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Abstract: We study the electronic structure of graphene and the corresponding phases. We first
examine the non-interacting part of the Hamiltonian and show the appearance of Dirac cones. Later
we study the full Hamiltonian through Mean-Field theory and show a process of symmetry breaking
that leads to the formation of a Charge Density Wave (CDW) phase. We show how Automatic
Differentiation, a tool from Machine Learning, can be used as an alternative to the Self-Consistent
Field method.

I. INTRODUCTION

Carbon atoms are one the building blocks of numer-
ous materials and molecules. There exist a great amount
of allotropes of carbon, such as diamond and graphite,
many with important applications in industry. For in-
stance, graphite is used to make pencils and diamonds
are used in cutting instruments due to its strength. In
graphite, carbon atoms form a 3D crystal. It turns out
graphite is composed of stacked 2D carbon crystalline
layers that we call graphene. At first, graphene was
not believed to exist freely [1]. However, in 2004 An-
dre Geim and Konstantin Novoselov were able to iso-
late graphene and in 2010 they were awarded the Nobel
Prize in Physics ”for groundbreaking experiments regard-
ing the two-dimensional material graphene”. Since then,
graphene has been the focus of intense research due to
its remarkable properties, such as its high electrical and
thermal conductivity, as well as its strength [2].

FIG. 1: σ and π bonds in graphene. σ bonds are respon-
sible for the honeycomb lattice. π orbitals are perpendic-
ular to the lattice. For clarity purposes only some bonds
have been drawn.

The exceptional properties of graphene come from the
outer shell electrons of the carbon atoms, which effec-
tively realize a honeycomb lattice. Therefore, in this
work we study the electronic structure of graphene. Car-
bon atoms have 6 electrons and its fundamental elec-
tronic configuration is 1s22s22p2. The two innermost 1s
electrons do not play a significant role in chemical pro-
cesses. As is depicted in Figure (1), in graphene three
of the remaining four electrons bond in a process called
sp2 hybridization with neighbouring carbon atoms. The

resulting covalent bonds are called σ-bonds and they
gives rise to the honeycomb structure characteristic to
graphene. The last electron is in a π-orbital and these
bond to form two energy bands, the π-band and the π∗-
band. In this work we study electrons in the π bands.

Primarily we are interested in finding the ground state
of graphene. We first study non-interacting graphene,
which already shows interesting phenomena such as Dirac
cones. These are points where the π and π∗ bands touch,
and they exhibit a linear dispersion relation. The inclu-
sion of Coulomb interactions leads to a rich phase dia-
gram. We use a Mean-Field analysis as a first approxima-
tion to the richness of the problem, together with a Self-
Consistent Field (SCF) method, an iterative approach
to finding the ground state of a Hamiltonian. With this
method, we study the phases of graphene. In particular,
we show the formation of a Charge-Density-Wave phase.

As an alternative to the SCF method, gradient descent
optimization can be used provided that one can efficiently
compute gradients. We employ Automatic Differentia-
tion (AD), a core tool from Machine Learning that can
yield gradients of complex functions with machine-error
precision by applying the chain rule. AD has already
demonstrated its usefulness in fields as diverse as Quan-
tum Chemistry [3] and Astronomy [4]. As an example,
Tamayo-Mendoza et al. [3] are able to compute the gradi-
ent across a SCF calculation with respect to some initial
parameters —such as nuclear coordinates and contrac-
tion coefficients of atomic orbitals— in a fully-variational
Hartree-Fock computation.

