubits, which are quantum states that are allowed to be
in a superposition of the two orthonormal vectors

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
.

These two vectors form the canonical basis of C2 and are referred to as the com-
putational basis. Now, qubits in a so-called pure state can be expressed as

|ψ⟩ = α |0⟩+ β |1⟩ ,

where α, β ∈ C and fulfill |α|2 + |β|2 = 1. Let us now build the tools to deal with
multi-qubit systems. In this section, definitions are extracted from [18] and [19].

Definition 2.3. The tensor product of two vector spaces H1 and H2 is a vector space,
denoted as H1 ⊗ H2. It is constructed by taking the bases of each vector space
{|ψi⟩} with i ∈ {1, . . . , n}, and

∣∣ψj
〉

with j ∈ {1, . . . , m}, and combining them to
form a new basis: {|ψi⟩ ⊗

∣∣φj
〉
}. The tensor product is a bilinear map denoted by

⊗ : V × W → V ⊗ W

Definition 2.4. Let M1, M2 be two matrix spaces. We define the Kronecker product
as ⊗ : M1× M2 −→ M1 ⊗ M2 of A ∈ M1 and B ∈ M2 is defined as

A ⊗ B =

 A11B . . . A1LB
...

. . .
...

AK1B . . . AKLB

 ,

where Akl denotes the (k, l)-th entry of A.

Remark 2.5. Note, that for two qubits |ψ⟩ = α |0⟩+ β |1⟩ ∈ C2 and |φ⟩ = γ |0⟩+
δ |1⟩ ∈ C2 the Kronecker product

|ψ⟩ ⊗ |φ⟩ =
(

α

β

)
⊗
(

γ

δ

)
=


α · γ

α · δ

β · γ

β · δ

 ∈ C2 ⊗ C2 = C4.

From now on, we adopt the commonly used notation to refer to the Kronecker
product of two quantum states |ψ⟩ ⊗ |φ⟩ as |ψφ⟩.
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Example 2.6. Using this notation, we can express a two-qubit state generally as

|ψ⟩ = β00 |00⟩+ β01 |01⟩+ β10 |10⟩+ β11 |11⟩ ,

where |β00|2 + |β10|2 + |β01|2 + |β11|2 = 1.

2.4 The Bloch sphere

Figure 2.1: Bloch representation of a quantum state |ψ⟩

Qubits can be visualized as points on the so-called Bloch sphere, named after F.
Bloch, the Swiss physicist who first proposed this representation. Let us justify the
Bloch representation [22]. We first consider the pure qubit state |ψ⟩, normalized
to 1 with |α|2 + |β|2 = 1

|ψ⟩ = α |0⟩+ β |1⟩ ,

where α, β ∈ C. The expression above can be rewritten as

|ψ⟩ ≡ cos(
θ

2
) |0⟩+ sin(

θ

2
)eiφ |1⟩ ,

where we take θ ∈ [0, π] and φ ∈ [0, 2π) such that there is no angle repetition,
refer to figure 2.1. Lastly, we use spherical coordinates to represent the quantum
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state on the surface of a unit sphere

x = sin θ cos φ,

y = sin θ sin φ,

z = cos θ.

2.5 Pure and mixed quantum states

Previously, we have studied quantum systems described by state vectors and
referred to them as states. We distinguish those pure states from a general type of
quantum state: the mixed state, using the definitions given in [1, 20, 21].

Definition 2.7. A mixed state is a set of quantum states

|ψ⟩ = {(pi, |ψi⟩)}n
i=1 ,

where pi ∈ [0, 1] for i ∈ {1, . . . n} form a probability distribution such that ∑n
i pi =

1 and each |ψi⟩ is an associated pure state.

Definition 2.8. Given two vectors u and v of dimension n and m respectively. We
define the outer product of u and v as

u ⊗ v =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn
...

...
. . .

...
umv1 umv2 . . . umvn

 .

Example 2.9. Given a quantum state |ψ⟩ we express the outer product of the state
with itself as |ψ⟩ ⟨ψ|

|ψ⟩ ⟨ψ| =


α0

α1
...

αN


[

α∗
0 α∗

1 . . . α∗
N

]
=


|α0|2 α0α∗

1 . . . α0α∗
N

α1α∗
0 |α1|2 . . . α1α∗

N
...

...
. . .

...
αNα∗

0 αNα∗
1 . . . |αN |2

 .

Definition 2.10. The density operator of a mixed quantum state |ψ⟩ is denoted as

ρ =
n

∑
i=1

pi |ψi⟩ ⟨ψi| .

Remark 2.11. Given the pure state |ψ⟩, the density operator can be expressed as

ρ = |ψ⟩ ⟨ψ| .

Remark 2.12. For a pure state, the density operator fulfills

ρ2 = ρ.
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2.5.1 Reduced density matrix

Equivalently to example 2.5, we can build composite mixed-state systems.
Given a state ρA ∈ HA and another state ρB ∈ HB, we define the density ma-
trix of the two states as

ρAB = ρA ⊗ ρB ∈ HA ⊗ HB.

Given a linear operator ρ : H → H in a Hilbert space H, the space composed
by these operators is L(H). Now, recall that the trace of the operator ρ, Tr :
L(H) → C, is defined as the sum of the diagonal elements of ρ. When using a
basis |ψi⟩ ∈ H we can then express the trace of ρ as Tr(ρ) = ∑dim

i=1 ⟨ψi| ρ |ψi⟩, where
dim is the dimension of H.

Definition 2.13. Given the density matrix of a compound system ρAB ∈ H =

HA ⊗ HB, we define the partial trace over B as a map TrB : L(H) → L(HA) defined
as

TrB(ρAB) =
dB

∑
j=1

(
IA ⊗

〈
bj
∣∣) ρAB

(
IA ⊗

∣∣bj
〉)

,

where ∣∣bj
〉
=
[

bj1 bj2 · · · bjdB

]t
,

is a basis of the Hilbert space HB, dB = dim Hb, and IB is the identity operator in
HB.

2.6 Entangled states

Quantum entanglement is one of the distinctive features of quantum mechan-
ics compared to classical physics. An entangled state is a quantum state which
cannot be factored into a product of different quantum states; this concept is illus-
trated in definition 2.14 [2].

Definition 2.14. A quantum state |ψ⟩ ∈ C4 is entangled if given two quantum states
|ϕ1⟩ = α |0⟩+ β |1⟩ ∈ C2 and |ϕ2⟩ = γ |0⟩+ δ |1⟩ ∈ C2 the system

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ =
(

α

β

)
⊗
(

γ

δ

)
=


α · γ

α · δ

β · γ

β · δ

 ∈ C2 ⊗ C2 = C4

has no solution.
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A remarkable property of entangled states is their response to measurement.
When a multiple qubit entangled state is measured, we force the collapse onto a
new state of all qubits. We now introduce an example to illustrate this property
better.

Example 2.15. Alice and Bob are building an experiment and studying the entan-
gled quantum state |ψ⟩ = 1√

2
(|0⟩A |0⟩B + |1⟩A |1⟩B). Prior to Alice applying the

gate σz
A, Bob can measure σz

B = ±1, but after Alice performs the measurement, the
state in B collapses, and Bob can only obtain a single result.

