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Abstract: In this project we study and solve a 2D quantum system that consists of spins lo-
cated in a honeycomb lattice. We first solve some particular simple cases, both analytically and
numerically, and study their spectral properties. Then we show that we can map it into a fermionic
system, and study this one.

I. INTRODUCTION

Being able to solve particular systems can be useful to
understand properties of some materials. Their energy
levels, which we find when we solve the hamiltonian, de-
termine the conductivity and resistivity of the material,
and also have impact on its optical preperties, as well
as other characteristics. [1] Therefore it is interesting to
find ways of analytically solving them, so the results ob-
tained can be accurate enough to describe the properties
of the material.

In this work we consider the model proposed by Kitaev
[2]. This model is very interesting as it hosts anyons,
which are defined as particles that do not obey bosonic
or fermionic statistics. Besides, Kitaev managed to map
it into a fermionic system and solve it.

Anyons were first developed in a theoretical level, and
then it was observed that they could exist in some ex-
cited levels of some specific systems.[2] Studying systems
where there are anyons is intrinsically interesting, as we
can work out some properties of these particles that only
show in determinate circumstances. Furthermore, anyons
were considered to be potentially useful to develop quan-
tum computation in the context of topological quantum
computation. [3]

The work is structured as follows, first, in Sec II we
present the hamiltonian of the system and discuss the
different terms. In Sec III we focus on the spectral prop-
erties of the system, first considering a subset and then
the full unit cell of the honeycomb lattice. In Sec IV we
present the mapping devised by Kitaev and explain how
it is constructed. In Sec V we follow the steps that Ki-
taev makes in order to find an analytical solution to the
system, and finally, in Sec VI we discuss the conclusions
of this work.

II. THE PHYSICAL SYSTEM

The system studied is a system of spins located in the
vertices of a 2D honeycomb lattice. We consider that the
spins have nearest neighbour interaction, with different

∗Electronic address: tfgac@ub.edu

FIG. 1: A representation of the system studied, a 2D
honeycomb lattice. We consider three directions, each
one marked in a different color in the figure: x in blue, y
in green and z in red. We consider two sublattices, one
marked by black sites, and one marked with white sites.

strength depending on the direction of the link, as showed
in Fig 1.
The system can be described by the following hamil-

tonian:

H = −Jx
∑

x−links

σx
j σ

x
k − Jy

∑
y−links

σy
j σ

y
k − Jz

∑
z−links

σz
jσ

z
k,

(1)
where σx, σy and σz are the Pauli matrices, and the
lower indices refer to which spin are we considering. Ji,
i = x, y, z, are the strength constants of the interaction
in the direction i. [2] We use the eigenstates of σz as our
base: |↑⟩ and |↓⟩, with σz |↑⟩ = |↑⟩ and σz |↓⟩ = |↓⟩.

A. A simple example

In order to have a better understanding of the hamil-
tonian, we present the simple case of a 2-spin system
connected by a z-link.
Particularizing the expression (1) the hamiltonian be-

comes:

H2s = −Jzσ
z
1σ

z
2 . (2)

We obtain two energy levels, each one double degener-
ated: a ground state, formed by parallel spins, that is,
|↑⟩ |↑⟩ or |↓⟩ |↓⟩, with energy E = −Jx, and a 1st excita-
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tion state, formed by antiparallel spins, that is, |↑⟩ |↓⟩ or
|↓⟩ |↑⟩, with energy E = +Jx.

III. SPECTRAL PROPERTIES OF THE 3 AND 6
SPIN SYSTEM

We can compute the hamiltonian by calculating the
tensor products between the pauli matrices that appear
in the expression (1). We have a tensor product of Hilbert
spaces, one for each spin. Therefore, when we write the
tensor products, the sites where there is not a pauli ma-
trix acting, there should be the identity matrix. For ex-
ample, in the 3-spin case:

σx
1σ

x
2 ≡ σx

1 ⊗ σx
2 ⊗ I3.

Using this we calculate every term and sum them to
obtain the hamiltonian. Then, diagonalizing it we ob-
tain the eigenvalues and eigenvectors of the system. We
do this both analytically and numerically, programming
with python.

