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Abstract: We study the ground state phases of the one-dimensional Bose-Hubbard model. To do
so, we employ the infinite time evolving block decimation (iTEBD) method, a tensor network based
algorithm, which enables us to obtain a good approximation of the ground state of an infinite one-
dimensional lattice. This method allows us to characterize the different phases and the transition
between them.

I. INTRODUCTION

Since the experimental observation of a Bose-Einstein
condensate in 1995 [1] the study of ultracold atomic sys-
tems has been incredibly important for understanding
modern aspects of quantum many-body theory. Nowa-
days, the amount of experimental control over these sys-
tems makes them ideal platforms for testing and observ-
ing quantum properties in a controlled manner [2]. An
important example of such systems is the Bose-Hubbard
model. This one describes the behavior of interacting
bosons at zero temperature in an optical lattice.

An interesting phenomena captured by this model is
the transition between a Mott Insulator (MI) and a su-
perfluid (SF) phase. This phase transition corresponds to
a quantum phase transition, an interesting type of tran-
sition that appears at T = 0. It occurs as a result of a
competition between different ground state phases when
a physical parameter is tuned.

In particular, ultracold atomic systems can be trapped
in a potential which limits their movement to only one
dimension. This is known as a cigar shaped configura-
tion, and has shown interesting behaviour different to
the three-dimensional case [3].

In recent years, tensor network based methods have
been widely used to study many-body quantum systems.
Tensor networks can capture the relevant entanglement
properties of these systems and characterize them to a
deeper level. These methods are still extensively used
and of research interest, making it a promising field in
the nearby future [4].

II. THEORETICAL BACKGROUND

The expression of the one-dimensional Bose-Hubbard
(BH) Hamiltonian in the canonical ensemble can be writ-
ten in terms of the creation and annihilation operators,

âi, â
†
i :

HBH = −J
M−1∑
i=1

(â†i âi+1+â†i+1âi)+
U

2

M∑
i=1

n̂i (n̂i − 1) , (1)

where M is the number of sites, J is the tunneling
strength and U the on-site interaction strength. The

index i represents a single site of the lattice, and n̂i is
the particle number operator on this site i. The creation
and annihilation operators follow the bosonic commuta-
tion relations and in this work we will focus on repulsive
interactions (U > 0).

We will be working in the real Fock space, so each state
of this basis is represented by the number of particles in
each site of the lattice, e.g., |n1, n2, . . . , nM 〉.

The first term of the Hamiltonian (1) is the so-called
hopping term, which enables a particle to tunnel between
neighbouring sites. The second one is the interaction
term and it accounts for the interaction between two
atoms in the same lattice site.

When the tunneling dominates over the on-site interac-
tion (J � U) the system exhibits a supefluid (SF) phase,
described by a wave function where all the particles are
delocalized in the lattice. In the limit J/U → ∞, the
ground state wavefunction becomes,

|ψSF〉 =

(
1√
N

M∑
i=1

â†i

)N
|0〉 . (2)

On the other hand, when the on-site interaction dom-
inates over the tunneling (J � U), it appears the Mott
Insulator (MI) phase, where all the particles are local-
ized in the lattice sites. In this state there is no phase
coherence between the particles. In the limit J/U → 0,
the ground state wavefunction reads,

|ψMI〉 =

M∏
i=1

(
â†i

)n
|0〉 , (3)

where n = N/M is the so-called filling factor, which we
take to be an integer number.

To study the phases of the BH we work in the grand
canonical ensemble, so we consider our system in ther-
modynamic equilibrium with a reservoir of atoms. This
is achieved adding to the original Hamiltonian a term of
the form,

H = HBH − µ
∑
i

n̂i , (4)

where µ is the chemical potential and gives preferent
value to a certain amount of particles in the system.
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Hence we have U , J and µ as the free parameters that
determine the phase of the ground state. To characterize
the phase diagram we fix U = 1 and we modify J and µ.
The main goal of our work is to find the ground state of
the system for different values of J/U and µ/U and to
determine to which phase it belongs.

