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Abstract: The aim of this work is to study the ground-state energy of trapped bosonic systems
in one-dimension. The bosons interact through a finite range interaction. Different variational wave
functions are proposed and their range of application is explored depending on the intensity of the
interaction. The Tonks-Girardeau limit is also analyzed.

I. INTRODUCTION

The recent improvements in the field of ultra-cold
atomic gases have motivated an important effort to study
quantum bosonic systems in 1D [1]. These systems can
be experimentally realized in ultracold gases confined in
cigar-shaped traps [2]. One of the main peculiarities of
one-dimensional systems is that the reduced geometry
has important consequences on the wave function. For
instance, the only way to exchange two particles is pass-
ing one through the other [3]. Usually, the interaction
between the particles is described by means of a δ-contact
interaction with strength g. When the strength of the in-
teraction becomes large, g →∞, one obtains the Tonks-
Girardeau (TG) gas [4]. In this situation many of the
properties of the system are identical to the case of non-
interacting fermions.

In this work, we will perform a variational study
of the ground-state energy and density profiles of one-
dimensional bosonic systems trapped by a 1D harmonic
oscillator (HO) potential with finite range interactions
between them. When the range of these interactions tend
to zero they are reduced to contact interactions. We are
interested in the behavior of different observables, mainly
the energy of the ground state, when the finite range force
evolves into a contact interaction. To this end, we will
propose different variational wave functions and explore
their validity depending on the strength of the interac-
tion. We will see that for strong interactions the system
develops interparticle correlations that should be incor-
porated to the trial wave function.

This TFG is organized as follows. In section II we
introduce the model Hamiltonian and the finite range in-
teractions considered in this study. In section III we dis-
cuss the different variational methods used to calculate
the energy and also propose the variational wave func-
tions. In section IV we present and discuss the results.
In section V we summarize the conclusions of the work.
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II. THE MODEL HAMILTONIAN

We consider N non-relativistic bosons of mass m
trapped in a HO potential, with frequency ω, which inter-
act through a two-body finite range interaction Vint(xij),
where xij is the interparticle distance. Using the energy
and length units associated to the HO trapping potential,
the system is described by the following Hamiltonian,

H =

N∑
i=1

−1

2

d2

dx2i
+

N∑
i=1

1

2
x2i +

N∑
i<j

Vint(xij) , (1)

Along this work, we consider two finite-range interactions
of Gaussian and Lorentzian type respectively:

V1(xij) =
g√

2πσ2
e−

1
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x2ij

σ2 V2(xij) =
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π

σ

x2ij + σ2
, (2)

both of them normalized to g, which measures the
strength of the interaction. The σ2 measures the range
of the potential and when it tends to zero, they become a
δ-contact interaction . We will be mainly concerned with
the Gaussian potential but we will also discuss their dif-
ferences when they approach the δ interaction.

III. VARIATIONAL METHOD

The main idea of the variational method is to obtain
upper bounds to the ground-state energy of the many-
body system by evaluating the expectation value of the
Hamiltonian in a parametric wave-function,

Eα =
〈Ψα|H|Ψα〉
〈Ψα|Ψα〉

. (3)

The minimization of the energy with respect to the vari-
ational parameters (∂Eα/∂α = 0) defines the lowest up-
per bound in the considered set of functions. In the case
that the functional space defined by the variational pa-
rameters contains the ground state wave function, the
minimization procedure should provide the exact ground-
state energy.
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A. Mean field

Our first approach is to use the mean field approxima-
tion, in which all the particles are assumed to be in the
same single-particle state, Ψ(x1, x2, ...xn) =

∏n
i=1 φ(xi).

This approximation is useful in weak interacting regimes.

1. Variational Gaussian single-particle wave function

As a starting point, we propose a family of simple
Gaussian single-particle wave functions, that depend on
the variational parameter α,

φ(xi) =

(
α2

π

) 1
4

e−
1
2α

2x2
i . (4)

The corresponding variational energy of the system
reads,
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In the limit σ → 0 the energy reduces to

E(α) = N
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4
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2

g√
2π
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The minimization of E(α) with respect to α provides
the best energy within this family of many-body wave
functions.