A. 3-spin case

In this case, the expression (1) reduces to:

H3s = −Jxσ
x
2σ

x
3 − Jzσ

z
1σ

z
2 , (3)

and we use the following base: |↑↑↑⟩, |↑↑↓⟩, |↑↓↑⟩, |↑↓↓⟩,
|↓↑↑⟩, |↓↓↑⟩, |↓↑↓⟩, |↓↓↓⟩. In this representation the
hamiltonian is:

H3s =



Jz 0 0 Jx 0 0 0 0
0 Jz Jx 0 0 0 0 0
0 Jx −Jz 0 0 0 0 0
Jx 0 0 −Jz 0 0 0 0
0 0 0 0 −Jz 0 0 Jx
0 0 0 0 0 Jz Jx 0
0 0 0 0 0 Jx −Jz 0
0 0 0 0 Jx 0 0 Jz


. (4)

We obtain two energy levels, each one with degeneration
4: the ground state, with energy −

√
J2
x + J2

z , and the

1st excitation, with energy +
√
J2
x + J2

z .
We can examine the behaviour of the system as a

function of the parameter Jx, represented in Fig 2. We
observe two eigenvalues, a ground state and an excited
state, which have a symmetrical behaviour with respect
to zero. The ground state has value −1 when Jx = 0 and
decreases linealy as Jx increases, following λ = −Jx. The
excited state is +1 for Jx = 0 and increases lineally as we
increase the constant, following λ = Jx. This behaviour
observed corresponds to the expected if we analyse the
solutions we have just found. The two eigenvalues found
analytically are ±

√
J2
x + J2

z . Therefore, when Jx −→ 0,
the eigenvalues tend to λ/Jz = 1. On the other hand,
when Jx ≫ Jz we can neglect the contribution of J2

z to
the value of the eigenvalues, and therefore λ = ±Jx, as
observed in Fig 2.
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FIG. 2: Representation of the eigenvalues λ/Jz as a
function of the coefficient Jx/Jz. In purple dots we
depic the eigenvalues of the spin hamiltonian, and in
red lines, the eigenvalues of the fermionic hamiltonian.

We also depic the two limit conditions: λ = 0 for
Jx −→ 0 and λ = Jx/Jz for Jx ≫ Jz. We are using Jz

as the energy unit.

B. 6-spin case

Let us now consider a more realistic case: a 6-spin
case, which is the main unit of the honeycomb lattice.
The hamiltonian is:

H = −Jx(σ
x
1σ

x
2+σx

4σ
x
5 )−Jy(σ

y
2σ

y
3+σy

5σ
y
6 )−Jz(σ

z
3σ

z
4+σz

6σ
z
1).

(5)
We consider Jz as the energy unit. The behaviour of the
system as a function of the coefficient Jx/Jy is studied,
and can be seen in Fig 3.

We can see that nine eigenvalues are obtained, and the
behaviour of two limit cases can be analysed: Jx −→ 0

0.0 0.5 1.0 1.5 2.0 2.5
Jx/Jz

6

4

2

0

2

4

6

/J z

eigenvalues for the 6-spin case

FIG. 3: Representation of the eigenvalues for the 6-spin
case as a function of Jx, imposing Jy = Jz.
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FIG. 4: Representation of the behaviour of the links in
the limit cases of a 6-spin case. The relevant links in
the interaction are represented with bold lines. The
limit case Jx −→ 0 is the one on the left, and the

possibilities for the limit Jx >> Jy, Jz, on the right.

and Jx ≫ Jy, Jz.
For Jx −→ 0, the different eigenvalues converge around

3 values, λ = −2
√
2, 0, 2

√
2, see Fig 3. We can consider

that there is no link in the direction x, as we can see in Fig
4 left, so the system can be considered as two independent
3-spin links. As we know the eigenvalues for a 3-spin case,
found in section IIIA, we can add them up and obtain

the following eigenvalues: λ− = λ
(1)
− + λ

(2)
− = −2

√
2,

λ0 = λ
(1)
− + λ

(2)
+ = 0 and λ+ = λ

(1)
+ + λ

(2)
+ = +2

√
2,

which correspond to the values observed in Fig 3.
We can see that the degeneration of the eigenvalues

split when we increase Jx, because the x-links begin to
take rellevance. For Jx = Jy = Jz = 1 two of the values
coincide and we only have 7 different eigenvalues.

As we keep increasing Jx, the eigenvalues converge into
only 3 lineal behaviours: one around 0 and the other
ones symmetric, following λ = ±2Jx, see Fig 3. When
Jx ≫ Jy, Jz, the x-link has significatively more rellevance
than the other two links, so, in a first approximation, we
only have links in the x direction. This will lead to these
3 possible behaviours, depicted in Fig 4, in the right.