This thesis is organized as follows. In section II we
discuss the model that is the subject of this work. In
section III we examine the non-interacting part of the
Hamiltonian and we discuss the non-interacting phase
diagram. In section IV we consider the full Hamiltonian
and show the interacting phase diagram. In section V
we introduce Automatic Differentiation and we discuss
how we use it to accelerate the computations. Finally, in
section VI we present some conclusions and we discuss
possible future work.
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II. THE MODEL

We consider that the π electrons can jump between
neighbouring sites and interact through the Coulomb
force. For simplicity we limit the interaction to nearest-
neighbours. In terms of the creation and annihilation op-

erators ci, c
†
i , the Hamiltonian under consideration can

be written as

H = −t
∑
⟨i,j⟩

(c†i cj +H.c.) + V
∑
⟨i,j⟩

ninj , (1)

where ⟨i, j⟩ denotes summation over neighbouring sites

and ni = c†i ci is the number operator. The first term
in the Hamiltonian is the so-called hopping term. It is
a kinetic term that accounts for the possible movement
of electrons between neighbouring sites. The strength
of such a process is given by the hopping parameter
t. Using a tight-binding approximation, t is found to
be around 2.74eV [5]. The second term is a nearest-
neighbour density-density interaction between electrons
located in neighbouring sites. In this work we only con-
sider repulsive interactions, i.e. V > 0.

FIG. 2: Honeycomb lattice realized as a hexagonal lattice
with a diatomic basis and basis vectors {a1,a2}.

Figure (2) shows the geometrical disposition of
graphene. The honeycomb lattice can be thought to
consist of two hexagonal Bravais sublattices, which we
denote ϕ and ψ. Equivalently, the honeycomb lattice
is a Bravais lattice with a diatomic basis. Let NΛ be
the number of cells of the Bravais lattice. We have 2NΛ

electrons (in π bonds) and each energy band has a total
of 2NΛ states. Therefore, we encounter ourselves in a
half-filling situation and in the fundamental state all the
electrons will be found in the lower-energy π-band. Us-
ing these sublattices the Hamiltonian in (1) —with the
addition of a chemical potential difference between both
sublattices— can be written as

H = −t
∑
m,n

(c†ψmncϕmn + c†ψmn+1cϕmn + c†ψm−1ncϕmn +H.c.)

+ V
∑
m,n

(nψmnnϕmn + nψmn+1nϕmn + nψm−1nnϕmn)

+ β
∑
m,n

(nϕmn − nψmn). (2)

Finally, we introduce the fermionic Fourier operators,

cαmn =
1√
NΛ

∑
k∈1BZ

eik·r⃗mncα(k), (3)

where α ∈ {ϕ, ψ} denotes a given sublattice and 1ZB
stands for the first Brillouin zone. In the following sec-
tions we will use these operators to write the Hamiltonian
in wave-vector space, which will turn out to simplify the
study of the bulk properties.

III. PROPERTIES OF THE
NON-INTERACTING HAMILTONIAN

As a starting point, we first examine the non-
interacting part of the Hamiltonian (2). Using the previ-
ously introduced Fourier operators, the Hamiltonian can
be written as

Ht +Hβ =
∑
k

Ψ†(k)

(
β −tA∗

k
−tAk −β

)
Ψ(k) (4)

where Ψ†(k) = (c†ϕ(k), c
†
ψ(k)) and Ak = 1 + exp(ik ·

a1) + exp(−ik · aa2). The off-diagonal terms correspond
to the hopping process between sites ϕ and ψ, while the
diagonal ones represent the staggering potential. The
use of the Fourier transform allows us to turn to quasi-
momentum space, yielding a 2 × 2 matrix. The Hamil-
tonian is readily diagonalizable and yields the following
band structure:

ϵ±(k) = ±
√
β2 + t2|Ak|2 = ±[β2 + t2(3 + 2 cos(k · a1)

+ 2 cos(k · a2) + 2 cos(k · (a1 + a2)))]
1/2

(5)

When no staggering is applied (β = 0) the two bands
touch at the so-called Dirac points. At half-filling the
lower band is completely filled. Therefore, the Fermi en-
ergy of the system is located exactly at band-touching
point, this is, at the energy of the Dirac points, which
in our case is ϵ = 0. Graphene is here in a semimetallic
phase. When a non-zero staggering potential is intro-
duced β ̸= 0, a non-zero band gap appears and graphene
behaves as an insulator.
The Dirac points exhibit interesting phenomena, which

justifies some further consideration. Their position in
wave-vector space is given by those wave-vectors k satis-
fying

cos(
3a

2
kx) = ±1 and cos(

√
3a

2
ky) = ∓1

2
. (6)

The first Brillouin zone contains 2 non-equivalent
Dirac points located at its vertices. One such Dirac point
is kD = (0, 4π

3
√
3
1
a ) and has energy ϵ−(kD) = ϵ+(kD) = 0.