A key concept in our work is the Schmidt decomposi-
tion of a state. If we consider a partition of the whole
Hilbert space H = H1 ⊗H2, the Schmidt decomposition
enables us to write a pure state |ψ〉 as the product of
an orthonormal basis of H1 ({|α〉1}) and H2 ({|α〉2}),
respectively;

|ψ〉 =

d∑
α=1

Λα |α〉1 ⊗ |α〉2 , (5)

where d = min(dim(H1),dim(H2)) and Λα are the so-
called Schmidt values which fulfill

∑
α Λ2

α = 1. As an
example, if there is no entanglement between the two
partitions, that is the state |ψ〉 can be written as a prod-
uct of the basis {|α〉1} and {|α〉2} (|ψ〉 = |ψ〉1 ⊗ |ψ〉2),
there is only one Schmidt value that is non-zero Λ1 = 1
[5]. This decomposition is useful to characterize the en-
tanglement between different partitions in our system.

Another important quantity is the von Neumann en-
tanglement entropy, which we can obtain from the
Schmidt values, S = −

∑
α Λ2

α log Λ2
α. It enables us to

quantify the entanglement between the two chosen par-
titions of our system. When two partitions are not en-
tangled the von Neumann entanglement entropy is zero,
S = 0. The entanglement entropy can be used to de-
termine the phases of the system. The MI state eq. (3)
obtained in the limit J/U → 0 has no entanglement be-
tween two spatial partitions, thus S = 0. On the other
hand, the SF state obtained in the limit J/U → ∞ is
entangled, S 6= 0.

III. NUMERICAL METHOD: MATRIX
PRODUCT STATES

The exact diagonalization study of quantum many-
body systems presents an important challenge in nu-
merical computation since the dimension of the associ-
ated many-body Hilbert space grows exponentially fast
[6] with the number of particles, N , and the number of
sites in the lattice, M . This makes impractical to find the
ground state for systems with more than N = 10 bosons
on M = 10 sites.

It is in this context where Tensor Network (TN) al-
gorithms play an important role in the modern simula-
tion of quantum many-body systems. TN methods repre-
sent quantum many-body states as a product of tensors.
This formalism allows to capture relevant entanglement
properties of a system [4]. In particular, a matrix prod-
uct state (MPS) describes the wave function of a one-
dimensional system as a product of matrices.

TNs limit the amount of entanglement present in a
system since they always fulfill an area law. This means
that the entanglement entropy of these states grows pro-
portionally with the size of the boundary between two
partitions. This could seem a crude approximation for
representing quantum states of many-body Hamiltoni-
ans since the entanglement entropy is upper bounded by
a volume law, it grows with the volume of each parti-
tion. Nevertheless it is known that the low-energy states
of gapped, local, frustration-free Hamiltonians in one-
dimension fulfill an area law [7]. This makes TNs a very
suitable representation of these systems since we will not
work with the full Hilbert space. Instead, we will be con-
strained to the small region of it which fulfills the area
law.

In an MPS [5], the wave function ψ of a pure quantum
state is decomposed into products of matrices,

|ψ〉 =
∑

n1,...,nM

T [1]n1
α1α2

T [2]n2
α2α3

. . . T [N ]nM
αMαM+1

|n1, . . . , nM 〉 , (6)

where M is the number of sites, there are dim(ni) ma-
trices T [i]ni of dimension χi × χi+1 for each site i, and
we are using Einstein notation, so we are summing over

the repeated indices. We call this set of matrices T
[i]ni
αiαi+1

a rank-three tensor, its superscript [i] denotes the set of
matrices in this particular i site, the subscripts αiαi+1

are called bond or virtual (most of the time we will omit
them) and the superscript ni is called a physical index,
since it refers to the site i in the Fock space.

It is important to note that in the MPS, the finite
dimension χ of the matrices T [i]ni is the beforementioned
constrain that restricts the space to only the necessary
part of the Hilbert space. This can be easily seen with the
canonical representation of the MPS, where we rewrite
the T [i]ni matrices,

|ψ〉 =
∑

n1,...,nM

Λ[1]Γ[1]n1 . . .Γ[M ]nM Λ[M+1] |n1, . . . , nM 〉 , (7)

where Λ[i] is a square, diagonal matrix with the Schmidt
values on the diagonal. This Schmidt values of the site
i are obtained from the Schmidt decomposition between
the left and right sites of this site, hence the canonical
representation is obtained with multiple Schmidt decom-
positions. Then, if we only have entanglement between
the degrees of freedom near this site, we can truncate
the Λ matrix up to a certain value since the Schmidt
values will decrease quickly.