2. Hartree-Bose

To derive the Hartree-Bose (HB) equations, we propose
a mean field wave function, Ψ(x1, x2, ...xn) =

∏n
i=1 φ(xi),

built with a generic single-particle wave function. Then
we require the energy to be stationary for small variations
of the single-particle wave function,

δ

δφ
[〈Ψ|H|Ψ〉 − λ 〈Ψ|Ψ〉] = 0 , (7)

where, λ is a Lagrange multiplier introduced to perform
the functional variations preserving the norm. From this
condition, we get the HB equation:

λφ(x) = −1

2

d2φ(x)

dx2
+
x2

2
φ(x)

+(N − 1)

[∫
dx′Vint(x− x′) |φ(x)|2

]
φ(x) . (8)

where λ can be identified with the chemical potential µ.
In the case that the interaction is a δ−contact interac-
tion, one obtains the Gross-Pitaevskii equation,

µφ(x) = −1

2

d2φ(x)

dx2
+
x2

2
φ(x)+(N−1)g|φ(x)|2φ(x) . (9)

FIG. 1: Comparison of the different single-particle wave func-
tions used to construct the mean field wave function for N = 4
and the gaussian interaction with g = 4.0 and σ2 = 0.5. The
ground-state wave function of the HO (blue-line) is compared
with the best gaussian wave function (green-line) and with the
best single-particle wave function solution of the HB equation
(red-line)

B. Beyond the Mean Field Approximation

When the strength of the interaction increases, there is
an emergence of two-body correlations in the wave func-
tion. These correlations try to minimize the energy by
avoiding the atom-atom interaction, i.e. they attempt to
keep the particles apart. Taking all that into account, we
propose the following correlated wave function:

Ψ(x1, ..., xN ) =

N∏
i=1

(
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)1/4

e−
1
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2x2
i
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(
1− a e−bx

2
ij

)
,

(10)
where α, a and b are the variational parameters.

Notice also that the Hamiltonian can be separated in
two pieces, H = HCM + Hr, which correspond to the
center of mass (HCM ) and the relative (Hr) motion. Ac-
tually, the proposed correlated wave function can also be
factorized in two pieces: one for the center of mass and
the other describing the relative motion of the particles.
In the exact wave function the center of mass should be
in the ground state of Hcm. On the other hand, we know
how to calculate the average value of HCM in the trial
variational wave function. Therefore, we can easily in-
corporate this improvement to our variational energy by
subtracting this expectation value to the variational en-
ergy and adding the ground-state energy of HCM :

Ê = E −
(
α2

4
+

1

4α2

)
+

1

2
. (11)

This correction is valid for any number of particles, for
both the mean field approach built with gaussians and
also for the correlated wave function. In the case of two-
particles, the expectation value of the Hamiltonian with
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FIG. 2: Total energy per particle for a N = 4 as a function of
the range of the interaction. The two-top lines correspond to
g = 6.0, and the two-bottom lines to g = 1.0. The blue and
black lines correspond to the results provided by the Gaus-
sian and the green and red lines correspond to the Lorentzian
potentials. The two rhombus at the y−axis are the energies
for the δ−contact interaction limit.

this correlated wave function can be evaluated analyt-
ically. The expression is rather lengthly and has been
given in Ref. [5].

Variational Monte Carlo

The aim of this method is to evaluate multidimensional
integrals using the Monte Carlo numerical integration[6].
In this case the energy associated with the Hamiltonian
is,

EVMC =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=

∫
dXΨ(X)2EL(X)∫
dX|Ψ(X)|2

=

=

∫
ρ(X)EL(X)dX (12)

where X = (x1, ...xN ) are the bosons positions, EL the
local energy and ρ(X) a normalized probability density.
We can estimate the energy as an average value of EL
using the Metropolis algorithm to sample the probability

density ρ(X), EVMC ≈ (1/M)
∑M
k=1EL(Xk).