Remark 2.16. Note that there are no restrictions to the separation at which two
qubits are entangled, i.e., two qubits stay entangled given any distance between
the two.

2.7 The gate model in quantum computing

2.7.1 Quantum gates

Quantum gates and qubits are the building blocks of gate-based quantum com-
putations. Quantum gates are unitary operators acting on qubits and can be repre-
sented by unitary matrices of dimension 2n × 2n, where n is the number of qubits
the gate acts on.

Definition 2.17. A n × n dimensional matrix U, is unitary if it satisfies

U†U = UU† = UU−1 = I,

where U† denotes the hermitian conjugate.

Let us now introduce some helpful properties of unitary transformations; see
[4] for further details.

Proposition 2.18. Given two unitary matrices U and V, the composition UV is
unitary.

Proof. Let U and V be unitary matrices, then

(UV)† = V†U† = V−1U−1 = (UV)−1.
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Proposition 2.19. Let U be a unitary matrix, then U preserves inner products,

(Ua⃗, U⃗b) = (⃗a, b⃗).

Proof. Let U be a unitary matrix, then

(Ua⃗, U⃗b) = (U |a⟩)†(U ⟨b|) = ⟨a|U†U |b⟩ = ⟨a|b⟩ = (⃗a, b⃗).

Proposition 2.20. Let U be a unitary matrix, then all of its eigenvalues satisfy
|λ| = 1, i.e., all eigenvalues are of the form eiθ .

Proof. Let U be a unitary matrix. The eigenvalue equation for U is then

Uv = λv.

Taking the conjugate transpose of the expression above,

v∗U∗ = λ∗v∗.

Note that we used ∗ to refer to the conjugate transpose. By multiplying both
relations, we get

v∗U∗Uv = λ∗v∗λv ⇒ v∗ Iv = (λ∗λ) v∗v ⇒ ∥v∥2 = |λ|2∥v∥2 ⇒ |λ| = 1.

This definition of the quantum gate is coherent for pure states, yet it rests unclear
how to apply unitaries to mixed-states ρ. Given a unitary matrix U, we say we
apply a gate on a mixed state ρ performing

UρU†.

In quantum computing, we have infinite single-qubit gates since we can map
one qubit to any point on the Bloch sphere, refer to section 2.4. Let us now indicate
several examples obtained from [23]. The Pauli X, Y, and Z gates are fundamental
types of such single-qubit gates. We represent such gates with the standard basis
{|0⟩ , |1⟩} as

X = σx =

(
0 1
1 0

)
, Y = σy =

(
0 −i
i 0

)
, Z = σz =

(
1 0
0 −1

)
,

which represent a π radians rotation around the x, y, or z axis respectively.
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Remark 2.21. The X-gate is also referred to as a NOT-gate. To understand it, let
us study the state |0⟩ when acted upon by the X-gate

X |0⟩ =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩ .

Note that this gate acts analogously to the logical NOT-gate, which turns 0 bits
into 1 bits and vice versa.

Let us also present the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
(2.1)

which creates a superposition of |0⟩ and |1⟩. The Hadamard gate can also be
interpreted as a π

2 radians rotation in y, followed by a π radians rotation in x.
When applied to |0⟩ and |1⟩, the Hadamard gate gives

H |0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

|0⟩+ |1⟩√
2

,

H |1⟩ = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=

|0⟩ − |1⟩√
2

.

There also exist gates that act on multiple qubits. An essential type of these
multiple qubit gates is the controlled gate.

Definition 2.22. Given a unitary matrix U of dimension n the (d+n)-dimensional
controlled-U gate, c − U, is the matrix of the form(

I 0
0 U

)
,

where I is the d-dimensional identity matrix.

Remark 2.23. Note that the two-qubit controlled-U gate applies the U gate to the
second qubit when the first qubit is in state |1⟩

(c − U) |00⟩ = |00⟩ , (c − U) |11⟩ = (I ⊗ U) |11⟩ ,

(c − U) |01⟩ = |01⟩ , (c − U) |10⟩ = (I ⊗ U) |10⟩ .

An important example of controlled gates is the C-NOT gate, which expressed
in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Figure 2.2: Schematic representation of a quantum circuit consisting of a
Hadamard gate, followed by a C-NOT gate, and an arbitrary U three-qubit gate.
Only the center qubit is measured, and the other two qubits are dismissed.

Quantum circuits

Equivalent to the classical logic gate implementation, we can build quantum
circuits consisting of applied gates and measurements on qubits to perform com-
plex algorithms. Let us first introduce the schematic representation of quantum
circuits. In figure 2.2 we represent a quantum circuit consisting of 3 qubits. We
represent time in the x-axis and depict qubits evolving in time as horizontal lines
with their initial state at the left-most side. Gates and operations acting on the
qubits are represented as different shapes on top of the qubits.

Let us now introduce two fundamental theorems which play a crucial role in
the proper implementation of quantum circuits.

Solovay-Kitaev theorem

In classical circuits, a universal set of gates are those gates that can implement
any Boolean function. Finding gates that possess such properties allow for cheaper
and easier circuit implementations. In quantum circuits, there exists the equivalent
concept to universal gates. We refer to [24] to derive the relevant definitions.

Definition 2.24. A gate set, G, is universal if the unitary transformations performed
with such set are dense in U(2n), up to a given phase, i.e., for all M ∈ U(2n) and
ϵ > 0, exists a unitary M̄ that fulfills sup(||M − M̄||) ≤ ϵ.

The Solovay-Kitaev theorem ensures that a universal set of gates exists for
single-qubit gates.

Theorem 2.25. (Solovay-Kitaev theorem) Given a universal set of single-qubit
gates, G ∈ U(2), with g−1 ∈ G for any g ∈ G, and such that the group generated
by its elements < G >∈ SU(2). Then, there exists c s.t. for any U ∈ SU(2) and a
given ϵ; there is a sequence S of gates in G with length O(logc 1

ϵ ) s.t. ||S −U|| ≤ ϵ.
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Figure 2.3: Universal single-qubit gate implementation.

There exist different sets of universal quantum gates. Let us introduce a universal
set of two-qubit gates, which will be of use in section 3.4 derived from [25].

Theorem 2.26. Any two-qubit gate can be implemented using a two-qubit canoni-
cal gate, and twelve single-qubit gates can be implemented as shown in figure 2.3.
The canonical gate is parametrized as a function of π/2 ≥ α ≥ β ≥ |δ|, and where

CAN(α, β, δ) = exp
(
−i
(
ασ⊗2

X + βσ⊗2
Y + δσ⊗2

Z
))

= RXX (απ) RYY (βπ) RZZ (δπ) .

Remark 2.27. A single qubit operation can be decomposed as U = Zp1Yp2Yp3 ,
where p1, p2, p3 ∈ R, and

Yp ≈ RY(πp) = e−i π
2 pY,

Zp ≈ RZ(πp) = e−i π
2 pZ

are parametrized Z and Y unitaries up to a phase. Such reparametrization can be
expressed as a single unitary

u (p1, p2, p3) =

(
cos (p1/2) −eip3 sin (p1/2)

eip2 sin (p1/2) ei(p3+p2) cos (p1/2)

)
.