Figure (3) shows the band structure given in (5) in the
neighbourhood of the Dirac point kD. For β = 0, the
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dispersion relation ϵ±(k) is linear, as depicted in Figure
(3a). Interestingly, such a linear relationship between
energy and momentum is charactheristic of massless ul-
trarelativistic particles. Thus, electrons around a Dirac
cone, named Dirac fermions, behave as if they were ultra-
relativistic particles with a different speed than light but
with the same behaviour. One has to bear in mind that
electrons in bands are no longer free particles, but quasi-
particles. If we define a Fermi velocity to be vD = 3at

2ℏ ,
then the energy of the electron would take the usual
form for an ultrarelativistic particle ϵ(k) = ±ℏvD|k|.
The Fermi velocity has been found to be approximately
vF = 1 · 106m/s, that is, around 0.3% the speed of light.
This behaviour suggests that Dirac cones can be used to
experimentally study Special Relativity. Indeed, Dirac
cones are one example of how condensed matter physics
can be used to experimentally test our theories of Special
Relativity. Reference [6] shows an example where elec-
trons in graphene exhibit Klein tunneling. Note that the
Dirac cone is broken when a non-zero staggering poten-
tial is introduced. The quasiparticle mass is related to
the curvature of the energy band. Therefore, β ̸= 0 yields
massive quasiparticles. As the staggering potential is a
chemical potential difference between both sublattices,
β > 0 leads to an increased density in the ψ sublattice
and when β → ∞, such density tends to 1. When β < 0
the situation is reversed and the ϕ sublattice is more pop-
ulated.

(a) (b)

FIG. 3: In (a) Dirac cone located at k⃗D = (0, 4π
3
√
3
1
a ),

with β = 0. In (b) the Dirac cone has disappeared with
the introduction of a staggering potential β = 0.002t that
lead to the formation of a gap between both bands.

IV. MEAN-FIELD ANALYSIS OF THE FULL
HAMILTONIAN

We now consider the full Hamiltonian. Notice that the
hopping term is quadratic on the creation and annihila-
tion operators cαmn and c†αmn —this is, it is a one-body
operator—. This allows us to write the Hamiltonian with
only a 2 × 2 matrix. However, the interaction term is
quartic —it is a two-body operator—. We can approxi-
mate the two-body operator as a one-body operator. In
this scenario, each electron interacts with an ”effective
field” —or mean field— created by the distribution of all
the electrons, not directly with the other individual elec-
trons. Therefore, we again have a quadratic Hamiltonian

and thus we can proceed in a manner anologous as we did
with the hopping term. The Mean-Field method is based
on the following Hartree-Fock decoupling approximation:

ninj = c†i cic
†
jcj ≈ ⟨c†i ci⟩c

†
jcj + ⟨c†jcj⟩c

†
i ci − ⟨c†i ci⟩⟨c

†
jcj⟩

− (⟨c†i cj⟩c
†
jci + ⟨c†jci⟩c

†
i cj − ⟨c†i cj⟩⟨c

†
jci⟩) (7)

For simplicity we work with ansätze where the
density in every sublattice is translationally invariant
⟨c†αmncαmn⟩ = ⟨c†αcα⟩ and the expectation value for the
hopping term is also translationally invariant, real and

rotationally invariant ⟨c†ψmncϕmn⟩ = ⟨c†ψmn+1cϕmn⟩ =

⟨c†ψm−1ncϕmn⟩ = ⟨c†ψcϕ⟩.
With these considerations, we can write the full Hamil-

tonian as

H =
∑

k∈1BZ

Ψ†(k)