At this point, we have a method to evaluate the expec-
tation value of the Hamiltonian for the variational wave
function, which will depend on the three variational pa-
rameters. To obtain the lowest upper-bound energy we
must optimize the variational parameters.

IV. RESULTS

We start by minimizing the variational energy pro-
vided by the mean field wave function built with the
gaussian single-particle wave functions. In a second step,
we find the best single-particle wave function by solving

FIG. 3: Total energy per particle for N = 2 (left) and N = 5
(right) as a function of g for the Gaussian potential with
a range σ2 = 0.5. The red-line corresponds to the varia-
tional method with we Gaussian family, the green line to the
Hartree-Bose, the blue line refers to the energy correspond-
ing to the correlated wave function, Eq.(11). In all cases, the
energy has been minimized.

iteratively the HB equation. Firstly, we take as a start-
ing single-particle wave function the ground-state wave
function of the HO. Then, we calculate the mean field
potential associated to this wave function and solve the
corresponding Schrödinger equation to obtain the next
single-particle wave function, which will be used for the
next iteration until convergence is reached.

The different single-particle wave functions are re-
ported in Fig. 1 for N = 4. The best gaussian single
particle wave function (green-line) and the HB solution
(red-line) are very similar and both are very different
from the HO wave-function (blue-line). The repulsive in-
teraction between the particles translates in wider single-
particle wave functions. As expected, the best ground-
state energy per particle is provided by the HB ap-
proach: EHB = 2.078. However the gaussian wave func-
tion provides a rather close upper bound, Evar = 2.105,
while the energy associated to the HO wave function is
EHO = 2.454 which would coincide with the energy pro-
vided by first order perturbation theory.

The dependence of the energy on the range of the po-
tential calculated in the HB approach for the two types
of interactions considered in this work is shown in Fig. 2.
We also report the energies provided by the δ−contact
interaction with the same strength, obtained by solving
the Gross-Pitaevskii equation. For all ranges of the po-
tentials, the energy of the Gaussian potential is more re-
pulsive than the Lorentzian ones and, as expected, both
tend to the same result for zero-range interaction. The
differences between the Gaussian and Lorentzian interac-
tions are larger for stronger interactions (g = 6 compared
with g = 1).

In the next step, we start to explore the need of cor-
relations when the interaction is stronger. Fig. 3 reports
the total energy per particle for N = 2 and N = 5 parti-
cles as a function of the strength of the interaction, using
the gaussian potential with the range σ2 = 0.5.
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FIG. 4: Dependence of the optimal parameters for the cor-
relation function on the strength of the interaction for the
case N = 2 (solid triangles) and N = 5 (empty squares) with
σ2 = 0.5. The red, blue and green lines correspond to α2, a
and b parameters respectively.

For all strengths, the HB and the variational energies of
the gaussian family are very close. For weak interactions,
up to g equal 3, the effect of correlations is negligible
but when the strength of the interaction increases they
become crucial to decrease the energy. In any case, we
should keep in mind that the correlated wave function
is not the exact wave function but we are sure that it
provides an upper bound.

The energies corresponding to the correlated wave
function have been calculated using the VMC method.
The case N = 2, for which exist the analytical results,
has been used as a test for the Monte Carlo procedures.
The energies reported in the Fig. 3 are the result of a min-
imization procedure which determine the optimal varia-
tional parameters at each case. The optimal variational
parameters for the gaussian interaction, are reported in
Fig. 4, for N = 2 and N = 5 as a function of the strength
of the interaction, for the range σ2 = 0.5. Independently
of the number of particles, when the strength of the in-
teraction increases, the a parameter approaches unity. In
this way, the particles avoid being at the same point. The
behavior of the variational parameters is very similar for
N = 2 and N = 5. That may suggest the possibility
to fix the two-body correlation at the two-body system
and minimize only with respect to α for the systems with
N > 2.

The VMC method is implemented using Fortran77.
However the minimization method is built on a SciPy
library. The bridge between the fortran program and the
minimization Python library is provided by the Python
library F2PY which translates the Monte Carlo code in a
function depending on the three variational parameters.
This procedure for the Monte Carlo calculation and for
the minimization is tested in the case N = 2 for which
analytical results exists.