No-cloning theorem

For classical systems cloning data or copying data is feasible. Classical comput-
ers constantly copy bits of information, but what about quantum computers? The
no-cloning theorem exhibits that no quantum operation can perfectly and deter-
ministically duplicate a pure state. A single unitary operator can only be used to
clone quantum states that are mutually orthogonal. We introduce the no-cloning
theorem and two proofs extracted from [26].
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Theorem 2.28. (No-cloning theorem) Let |ϕ⟩ and |ψ⟩ be two quantum states, and
Ucl a unitary which copies the quantum states:

|ϕ⟩ ⊗ |0⟩ Ucl−→ |ϕ⟩ ⊗ |ϕ⟩,
|ψ⟩ ⊗ |0⟩ Ucl−→ |ψ⟩ ⊗ |ψ⟩,

then ⟨ϕ|ψ⟩ is either 0 or 1.

Remark 2.29. Note that if ⟨ϕ|ψ⟩ = 0 ⇔ |ϕ⟩ and |ψ⟩ are orthogonal, and if ⟨ϕ|ψ⟩ =
1 ⇔ |ϕ⟩ = |ψ⟩.

We show two existing proofs of the no-cloning theorem. The first proof was
independently derived by D. Dieks in 1982 and Zurek and Wooters the same year.

Proof. Suppose there exists a unitary operator Ucl which can clone the state |ϕ⟩ =
α |0⟩+ β |1⟩. First, since ϕ is a pure state we apply Ucl

|ϕ⟩ ⊗ |0⟩ Ucl−→ |ϕ⟩ ⊗ |ϕ⟩ = α2 |00⟩+ β2 |11⟩+ αβ |01⟩+ βα |10⟩ .

On the other hand applying Ucl on each term:

(α |0⟩+ β |1⟩)⊗ |0⟩ Ucl−→ α |00⟩+ β |11⟩ .

Since both expressions differ, the unitary Ucl does not exist.

H. Yuen presented the second proof in 1986.

Proof. Since the inner product is preserved under unitary operations

⟨ϕ|ψ⟩ = (⟨ϕ| ⊗ ⟨0|)(|ψ⟩ ⊗ |0⟩) = (⟨ϕ| ⊗ ⟨0|)U†
clUcl(|ψ⟩ ⊗ |0⟩) =

= (⟨ϕ| ⊗ ⟨ϕ|)(|ψ⟩ ⊗ |ψ⟩) = ⟨ϕ|ψ⟩2 ⇒ ⟨ϕ|ψ⟩ is either 0 or 1.

2.7.2 Noisy intermediate-scale quantum devices

Currently, quantum computers are in the noisy intermediate-scale quantum era
(NISQ), which refers to the fabrication limitations and noise sensitivity of state-
of-the-art quantum computers. Quantum computers today are shallow and only
have a limited number of qubits and applicable gates. Such qubits are limited in
number and have high noise; therefore, they perform imperfect operations in the
so-called coherence time [6]. As a reference, the most powerful quantum processor
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today is the Osprey processor, announced in 2022 by IBM and composed of 433
functional qubits. The number of qubits in quantum processors is fast-growing;
according to IBM’s development roadmap, their quantum processors are expected
to have over 4,000 qubits by 2024. Common complications that current quantum
computers encounter are the loss of coherence of the wave function as a function of
time, non-precise gate implementation, and read-out errors. Quantum computing
in the NISQ does not allow for most theoretical work to be implemented, and
currently, methods such as variational approaches are being used.

2.8 Fidelity of a pair of quantum states

The fidelity of a pair of quantum states is a measure of their degree of similar-
ity. This section gives the appropriate definitions extracted from [27]. Comparing
two quantum states is an essential step in quantum machine learning because it
enables us to evaluate how closely the output quantum state produced by our
network matches the desired output quantum state, as discussed in Section 3.3.1.

Definition 2.30. Let ρ1 and ρ2 be pure states in a finite Hilbert space. We define
the fidelity between two pure states, F(ρ1, ρ2), as the transition probability:

F(ρ1, ρ2) = F (|ψ1⟩ ⟨ψ1|, |ψ2⟩ ⟨ψ2|) = |⟨ψ1 | ψ2⟩|2 .

Remark 2.31. Note that F(ρ1, ρ2) ∈ [0, 1], and F(ρ1, ρ2) = 1 ⇔ ρ1 = ρ2 and
F(ρ1, ρ2) = 0 ⇔ the two states are orthogonal (i.e., perfectly distinguishable).

Now, let ρ1 = |ψ1⟩ ⟨ψ1| be a pure state, and ρ2 a non-pure state. We can
generalize the definition of fidelity as follows:

F (|ψ1⟩ ⟨ψ1| , ρ2) = ⟨ψ1 |ρ2|ψ1⟩ .

Naturally, it is not trivial to define the fidelity of two non-pure quantum states
which provide adequate physical meaning. In 1994, R. Jozsa introduced an ax-
iomatic definition of the fidelity of a pair of quantum states.

Definition 2.32. The fidelity of a pair of quantum states ρ and σ is a function F(ρ, σ)

that follows

i F(ρ, σ) ∈ [0, 1].

ii F(ρ, σ) = 1 ⇐⇒ ρ = σ.

iii F(ρ, σ) = F(σ, ρ).
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iv F
(
UρU†, UσU†) = F(ρ, σ) for any unitary matrix U.

v F(ρ, σ) = Tr(ρσ) if ρ or σ are pure states.

and gave a definition of fidelity that fulfills such properties

F(ρ, σ) =

(
Tr
√√

ρσ
√

ρ

)2

,

where
√

ρ is uniquely defined in theorem 2.33 [28]. This definition of the fidelity
of two quantum states is one of the most commonly used.

Theorem 2.33. Given a positive semidefinite square matrix A of dimension n, there
exists a unique positive semidefinite n × n matrix B, which fulfills B2 = A.

Remark 2.34. Using the spectral theorem, we can write A as

A = U diag [λ1, . . . , λn]U∗,

where U is an orthogonal matrix and λi ≥ 0 ∀i ∈ {1, . . . , n}. Thus, we can write B
as

B = U diag
[√

λ1, . . . ,
√

λn

]
U∗.

2.9 Completely positive maps

We give a set of definitions and results that will be of use in section 3.3, where
we will use completely positive maps to describe quantum circuits. The theorems
presented in this section provide essential properties to prove the propositions of
chapter 3. All results are extracted from [29] and [30].

Definition 2.35. Let A and B be C∗-algebras, then a linear map E : A → B is a
positive map if it maps E(A+) → B+, where A+, B+ are the positive parts of A and
B respectively.

Definition 2.36. Given the C∗-algebras A and B, and the map

ϕ : id ⊗ E : Cn×n ⊗ A → Ck×k ⊗ B.

We say E is a completely positive map if id ⊗ E is a positive map for every k.

Definition 2.37. Let H be a Hilbert space, and B(H) be the bounded operators on
H, ρ : H → H. The map E is trace preserving if

Tr(E(ρ)) = Tr(ρ) ∀ρ ∈ B (H) .
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Theorem 2.38. (Stinespring dilation theorem)
All completely positive and trace-preserving maps E on H = Cn can be ex-

pressed as
E(ρ) = Tr2

(
U(ρ ⊗ η)U†

)
,

where U is a unitary on the space Cn ⊗ CN with n ≤ N, λ ∈ CN is a quantum
state, and Tr2 represents the partial trace acting on the second factor of the tensor
product.