C. Avoided crossing

An avoided crossing occurs when the representations
of two eigenvalues as a function of a parameter should
cross, but due to a symmetry breaking, they do not cross
and avoid each other instead. It happens when two parts
of a hamiltonian do not commute with each other.[4]

Let us study a simple example of an avoided crossing
phenomena to help us understand our case. Consider a
lattice with hamiltonian H(g) = H0 + gH1, where g is a
parameter, and let’s study the evolution of the eigenval-
ues as a function of the parameter g. In the specific case
whereH0 andH1 commute with each other, the eigenvec-
tors are independent of g, but the eigenvalues of course
change in function of g. An excited state can lower its
value until, for some value g0, the excited state and the
ground state have the same energy. Therefore there is
a crossing, and what was the ground state becomes the
excited state, and viceversa. However, on a more general
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FIG. 5: Representation of the eigenvalues of the 3-spin
case as a function of the coefficient Jx/Jz.

case where H0 and H1 do not commute, the point g = g0
is not analytical, so what we observe is an avoided cross-
ing. [4] We can now study this phenomena in the two
cases we are considering.

1. Avoided crossing in a 3-spin system

The hamiltonian in this case was the one in (3), and
rewriting it:

H = −JxHx −Hz. (6)

The two parts of this hamiltonian, Hx and Hz, do not
commute with each other, so there must be an avoided
crossing. This is indeed what we observe in Fig 5, where
the two eigenvalues of the system seem like they should
cross but they do not, there is an avoided crossing.

2. Avoided crossing in a 6-spin system

In Fig 3 we observed a crossing between two eigenval-
ues. Remember that the case considered there is quite
symmetric, as Jy = Jz. However, if we slightly break
this symmetry by imposing, for example, Jy = 1.1Jz, de-
picted in Fig 6, the different parts of the hamiltonian do
not commute with each other, and then we observe an
avoided crossing.

IV. MAPPING THE SPINS INTO FERMIONS

The hamiltonian can be mapped into a free fermionic
hamiltonian. We now follow the steps needed to make
this transformation.
To understand this mapping, we first introduce the cre-

ation and annihilation operators: The creation operator,
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FIG. 6: Representation of the eigenvalues as a function
of the coefficient Jx/Jz, imposing Jy = 1.1Jz to break

the symmetry there is in Fig 3.

named a†k, creates a particle in the single particle state k,
whereas the annihilation operator, denoted ak, destroys
a particle in the single particle state k.[6]
From these operators we can build the Majorana op-

erators [2]:

c2k−1 = ak + a†k; (7)

c2k =
ak − a†k

i
, (8)

which obey fermionic anticommutation roules.
We can create Fock states, |n1, n2, ..., nm⟩, where nk

determines the number of particles in the state k. As we
work with fermions, nk = 0, 1.
Each spin leads to 2 fermionic levels. So when we map

from spin to fermion, in each site where we had a spin
we can either have one fermion of type ↑, one fermion
of type ↓, both of them, or none of them. Therefore,
particularizing the operators in Eq. (8), for each site we
have the following Majorana operators:

bx := c1 = a1 + a†1; (9)

by := c2 =
a1 − a†1

i
; (10)

bz := c3 = a2 + a†2; (11)

c := c4 =
a2 − a†2

i
. (12)

The base we use is the following: in each site we have
|00⟩ , |10⟩ , |01⟩ , |11⟩ where the first number indicates the
number of fermions of type ↑, and the second number,
the number of fermions of type ↓.
These operators help us transform the spin system into

a fermionic system, with a change proposed in [2] given

by:

σ̃x = ibxc ; σ̃y = ibyc ; σ̃z = ibzc, (13)

and σ̃i act as an extension of the Pauli Matrices extended
to the Fock space.
Going back to building the hamiltonian, we can now

substitute the Pauli matrices for the operators we have
just built in (13), and the hamiltonian becomes:

Hf =
∑
j,k

2Jαjk
bαj cjb

α
k ck =

i

4

∑
j,k

2Jαjk
ujkcjck, (14)

where we have defined the following operators:

ujk = ib
αjk

j b
αjk

k . (15)

The operators ujk commute with the hamiltonian, so
we can split the space into eigenspaces [2] of ujk and
treat them as numbers, corresponding to their eigenval-
ues ujk = ±i. This means that we have a sum over all
the pairs of sites where we multiply two operators of the
2nd type of fermions (cjck) by constants.
This hamiltonian can be solved analytically, as we do in

section V. However, let us first consider some easy cases
to have a better understanding of the system obtained.