As shown in the Fig. 5, the interaction energy has a
maximum in the interval from g = 5 to g = 10. After

FIG. 5: Total energy per particle (red lines) for N = 5 as a
function of g, the solid triangles correspond to σ2 = 0.125 and
the empty squares to σ2 = 0.05. The energy is decomposed
in the HO energy (pink lines), the kinetic energy (green lines)
and the interaction energies (blue lines).

FIG. 6: Density profile for N = 2 and N = 5 particles pro-
duced with the gaussian interaction potential with g = 19
and σ2 = 0.05. The green line represents the analytical re-
sult for N non-interacting fermions enclosed in the same HO
potential while the blue line is provided by the VMC.

this point it decreases due to the two-body correlations,
as can be seen comparing with Fig. 3, where we can see
that the correlated wave function result deviates substan-
tially from the mean-field one. In Table 1, we report the
energies obtained with the different methods for N = 2
and N = 5 for g = 5.

In the strong interaction limit and for small range of
the interaction the many-body wave function should re-
semble the one of the TG gas. This can be seen in Fig. 6
where we compare the density profiles produced by a
strong interaction (g = 19) with a range σ2 = 0.05 for
N = 2 and N = 5, corresponding to the correlated wave
function (Eq. 10), with the ones of a free Fermi system
trapped in the same HO potential (which can be analyti-
cally calculated). As expected from the fermionic result,
the density profile develops a number of bumps equal to
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FIG. 7: Energies per particle for N = 2 (left) and N = 5
(right): total energy (red line), interaction energy (black line),
kinetic energy (green line) and potential energy (blue line)
for g = 10. The red full dots (σ2 → 0) correspond to non-
interacting fermions trapped in the same HO potential at each
case.

N g Evar EHB EV MC ÊV MC

2 5.0 1.244 1.238 1.091 1.076

5 5.0 2.939 2.884 2.513 2.504

TABLE I: Energy per particle for σ2 = 0.5 obtained with dif-
ferent methods for g = 5 and N = 2 and N = 5. The energy
ÊV MC takes into account the center of mass correction.

the number of particles.
In Fig. 7 , we report the dependence on the range of

the interaction of the total energy per particle for g =
10 and N = 2 and N = 5. The figure also shows the
potential HO, the kinetic and the interaction energies. It
is worth to notice that for this strength of the interaction
the system already approaches the TG limit when σ2 → 0
and the total energy tends to 1 in the case of N = 2 and
to 2.5 for N = 5.

In this way, Fig. 8 exemplifies the TG behavior, when
we let σ2 → 0 but the g is not large enough g = 2 in
the figure, the energy does not go to the fermionic result
(green lines). On the other hand, for strong interactions,
g = 10 and g = 20, we get the same limit, i.e., the TG
limit, when the interaction approaches a δ-interaction.

V. CONCLUSIONS

We have analyzed different variational methods to cal-
culate the ground-state energy and the one-body density

profile of a one-dimensional system of N bosons trapped
by an HO potential. The bosons interact through a repul-
sive finite range interaction, characterized by its strength
g and range σ2. First of all, we have proposed a very
simple mean field wave function of gaussian type which
provides energy results in very good agreement with the
best mean-field wave function obtained by solving the
Hartree-Bose equations. As expected, the mean field ap-
proach gives satisfactory results only at weak interaction

FIG. 8: Total energy per particle for N = 5 (triangles) and
N = 2 (squares) for different g. The red-lines are for g = 20,
the blue-lines are for g = 10 and the green-lines are for g = 2.

regimes. For stronger regimes it is necessary to go be-
yond the mean field approach and introduce two-particle
correlations in the wave function. We have proposed a
physically founded correlated wave function and calcu-
lated the expectation value of the Hamiltonian by Monte
Carlo techniques. By analyzing the dependence of the en-
ergy on the strength and range of the interaction we have
seen that the proposed variational wave function provides
a good description of the Tonks-Girardeau limit.
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