Remark 2.39. According to the Stinespring dilation theorem, any quantum circuit
that can be described using tensor products, unitary transformations, and partial
trace operations can be analogously described using completely positive trace-
preserving maps.

Theorem 2.40. (Kraus’ theorem) Given two Hilbert spaces H and K, a linear map
E : H → K is completely positive and trace-preserving if

E(ρ) =
r

∑
j=1

KjρK†
j ,

where
r

∑
j=1

K†
j Kj = 1.



Chapter 3

Quantum machine learning

Quantum machine learning (QML) involves the combination of machine learn-
ing techniques and quantum computing and aims to use quantum science to tackle
data-driven problems. Several approaches have been proposed to achieve this
goal, including using classical machine learning algorithms to process quantum
data, quantum-enhanced machine learning, and quantum algorithms that resem-
ble classical machine learning algorithms [10, 11, 12, 13].

This chapter focuses on the so-called quantum neural networks first presented
in 1995 by S. Kak [31]. In S. Kak’s paper, quantum neural networks are presented
theoretically. Today, there are multiple proposals for QNNs, and their implemen-
tation is now a reality, although it is affected by the current limitations of quan-
tum computers. In this thesis, we review the so-called dissipative quantum neural
networks (DQNN) proposed by K. Beer in 2020 [14] and focus on the theory intro-
duced in K. Beer’s Ph.D. thesis published in 2022 [15]. We focus on K. Beer’s work
as it has a solid mathematical foundation and allows for a description analogous
to classical neural networks.

First, we present the quantum perceptron and introduce dissipative neural net-
works. Afterward, we introduce the training algorithm. We review the training
problem, the feed-forward algorithm, backpropagation, and the network’s updat-
ing procedure. Lastly, we describe the network’s implementation on NISQ devices.

3.1 The quantum perceptron

The quantum perceptron is the equivalent of the classical perceptron neuron
in DQNN. This perceptron is defined as a parametrized unitary matrix, U, of
dimension 2m+n × 2m+n, where m is the number of input qubits and n the number
of output qubits.

Recall the structure of a classical perceptron described in section 1.1.1. To build

29
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the quantum equivalent, we build an analogous system, shown in figure 3.1. To
implement it, we initialize m input qubits in the desired state ρin and n qubits,
which will act as output qubits in the state |0 . . . 0⟩n ⟨0 . . . 0|. Then, an arbitrary
perceptron is applied, and the output is an n-qubit output state denoted as ρout.

(a) (b)

Figure 3.1: (a) Circuit implementation of a perceptron. (b) Schematic representa-
tion of quantum perceptrons analogous to the representation of classical percep-
trons. The circles on the left are the input qubits, the circles on the right are the
output qubits, and the connecting lines represent the unitary acting on the qubits.

3.2 Dissipative quantum neural networks

Dissipative quantum neural networks are the quantum equivalent of neural
networks we will focus on in this work. Such structures can be represented and
implemented as shown in figure 3.2 and 3.3. Perceptrons are composed of arbi-
trary unitary matrices; thus, two perceptrons do not usually commute. Therefore,
we number the perceptrons acting between layers. Here, Ul

j is the jth perceptron
acting between layer l and l − 1. As can be seen in figure 3.3 U1

1 is the perceptron
that first acts on the qubits, followed by the perceptron U1

2 , and so forth. When
representing such structures schematically, we represent the perceptron that acts
first on top, followed by the perceptrons acting afterward underneath it. Note
that the structure chosen for implementing DQNNs follows from the no-cloning
theorem described in section 2.7.1. If a gate could clone quantum states, we could
reduce the number of qubits in the network.
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Figure 3.2: Network representation for a DQNN consisting of 2 hidden layers.
Note that we use L to refer to the last hidden layer. The notation for input, hidden,
and output layers are built equivalently to the classical neural network analog.
The identical color circles are qubits in the same layer, and the same style lines
represent the same applied perceptron.

Figure 3.3: Implementation of the DQNN in figure 3.2.

3.3 The training algorithm

3.3.1 The training problem

Let us now define the training problem. In classical neural networks, we had
a training data set. For example, when doing image recognition, we had images
of handwritten numbers and labels with the number that each image represented.
We aimed to train the network to output the correct number when given a specific
image. For DQNNs, we have an equivalent situation. We have data sets of input
quantum states and the corresponding output state. Our aim is that the DQNN
outputs the desired quantum state, i.e., the network "learns" to apply a specific set
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of unitary matrices, depending on the input quantum state.
Let us define our data pairs

{∣∣ϕin
x
〉

,
∣∣ϕdes

x
〉}

, where ρin
x ≡

∣∣ϕin
x
〉 〈

ϕin
x
∣∣ is the

input state and
∣∣ϕdes

x
〉

is the desired output. To compare the output of our network
ρout

x to
∣∣ϕdes

x
〉

we use the definition of fidelity of two quantum states defined in
section 2.8. Equivalently to classical neural networks, we divide our N training
data pairs into two sets: S training data pairs

{∣∣ϕin
x
〉

, |ϕtr
x ⟩
}

, and N-S validation
data sets

{∣∣ϕin
x
〉

,
∣∣ϕval

x
〉}

.

3.3.2 Feed-forward

The first step of the algorithm consists of applying the perceptrons as shown
in figure 3.3. Let us derive the expression for the general output quantum state
ρout.

Recall the expression for a unitary transformation given an initial state

UρinU†.

Given the general initial state of our system and the first applied perceptron, U1
1

the expression above becomes

U1
1 ⊗ 11

1(ρ
in ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|)U1

1
† ⊗ 11

1,

where 11
1 represents the identity matrix acting on the qubits that are not affected

by U1
1 , and |0 . . . 0⟩hid,out ⟨0 . . . 0| is the zero product state considering all qubits in

the hidden and output layers. Henceforward, we write Ul
j ⊗ 1l

j as Ul
j for simplicity.

Subsequently, for the first layer of perceptrons

U1
m1

. . . U1
1(ρ

in ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|)U1
1

† . . . U1
m1

†,

where ml is the number of perceptrons that act as the intermediary between layer
l and layer (l − 1). We express the sequence of applied perceptrons as a single uni-
tary matrix U = (U1

1 . . . U1
m1
) . . . (Ul

1 . . . Ul
ml
) . . . (Uout

1 . . . Uout
mout

) = U1 . . . Ul . . . Uout

where ml is the number of perceptrons acting between the lth layer and the (l −
1)th, and Ul = Ul

1 . . . Ul
ml

. After applying all perceptrons

U(ρin ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|)U†.

We can now express the output quantum state ρout

ρout = Trin,hid(U(ρin ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|)U†), (3.1)

where Trin,hid denotes the partial trace on the system of qubits in the input and
hidden layers. In section 2.9, we showed that any quantum circuit that can be
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described using unitary transformations, partial traces, and tensor products is
equivalent to the completely positive map description. Thus, we can rewrite the
expression above as

ρout = E(ρin),

where E is a completely positive map. Equivalently to equation 3.1, we can express
the output quantum state

ρout = E L(E L−1(. . . E2(E1(ρin)) . . .)), (3.2)

given
E l(Xl−1) = Trl−1(Ul(Xl−1 ⊗ |0 . . . 0⟩l ⟨0 . . . 0|Ul†), (3.3)

where Trl−1 is the partial trace on the (l − 1)th layer, and |0 . . . 0⟩l ⟨0 . . . 0| is the
zero product state of the qubits in layer l.