(
3V ⟨c†ψcψ⟩ −t̃A∗

k

−t̃Ak 3V ⟨c†ϕcϕ⟩

)
Ψ(k)

− 3V NΛ(⟨c†ϕcϕ⟩⟨c
†
ψcψ⟩ − ⟨c†ψcϕ⟩

2), (8)

where t̃ := t+⟨c†ψcϕ⟩V is a renormalization of the hopping
parameter arising from the interaction term. We define
the Charge-Density-Wave (CDW) order-parameter to be

ρ :=
1

2
(⟨c†ϕcϕ⟩ − ⟨c†ψcψ⟩). (9)

And we denote the total density as

n :=
1

2
(⟨c†ϕcϕ⟩+ ⟨c†ψcψ⟩) =

1

2
. (10)

Finally, we denote the expectation value for the hop-

ping process by ξ = ⟨c†ψcϕ⟩. The matrix part of the
Hamiltonian can be easily diagonalized, giving again a
two-band structure:

ϵ(k) = 3V n±
√

9V 2ρ2 + t̃2|Ak|2. (11)

The rest of the Hamiltonian can also be written in
terms of n and ρ. The half-filling ground state corre-
sponds to the lower band being completely occupied.
Thus, the energy of the maximum state occupied, the
Fermi energy, is in this case ϵF = 0 and the total free
energy per primitive cell is:

F

NΛ
= 3V (−n2 + ρ2 + ξ2) (12)

+

∫
1BZ

v

4π2
(3V n−

√
9V 2ρ2 + t̃2|Ak|2)dk (13)

where v = 3
√
3a2

2 is the volume of a single direct lattice
primitive cell and the discrete sum over the states in the
first Brillouin zone has been turned to an integral over
the Brillouin zone. In Figure (4) we show the free-energy
landscape for different relative strengths of the interac-
tions. We can appreciate that for V/t = 0.5 the system
exhibits a single minimum located at ρ = 0, whereas
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for V/t = 2 there are two symmetric minima with non-
zero CDW parameter. Therefore, at some interaction
strength the system loses its inherent translational sym-
metry and forms a CDW phase.

(a) (b)

(c) (d)

FIG. 4: Free energy landscape for T = 0 and 4 different
values for V

t : 0.5 in (a), 1 in (b), 2 in (c) and 100 in (d).

Now the Hamiltonian itself depends on the wave-
function —through the density and hopping expectation
values—. But it is exactly from the Hamiltonian that one
calculates the wavefunctions. A possible way out of this
difficulty is using an iterative approach. We start with
an ansatz wavefunction Φ0 from which we calculate the
necessary expectation values, obtaining the Hamiltonian
H0(Φ0). But the original wavefunction is most probably
not a solution of this Hamiltonian. Instead, we solve for
the ground state Φ1 of this Hamiltonian H0 and calculate
a new Hamiltonian H1(Φ1) from Φ1. Repeating this iter-
ation, one hopes that it will eventually converge to a fix
point, which would mean that the limiting wavefunction
Φ is a solution to the limiting Hamiltonian H(Φ). We
say that Φ is self-consistent, and the iteration method is
called the Self-Consistent Field method (SCF).

An example of a convergence sequence is depicted in
Figure (5a). Figure (5b) confirms there is a second-order
phase transition that leads to the formation of a CDW
phase when the interaction is sufficiently strong. If the
interaction is not strong enough, the hopping term tends
to smooth out an initial asymmetric density distribution
between both sublattices. On the contrary, if the in-
teraction is sufficiently strong it tends to magnify small
differences between the sublattices. We find that the crit-
ical point is between V/t = 0.92 and V/t = 0.93, which

agrees with the reported value of V/t = 0.924 given by
[7].