A. Some particular cases

B. 2-site case

Let us consider a simple case, using Jz as the energy
unit. We obtain λ12 = ±1 as eigenvalues, each one with
degeneration 8. This value corresponds to λ12 = ±Jz,
which is the same result we obtained using the spin hamil-
tonian.

C. 3-site case

In this case the hamiltonian is:

H3f =
i

2
(Jx(u12c1c2 + u21c2c1)+ Jz(u23c2c3 + u32c3c2)).

(16)
We have 3 sites, in which we can have 2 types of fermions
(↑ or ↓). Therefore, our basis has the form |n1n2n3⟩,
where ni = 0, 1, 2. However, we can see that as the oper-
ators are of the form c, they only affect the 2nd type of
fermions, so we can use a basis |n1n2n3⟩, where ni = 0, 1.
We can study the behaviour of the system as a function

of the parameter Jx.
As seen in Fig 2, the eigenvalues for this fermionic

hamiltonian, depicted in a red line, correspond to the
ones obtained for the 3-spin case, depicted in purple dots.
This case can also be solved analytically, writing the

hamiltonian and diagonalizing it, and we obtain the same
solutions as we did for the spin case.
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FIG. 7: Representation of the lattice, marking with a
rounded rectangle the new considered unit cells. Inside
each unit cell, which is determined by the index s, there
are two types of sites, black and white, distinguished by

the index λ.

V. FINDING THE ANALYTICAL SOLUTION

Once we have the fermionic hamiltonian, we can find
the analytical solution to the complete system.

We work with a new characterization of the sites: we
define a unit cell [2], which is formed by two sides linked
by a z-link. Each site j is represented by the indices
(s, λ), where s refers to the unit cell and λ to the position
type inside the cell. This characterization can be seen in
Fig 7.

With this new notation, our hamiltonian becomes:

H =
i

4

∑
2Jαsλ,tµ

usλ,tµcsλctµ =
i

4

∑
Aαsλ,tµ

csλctµ.

(17)
We pass this hamiltonian to the momentum representa-
tion by using the fourier transform. We use that J and
u only depend on λ, µ and t− s, so we fix s = 0 and the
index t scans the system:

Ãλµ(q) =
∑
t

ei(q,rt)A0λ,tµ (18)

In each site we will only sum for the three sites that are
nearest neighbors of the site considered, so this sum for
all the terms will end up only having 3 terms. We need
to find the spectrum of iÃλµ, which corresponds to the

eigenvalues of the system. To do so, we compute Ãλµ,
which will be a 2x2 matrix. The diagonal terms are 0,
because they correspond to the ones occupying the same
type of site inside a unit cell, which are never linked. We

calculate the two non diagonal terms and we obtain:∑
t

ei(q,rt)2Jα0λ,tµ
ustd
0λ,tµ =

2(ei(q,v1)Jyuy + ei(q,v2)Jxux + ei(q,v3)Jzuz) =

2(ei(q,v1)Jy + ei(q,v2)Jx + Jz),

(19)

where we name 1, 2 and 3 the different sites with whom
our site interacts. Diagonalizing it, we find that these
are the eigenvalues of iÃ, so the result in (19) are the
spectrum of the fermionic system.

VI. CONCLUSIONS

In this work we have studied a particular system con-
sisting of spins situated in a 2D honeycomb lattice. We
have been able to solve particular cases, as well as the
general case. The conclusions that derive from this work
are the following:
We have studied the spectrum of the system as a func-

tion of the coupling parameters, which has helped us un-
derstand the behaviour of the system. We have also fo-
cused on the avoided crossing phenomena, and we have
seen that it can occur or not depending on the symmetry
of the system.
Following the work of Kitaev, we have also successfully

mapped a spin system into a fermionic system, and that
has allowed us to analytically solve the problem. As ex-
pected, the solutions we have obtained for the fermionic
system and the spin system have been the same, and have
helped us understand the system considered.
In a further work we would like to analyse the solution

found analytically in detail, study the different phases,
and in particular we would also like to consider the any-
onic phases and their behaviour.
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