Example 3.1. For a better understanding of equations 3.2 and 3.3, let us compute
the output quantum state of the neural network in figure 3.4. First, let us write
the initial quantum state of layers 0 and 1

ρin ⊗ |00⟩ ⟨00| .

We now apply the perceptrons acting on such a state

U1
2U1

1(ρ
in ⊗ |00⟩ ⟨00|)U1

1
†U1

2
†.

Note that we are omitting the identity matrices for clearer notation. We now trace
out the qubits on the input layer and are left with the output of the first layer X0

X0 = Tr0(U1
2U1

1(ρ
in ⊗ |00⟩ ⟨00|)U1

1
†U1

2
†).

We consider the quantum state of the output layer and the output state X0

Tr0(U1
2U1

1(ρ
in ⊗ |00⟩ ⟨00|)U1

1
†U1

2
†)⊗ |000⟩ ⟨000| .

(a) (b)

Figure 3.4: (a) Implementation of the quantum neural network. (b) Schematic
representation of the quantum neural network.
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We apply the perceptrons acting between layers 1 and 2 and, lastly trace out the
hidden layer

ρout = Tr1(U2
3U2

2U2
1(tr0(U1

2U1
1(ρ

in ⊗ |00⟩ ⟨00|)U1
1

†U1
2

†)⊗ |000⟩ ⟨000|)U2
1

†U2
2

†U2
3

†).

3.3.3 Back-propagation

Similarly to the classical backpropagation algorithm described in section 1.3.3,
we need to derive an expression for backpropagating a quantum state through the
network. We get a general expression for the backpropagation of a quantum state
computing the adjoint of E . We carry out this derivation for educational purposes
to further understand how the network behaves. In [15], it is shown how the
expression of the adjoint given below simplifies the simulation of DQNNs.

Proposition 3.2. The adjoint for the completely positive map

E l(Xl−1) = Trl−1(Ul(Xl−1 ⊗ |0 . . . 0⟩l ⟨0 . . . 0|)Ul†)

is
F l

t (Xl) = Trl((1l−1 ⊗ |0 . . . 0⟩l ⟨0 . . . 0|)Ul†(t)(1l−1 ⊗ Xl)Ul(t)),

where 1l−1 is the identity matrix acting on the (l − 1)th layer, and |0 . . . 0⟩l ⟨0 . . . 0|
is the zero product state of all qubits in layer l.

Proof. Given |α⟩ , |β⟩ vectors acting on the lth layer and |δ⟩ , |γ⟩ vectors acting on
the (l − 1)th layer we take

⟨α| E l
t (|δ⟩ ⟨γ|) |β⟩ = ⟨α|Trl−1(Ul(|δ⟩ ⟨γ| ⊗ |0 . . . 0⟩l ⟨0 . . . 0|Ul†) |β⟩ .

Recall that given an operator ρ : H → H and an orthonormal basis
∣∣vj
〉

j ∈ H the

Tr(ρ) = ∑j vT
j ρvj. Thus,

⟨α| E l
t (|δ⟩ ⟨γ|) |β⟩ = ∑

j

〈
α, vj

∣∣Ul(|δ⟩ ⟨γ| ⊗ |0 . . . 0⟩l ⟨0 . . . 0|Ul† ∣∣β, vj
〉
=

= ∑
j

〈
α, vj

∣∣Ul(|δ, 0 . . . 0⟩ ⟨γ, 0 . . . 0|Ul† ∣∣β, vj
〉

. (3.4)

Now, using theorem 2.40, we rewrite E as

E l
t

(
Xl−1

)
= ∑

j
Kl

j(t)Xl−1Kl†
j (t).
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Here Kl
j is the Kraus operator acting between the layers (l − 1) and l. We now

compute the adjoint of E l
t
(
Xl−1), which leads to

F l
t

(
Xl
)
= ∑

j
Kl

j
†(t)XlKl

j(t).

From equation 3.4, follows that ⟨α|Kl
j |δ⟩ =

〈
α, vj

∣∣Ul(t) |δ, 0 . . . 0⟩. Therefore, we
get

⟨δ| F l
t (|α⟩ ⟨β|) |γ⟩ = ∑

j
⟨δ|Kl

j
†(|α⟩ ⟨β|)Kl

j |γ⟩ =

= ∑
j
⟨δ, 0 . . . 0|Ul(t)†(

∣∣α, vj
〉 〈

β, vj
∣∣)Ul(t) |γ, 0 . . . 0⟩ .

Now, note that ∑j
∣∣vj
〉 〈

vj
∣∣ = 1l−1, where 1l−1 is the identity matrix acting on the

(l − 1)th layer. Thus,

⟨δ| F l
t (|α⟩ ⟨β|) |γ⟩ = ⟨δ, 0 . . . 0|Ul(t)†(1l−1 ⊗ |α⟩ ⟨β|)Ul(t) |γ, 0 . . . 0⟩ .

Note that we can write

⟨b|B O |b⟩B = TrB(1A ⊗ |b⟩B ⟨b|B O),

given any |b⟩B ∈ HB, and any operator O. Since

TrB(1A ⊗ |b⟩B ⟨b|B O) = ∑
v
⟨v|B 1A ⊗ |b⟩B ⟨b|B O |v⟩B ,

where |v⟩B are the basis vectors of HB, and thus

TrB(1A ⊗ |b⟩B ⟨b|B O) = ∑
v
⟨b|B |v⟩B ⊗ 1AO ⟨v|B |b⟩B = ⟨b|B O |b⟩B ,

where we used the basis representation of a vector, ∑v ⟨v|B |b⟩B = |b⟩B. Thus, for
a general operator Xl

F l
t (Xl) = Trl((1l−1 ⊗ |0 . . . 0⟩l ⟨0 . . . 0|)Ul†(t)(1l−1 ⊗ Xl)Ul(t)).

3.3.4 Updating the network

Analogously to section 1.3.1, we define a cost function to compare the output
quantum state of the network ρout

x to
∣∣ϕdes

x
〉
. Naturally, we make use of fidelity

defined in section 2.8 to define such a function. We define the cost function as the
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fidelity of ρout
x and

∣∣ϕdes
x
〉

averaged over the set of S data pairs studied. For the
training data, the cost function becomes

Ctr =
1
S

S

∑
x=1

F
(∣∣ϕtr

x
〉 〈

ϕtr
x
∣∣ , ρout

x
)
=

1
S

S

∑
x=1

〈
ϕtr

x
∣∣ρout

x
∣∣ ϕtr

x
〉

. (3.5)

and for the N − S validation data pairs the cost function

Cval =
1

N − S

N

∑
x=S+1

〈
ϕval

x
∣∣ρout

x
∣∣ ϕval

x

〉
. (3.6)

The goal of the training process is to modify the parameters of the network
so that the output quantum state approaches the desired state

∣∣ϕdes
x
〉
. We aim to

maximize the cost function, as the fidelity reaches its maximum value when the
two quantum states are equal. In this section, we derive that the network can be
updated as

Ul
j(t + ϵ) = eiϵKl

j(t)Ul
j(t),

given a certain matrix Kl
j, whose structure is discussed in proposition 3.5. Let us

now introduce a result that will be useful in the proof of proposition 3.5.