(a) (b)

FIG. 5: In (a) convergence path followed by SCF with
V
t = 0.5 and initial conditions ξ = 0.01 and ρ = 0.45.
In (b) dependence of the CDW order parameter ρ on
the strength of the interaction V

t . A phase transition
between a semimetallic (SM) phase and a CDW phase
can be appreciated.The exact transition point depends
on the arbitrary choice of when |ρ| is considered large
enough to be non-zero. We have selected V/t = 0.924 as
the critical point.

During our work, the SCF method has not caused any
problem. However, the method is known to show con-
vergence problems in some cases [8]. Due to the vital
role of the SCF method in many computations [9, 10,
11], improved versions have been proposed. In a damped
SCF method [12], the displacement each iteration takes
is damped, with the goal of reducing the problem of over-
shooting. This situation is typical in Gradient-Descent
optimization (GD), where a learning rate controls the dis-
placement size. This points to the fact that what is im-
portant in a SCF method (as well as GD) is the displace-
ment direction —in the (ξ, ρ) plane in our example—. A
damping parameter —or learning rate— can then control
the displacement size. We denote this damping parame-
ter by α and take it to be between 0 and 1. For α = 1
no damping is applied.

V. AUTOMATIC DIFFERENTIATION

Provided we have a way to efficiently calculate the nec-
essary gradients, we could also find the ground state of
the system by minimization of the free energy through
GD.
Automatic Differentiation (AD) is a tool from Machine

Learning that allows one to compute the gradients of
complex functions with machine-error precision. It builds
a computational graph of all the operations done and uses
the knowledge of the derivative of each simple operation
together with the chain rule to obtain the final deriva-
tive. AD does not come with the high errors associated
with numerical differentiation and is more efficient than
symbolic differentiation [13]. Furthermore, although we
have analytical formulas to compute the gradient in our
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case, this is not the general situation. As noted in the in-
troduction, AD has already been used to accelerate com-
putations in Physics and Chemistry [3, 4].

FIG. 6: In yellow a convergence path defined by GD.
In other colors, the path followed by SCF for damping
values α ∈ {0.1, 0.5, 1}.

As depicted in Figure (??), the damped SCF path
approaches the trail followed by GD as the damping
parameter α tends to 0. The same situation was re-
peated for all calculations. This leads to the conclusion
that, at least for the simple problem we are studying,
Gradient-Descent and Self-Consistent Field method de-
fine the same displacement direction at each point. For a
reasonable equal precision, GD with AD was found to be
5 times faster than SCF. As noted previously, the real im-
portance is in the displacement direction and the time it
takes to compute. The damping parameter for SCF and
the learning rate for GD can be chosen arbitrarily. The
time difference between both methods suggests that AD
can be used to accelerate computations in places where
SCF is used.

VI. CONCLUSIONS AND FUTURE WORK

In this work we studied the electronic structure
and phases of graphene. We first examined the non-
interacting phase diagram and showed the appearance
of Dirac cones. Then, we studied the interacting phase
diagram and the formation of a CDW phase through sym-
metry breaking. Self-Consistent Field is, together with
Mean-Field, a common method used in studies like this
one.

We showed how Automatic Differentiation can be used
to accelerate calculations that involve methods like SCF.

In doing so we came to the conclusion that, at least in
the conditions of our problem, SCF and Gradient Descent
yield the same displacement direction.
There are several ways in which this work could be

expanded. Firstly, it would be desirable to theoretically
proof that GD and SCF define the same direction. If
this is only valid for certain conditions, it would be inter-
esting to determine them. Secondly, although we have
shown that AD can be used as a faster alternative to
SCF computations, we have done so in the toy example
of graphene and using a simple version of SCF. We should
consider using state-of-the-art versions of SCF and real-
world calculations. Finally, we have only introduced a
hopping process and a nearest-neighbour interaction. We
should consider adding more phenomena, e.g. next-to-
nearest interactions or adding more atoms the the basis.
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