Proposition 3.3. The set of tensor products of all Pauli operators σ ≡ {σ1 =

I, σx, σy, σz} form an orthogonal basis for the vector space of 2n × 2n complex ma-
trices.

Recall the definition of Pauli matrices in section 2.7.1. This proposition 3.3 can
be illustrated using the following result.

Corollary 3.4. Given a matrix A of dimension 2n × 2n we can express the decom-
position into Pauli matrices as

A = ∑
α1,...,αn=1,x,y,z

Aα1,...,αn(σα1 ⊗ . . . ⊗ σαn),

where Aα1,...,αn = 1
2n Tr((σα1 ⊗ . . . ⊗ σαn) · A) and ∑i,j = ∑i ∑j.

Proposition 3.5. The update matrix is

Kl
j(t) =

η2ml−1 i
S ∑

x
Trrest

(
Ml

j(x, t)
)

,
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where η is the so-called learning rate, S is the number of training data pairs; the
trace acts on the qubits that remain unchanged by the operator Ul

j and

Ml
j(x, t) =

[
Ul

j(t) . . . U1
1(t)

(
ρin

x ⊗ |0 . . . 0⟩⟨0 . . . 0|
)

U1†
1 (t) . . . Ul

j(t),

Ul
j+1

†(t) . . . UL+1
mL+1

(t)
(

1in, hid ⊗
∣∣∣ϕSV

x

〉 〈
ϕSV

x

∣∣∣)UL+1
mL+1

(t) . . . Ul
j+1(t)

]
.

Here, the unitary Ul
j affects the (l − 1)th and lth layers, 1in, hid is the identity matrix

acting on the output and all hidden layers, and layer L is the last hidden layer as
shown in figure 3.2.

Proof. Suppose we can update the unitaries of the network in the following man-
ner

Ul
j(t + ϵ) = eiϵKl

j(t)Ul
j(t), (3.7)

with a given matrix Kl
j and ϵ ∈ R. Recall that the cost function equals 1 when the

two compared states are equal. Thus, we aim to maximize the cost function Ctr at
each step. Let us then find the derivative dCtr

dt

dCtr(t)
dt

= lim
ϵ→0

Ctr(t + ϵ)− Ctr(t)
ϵ

= lim
ϵ→0

1
S ∑S

x=1 ⟨ϕtr
x | ρout

x (t + ϵ)− ρout
x (t) |ϕtr

x ⟩
ϵ

.

(3.8)
The expression for ρout(t) is known. Therefore, we only need to compute ρout(t +
ϵ). Using expression 3.7 and the output expression of equation 3.2, we get

ρout
x (t + ϵ) =Trin,hid

(
eiϵKL+1

mL+1
(t)UL+1

mL+1
(t) . . . eiϵK1

1(t)U1
1(t)

(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

U1†
1 (t)e−iϵK1

1(t) . . . UL+1
mL+1

(t)e−iϵKL+1
mL+1

(t)
)

,

where |0 . . . 0⟩hid, out ⟨0 . . . 0| is the zero product state of all qubits in the hidden
and output layers. Note that we omit the identity matrices for clearer notation
equivalently to example 3.1. Note that we can rewrite the expression above as a
Taylor series using

f (h + t) = f (t) +
d f
dh

(t)h +O(h2).

Thus,

ρout
x (ϵ + t) = ρout

x (t) +
dρout

x
dϵ

(t)ϵ +O(ϵ2). (3.9)

Let us then compute dρout
x

dϵ separately. Using the chain rule

dρout
x

dϵ
(t) =Trin, hid(i(KL+1

mL+1
eiϵKL+1

mL+1 AL+1
mL+1

+ . . . + K1
1eiϵK1

1 A1
1

− KL+1
mL+1

e−iϵKL+1
mL+1 BL+1

mL+1
+ . . . + K1

1e−iϵK1
1 B1

1)),
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where

Al
j =

1

eiϵKl
j

(
eiϵKL+1

mL+1
(t)UL+1

mL+1
(t) . . . eiϵK1

1(t)U1
1(t)

(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

U1†
1 (t)e−iϵK1

1(t) . . . UL+1
mL+1

(t)e−iϵKL+1
mL+1

(t)
)

,

and

Bl
j =

1

e−iϵKl
j

(
eiϵKL+1

mL+1
(t)UL+1

mL+1
(t) . . . eiϵK1

1(t)U1
1(t)

(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

U1†
1 (t)e−iϵK1

1(t) . . . UL+1
mL+1

(t)e−iϵKL+1
mL+1

(t)
)

.

We can now substitute these results in equation 3.9

ρout
x (t + ϵ) =ρout

x (t) + iϵ Trin , hid

([
KL+1

mL+1
(t), UL+1

mL+1
(t) . . . U1

1(t)(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

U1†
1 (t) . . . UL+1

mL+1
(t)
]
+ . . .

+ UL+1
mL+1

(t) . . . U1
2(t)

[
K1

1(t), U1
1(t)

(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

U1†
1 (t)

]
U1†

2 (t) . . . UL+1
mL+1

(t)
)
+O

(
ϵ2) ,

where [A, B] = AB− BA. Now, substituting this result into equation 3.8 and using
that given any |b⟩B ∈ HB, and any operator O

⟨b|B O |b⟩B = TrB(1A ⊗ |b⟩B ⟨b|B O),

result derived in the proof of proposition 3.2. We get

dCtr(t)
dt

=
1
S

S

∑
x=1

Tr
(
(1 in ,hid ⊗ |ϕtr

x ⟩⟨ϕtr
x |)
([

iKL+1
mL+1

(t), UL+1
mL+1

(t) . . . U1
1(t)(

ρin
x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|

)
U1†

1 (t) . . . UL+1
mL+1

†(t)
]
+ . . .

+ UL+1
mL+1

(t) . . . U1
2(t)

[
iK1

1(t), U1
1(t)

(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

U1†
1 (t)

]
U1†

2 (t) . . . UL+1
mL+1

(t)
))

,

where we also used that TrB(TrA(O)) = Tr(O) if HA × HB = H given any operator
O, and limϵ→0

ϵ
ϵ = 1. Note that Tr(A + B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA)

for all squared matrices of the same dimension A, B. Thus, we can rearrange the
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expression above as

dCtr(t)
dt

=
i
S

S

∑
x=1

Tr
([

UL+1
mL+1

(t) . . .
(

ρin
x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|

)
. . . UL+1

mL+1
†(t) ,

1in,hid ⊗
∣∣∣ϕSV

x

〉 〈
ϕSV

x

∣∣∣] iKL
mL+1

(t) + . . .

+
[
U1

1(t)
(

ρin
x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|

)
U1†

1 (t),

U1†
2 (t) . . . UL+1

mL+1
†(t)

(
1in,hid ⊗

∣∣∣ϕSV
x

〉 〈
ϕSV

x

∣∣∣)UL+1
mL+1

(t) . . . U1
2(t)

]
iK1

1(t)
)

.

Now, we define

ML+1
mL+1

(t) ≡
[
UL+1

mL+1
(t) . . .

(
ρin

x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|
)

. . . UL+1
mL+1

†(t)

1in,hid ⊗
∣∣∣ϕSV

x

〉 〈
ϕSV

x

∣∣∣] ,

M1
1(t) ≡

[
U1

1(t)
(

ρin
x ⊗ |0 . . . 0⟩hid,out ⟨0 . . . 0|

)
U1†

1 (t)

U1†
2 (t) . . . UL+1

mL+1
†(t)

(
1in,hid ⊗

∣∣∣ϕSV
x

〉 〈
ϕSV

x

∣∣∣)UL+1
mL+1

(t) . . . U1
2(t)

]
,

and are left with

dCtr(t)
dt

=
i
S

S

∑
x=1

Tr
(

ML+1
mL+1

(t)KL+1
mL+1

(t) + . . . + M1
1(t)K

1
1(t)

)
.

We have not yet imposed the maximization of dCtr(t)
dt . Prior to said maximiza-

tion, we rewrite the matrix Kl
j(t) as a composition of the Pauli matrices σ ≡

{1, σx, σy, σz}. Now, any single qubit matrix is a 2 × 2 matrix that can be rewritten
using Pauli matrices, as shown in proposition 3.3. Note that Kl

j is a composition
of single qubit matrices acting on all qubits in the (l − 1)th layer and a single qubit
in layer l. Thus, it can be rewritten as shown in corollary 3.4

Kl
j(t) = ∑

q1,...,qml−1 ,k=1,x,y,z
(Kl

j)q1,...,qml−1 ,k(t)(σq1 ⊗ . . . ⊗ σqml−1
⊗ σk), (3.10)

where the index qi is the ith qubit the (l − 1)th layer, k is the single qubit Kl
j acts

on in layer l. Let us now impose the maximization of the derivative of the cost
function. Note that if we were to maximize the cost function directly, it would
yield an extremum of ±∞. Thus, we use the lagrange multiplier λ ∈ R

max
(Kl

j)qi ,...,k

dCTr(t)
dt

− λ ∑
q1,...,qml−1 ,k=1,x,y,z

(Kl
j)qi ,...,k(t)

2


to find the maximum. First, we substitute the derivative of the cost function



40 Quantum machine learning

i
S

S

∑
x=1

Tr
(

ML+1
mL+1

(t)KL+1
mL+1

(t) + . . . + M1
1(t)K

1
1(t)

)
− λ ∑

qi ,...,k=1,x,y,z

(
Kl

j

)
qi ,...,k

(t)2,

which can be rewritten as

i
S

S

∑
x=1

Trqi ,...,k

(
Trrest

(
ML+1

mL+1
(t)KL+1

mL+1
(t) + . . . + M1

1(t)K
1
1(t)

))
− λ ∑

qi ,...,k=1,x,y,z

(
Kl

j

)
qi ,...,k

(t)2,

where Trrest now represents the trace on the qubits which Kl
j doesn’t act on. To

maximize this expression, let us take the derivative with respect to (Kl
j)qi ,...,k(t) and

equal the result to zero. Note that Kl
j depends on (Kl

j)qi ,...,k(t) as shown in 3.10,
thus

i
S

S

∑
x=1

Trqi ,...,k

(
Trrest

(
Ml

j(t)
) (

σqi ⊗ . . . ⊗ σk
))

− 2λ(Kl
j)qi ,...,k(t) = 0.

Let us now solve for (Kl
j)qi ,...,k(t)

(Kl
j)qi ,...,k(t) =

i
2Sλ

S

∑
x=1

Trqi ,...,k

(
Trrest

(
Ml

j(t)
) (

σqi ⊗ . . . ⊗ σk
))

.

Substituting this result in equation 3.10, we get

Kl
j(t) = ∑

qi ,...,k=1,x,y,z
(Kl

j)q1,...,k(t)(σqi ⊗ . . . ⊗ σk)

= ∑
qi ,...,k=1,x,y,z

i
2Sλ

S

∑
x=1

Trqi ,...,k

(
Trrest

(
Ml

j(t)
) (

σqi ⊗ . . . ⊗ σk
))

(σqi ⊗ . . . ⊗ σk).

We now define η = 1
λ and refer to it as the learning rate. Substituting it into the

expression above

Kl
j(t) =

iη
2S

S

∑
x=1

∑
qi ,...,k=1,x,y,z

Trqi ,...,k

(
Trrest

(
Ml

j(t)
) (

σqi ⊗ . . . ⊗ σk
))

(σqi ⊗ . . . ⊗ σk).

We can now rewrite Trqi ,...,k

(
Trrest

(
Ml

j(t)
) (

σqi ⊗ . . . ⊗ σk
))

as

∑
qi ,...,k=1,x,y,z

(σqi ⊗ . . . ⊗ σk)
†
(

Trrest

(
Ml

j(t)
) (

σqi ⊗ . . . ⊗ σk
))

(σqi ⊗ . . . ⊗ σk).
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Now using that
(
σqi ⊗ . . . ⊗ σk

)
(σqi ⊗ . . . ⊗ σk) = (σ2

qi
⊗ . . . ⊗ σ2

k ) = (I ⊗ . . . ⊗ I) =

I2ml−1+1×2ml−1+1 , we can rewritte

Kl
j(t) =

2ml−1+1iη
2S

S

∑
x=1

Trrest

(
Ml

j(t)
)

Trqi ,...,k=1,x,y,z(I ⊗ . . . ⊗ I).

Note that we used Trqi ,...,k=1,x,y,z(I ⊗ . . . ⊗ I) = ∑qi ,...,k=1,x,y,z(σqi , . . . , σk)
†(I ⊗ . . . ⊗

I)(σqi , . . . , σk). Now, Trqi ,...,k=1,x,y,z(I ⊗ . . . ⊗ I) = Tr(I ⊗ . . . ⊗ I), and Tr(A ⊗ B) =
Tr(A)Tr(B). Lastly, since the trace over the identity on each qubit is two, this
yields

Kl
j(t) =

2ml−1+1iη
2S

S

∑
x=1

Trrest

(
Ml

j(t)
)

.

Thus, the matrix Kl
j exists and can be computed as stated above. This result also

proves that the network can be updated following equation 3.7.
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3.3.5 The algorithm, an overview

We have discussed the different steps of the training process. Thus, we can
now give a schematic overview of the steps of the training algorithm. This sum-
mary will give the reader an overview and a better understanding of the training
procedure.

3.4 NISQ enforcement

As mentioned in section 2.7.2, the implementation of theoretical models for
quantum computers in NISQ devices is not straightforward, and some adjust-
ments must be made to implement such models. First, as shown in [32], we know
that any gate can be implemented with several two-qubit unitaries. This result is
compelling since we deal with gates acting on a large number of qubits which are
challenging to implement and uncommon in most quantum computing libraries.
Now, we represent such two-qubit unitaries using the resulting universal set of
gates of theorem 2.26 and remark 2.27. These results lead to the implementation
of perceptrons, as shown in figure 3.5.
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Figure 3.5: NISQ implementation of the unitary U using two-qubit gates and a
universal representation shown in remark 2.27.

Let us now describe the implementation of the training algorithm on NISQ
devices. We derive an update rule for current quantum devices using gradient
descent on the cost function. Let us first rewrite the cost function as

Ctr(wt) =
1
S

S

∑
x=1

〈
ϕtr

x
∣∣ρout

x (wt)
∣∣ ϕtr

x
〉

,

where wt = (w1(t), . . . , wn(t))T and n is equal to the number of parameters that
describe the quantum circuit. The value of n is computed using that u-gates can
be parametrized with 3 ∑L+1

l=1 ml−1 + 3mL+1 parameters, and the CAN-gates with
3 ∑L+1

l=1 ml−1ml parameters. Which leads to

n = 3
L+1

∑
l=1

ml−1 (1 + ml) + 3mL+1.

Now, using gradient descent to maximize the cost function leads to the new up-
date rule wt+1 = wt + dwt, with dwt = η∇Ctr(wt). Given the gradient computed
as

∇kCtr (ωt) =
Ctr (ωt + ϵek)− Ctr (ωt − ϵek)

2ϵ
+O

(
ϵ2) ,

where ej
k = δk,j, for k, j ∈ {1, . . . , n}, η is the learning rate, and ϵ > 0 is the step

size. An important observation done in [15] is that given this expression for the
gradient, we will have to compute the cost function, and thus we will have to
apply the entire circuit for ωt + ϵek and ωt − ϵek given every value of k.

Now that we described the mathematical tools used, let us roughly describe
the implementation of the training algorithm. First all parameters η,ϵ, and w0

are initialized. Then, the qubits corresponding to the initial and output states are
initialized, i.e., several qubits are initialized as ρin and the rest as the product state
|0, . . . , 0⟩ ⟨0, . . . , 0|. Lastly, we initialize the training data output states |ϕtr

x ⟩ and the
validation data quantum states

∣∣ϕval
x
〉
. Once the initialization process is completed,

the training starts. The process is analogous to the classical training described in
section 1.3. First initialize, then apply the gates, lastly compare ρout to the training
outputs |ϕtr

x ⟩. Nevertheless, how to compare two states in NISQ devices rests
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Figure 3.6: Implementation of the neural network followed by a SWAP-test to
compute the fidelity between the training data and output quantum state.

unclear. To implement the computation of fidelity, we use an algorithm known as
the SWAP-test described in [33]. Such SWAP-test algorithm involves applying a
number of given gates as shown in figure 3.6.
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Summary and Conclusions

In this thesis, we have reviewed all aspects of the recently proposed dissipative
quantum neural networks from a mathematical perspective. In an effort to pro-
duce a comprehensive study, we have first reviewed the basics of classical artificial
neural networks and quantum mechanics. In this way, we have structured the
discussion emphasizing the parallelism between the classical and quantum neural
networks.

We formalized the structure of classical neural networks mathematically and
gained a thorough understanding of the underlying principles of these structures.
Additionally, the research on the impact of the learning rate on the accuracy of the
neural network further enhanced our understanding of the potential of machine
learning. We believe that presenting the theoretical insights could lead to facilitat-
ing the use of mathematical tools such as optimization and statistical methods to
improve the performance of the networks.

We have also introduced the mathematical tools and physical principles needed
for understanding the theoretical framework of DQNNs and highlighted the par-
allelism between the training algorithms of classical neural networks and DQNNs.
Additionally, we added examples and extended the proofs of the reviewed work
on the pioneering studies of the field. Overall, we aimed to provide a compre-
hensive overview of the field of quantum neural networks, with a focus on the
dissipative quantum neural networks model.

More research is needed in both quantum machine learning and quantum com-
puting. Quantum computers are currently limited in the tasks they can perform
and are highly sensitive to their environment. While they have the potential to
solve many problems faster than classical computers, many challenges must be
overcome before this can be achieved. Quantum machine learning is also affected
by such limitations, including the limited availability and scalability of quantum
hardware and noise sensitivity.

Some methods discussed in this work have not yet been extensively tested. To
continue this research from an applied perspective, one approach could be to test
quantum neural networks for simple pattern recognition using quantum encoding.
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Appendix A

Impact of the learning rate in the
accuracy of neural networks for
handwritten digit recognition

Before introducing the structure of the neural network used, let us introduce
a few definitions crucial for understanding the network. To perform handwritten
digit recognition, we use the MNIST dataset. A set of 60,000 labeled images of
handwritten digits as shown in figure A.1. The handwritten numbers range from
0 to 9.

Figure A.1: MNIST images of handwritten digits.

We use the code in [7], which we modify to analyze the impact of changes in
the different variables, initialization, and training methods. In this chapter, we
show the impact of the learning rate on the accuracy of neural networks.

The code operates as follows; first, we vectorize the MNIST images. MNIST
images consist of 28 × 28 = 784 pixels. Thus, we represent each image as a vector
of dimension 784, whose inputs ranging from 0 to 1 represent how dark a pixel is.
0.0 represents a pure white pixel, and 1.0 a black pixel. Consequently, the input
layer has 784 neurons, each input being an entry of the vectorized image. The
output layer is comprised of 10 neurons. When the first output neuron indicates
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a value of approximately 1, the network indicates that the digit is recognized as
a 0; if the second output neuron indicates ≈ 1, then the network identifies the
handwritten digit as a 1, and so forth.

After vectorizing the images, we randomly partition 50,000 of the 60,000 im-
ages into the so-called mini-batches of a specific size. Backpropagation and gradi-
ent descent are then applied to each mini-batch. After a full pass over the training
set is completed, i.e., after one epoch, we check the accuracy of the neural network.
The accuracy is the number of correctly classified images out of 10,000 images dif-
ferent from the training data. For a better determination of the accuracy of the
network, the set of 10,000 test images consists of digits written by a different set
of people.

Training set size 50,000
Test set size 10,000

Mini-batch size 10
Epochs 30

Hidden neurons 30
Hidden layers 1
Cost function Quadratic cost function

Weight and bias initialization N(0,1)
Activation function Sigmoid

Table A.1: Parameters of the neural network used for the study. N(0,1) stands for
a gaussian distribution with mean 0 and standard deviation 1.

Next, we give the parameters used in this analysis in table A.1 and represent
the evolution of the accuracy with time for different learning rates in figure A.3.
Recall that the learning rate is the parameter η in the gradient descent update rule.

wl
ij(n + 1) = wl

ij(n)− ηδl
j(n)xl−1

i (n)

bl
j(n + 1) = bl

j(n) + ηδl
j(n).

(A.1)

Note that for a small learning rate, η = 0.1, the learning process is slower, as
expected. On the other hand, for a learning rate that is too large, η = 50, learning
never starts and the accuracy of the network is associated with purely probabilistic
behavior. These results can be interpreted as follows. The update rule aims to
minimize the cost function and returns the updated parameters in the direction
of the steepest descent of the cost function. These descend steps are scaled by
a certain amount (the learning rate). The learning rate can be interpreted as the
length of each minimization step. Assume our goal is to move from point A to
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point B, the minimum, in the plot of figure A.2. Intuitively, when the step taken
is too large, we risk going past the minimum, and if the learning rate is too low,
many iterations are needed to reach the minimum. This behavior is observed in
figure A.3.

Figure A.2: Plot of a convex function.

Figure A.3: Accuracy over time given different learning rate values.
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