A. Time Evolving Block Decimation (TEBD)

The TEBD algorithm allows us to calculate the time
evolution of a quantum state. For a typical quantum
state this can be done with the time evolution opera-
tor U , |ψ(t)〉 = U(t) |ψ(0)〉, with U(t) = e−itH (we are
choosing units ~ = 1). If we define τ → −it, we can do an
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imaginary time evolution with U(τ) = e−τH , which en-
ables us to find the ground state of a Hamiltonian. Since
the goal in our work is to characterize the ground state
of the system, we are interested in the latter and we use
this method with an initial random state to obtain the
ground state.

We need to find the representation of this U operator
in this MPS formalism. To do this, the TEBD algo-
rithm uses the Suzuki-Trotter decomposition, where for
a small δ parameter it approximates the exponential of
two operators X and Y , e(X+Y )δ = eXδeY δ +O(δ2), and
it assumes that the Hamiltonian can be expressed as a
sum of two-site operators, so it can be decomposed as a
sum on the odd sites and on the even sites. Using the
Suzuki-Trotter decomposition the U operator reads,

U(dt) '

[ ∏
i odd

U [i,i+1](dt)

][ ∏
i even

U [i,i+1](dt)

]
, (8)

where now this U [i,i+1] operator acts on only two sites.
With the expression of the MPS, this can be understood
as in order to do a single iteration of this operator, we
first evolve between the odd sites and then we evolve
between the even sites. This is considered as a single
iteration of the time evolution.

To ensure that this evolution conserves the canonical
form, we have to choose a small time step dt so the U
operator makes a small change in the state. Since now
we are evolving in imaginary time evolution the U oper-
ator is not unitary and with a big dt the canonical form
will not be conserved. Thus, we repeatedly apply this
operator with a small time step until we get a converged
state. In each update, the dimension of the matrices will
increase, and we will have to truncate them up to a value
trunc (which is nothing else than the dimension of the
matrices χ), which will define the entanglement between
the states in the system. With a large value of trunc, the
results better capture the entanglement in the system.

To obtain the quantities of the ground state, e.g., the
energy per site, number of particles per site, etc, we need
to find the representation of these operators as a sum of
two-site operators and we apply them to the final state.

B. Infinite Time Evolving Block Decimation
(iTEBD)

The iTEBD algorithm is a generalization of the TEBD
algorithm that allows to study infinite one-dimensional
systems by exploiting the translational invariance of the
Hamiltonian. It can be thought as the TEBD algorithm
with open boundaries in the limit of number of sites M →
∞. The basic idea of the algorithm is to first define a unit
cell in the system that will be repeated infinitely many
times. Then apply the time evolution operator over this
unit cell. Translational invariance guarantees that all
other unit cells will evolve in the same way and thus this
cell will be able to describe the whole system.

In the Bose-Hubbard model, this unit cell will be only
two sites (two Λ and two Γ tensors) since we have seen we
can describe the Hamiltonian as a sum of local two-sites
operators. This algorithm will be highly useful since it
will enable us to simulate infinite systems with little com-
putational work, as we will only need to keep evolving our
unit cell until we reach the ground state. In the following
we will employ this algorithm to obtain the ground state
phase diagram of the Bose-Hubbard model.

This iTEBD and the standard TEBD algorithm were
programmed following the notes from [8] with Python
using the Numpy library for tensor contractions.

C. Convergence of the results

In order to obtain the ground state for a particular
value of µ/U and J/U , we have three parameters which
have to be tuned in order to obtain a proper convergence
of the state: steps, dt and trunc. The two first are com-
putational related and the latter is a physical parameter,
which as previously explained captures the entanglement
between two subsystems in the system.
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FIG. 1: Convergence of different quantities with the iTEBD
algorithm for an increasing number of iterations with J/U =
0.2, µ/U = 0.6 and trunc=3.

As previously stated, a small time step (dt) is nec-
essary in order to maintain the canonical form of our
state, obtaining a better result as this value is reduced.
This can be seen in Fig. 1, where we represent the or-
der parameter 〈âi〉, the entanglement entropy per site
s = S/M and the discarded λ per step (the amount of
Schmidt values that are truncated in each step). This
last amount is a useful quantity to characterize the error
of the ground state at each time step, since it accounts
for the values that are discarded; if this value is large, we
might be throwing relevant information of the state. It
is important to note that these figures are obtained with
trunc = 3, hence we are doing an important truncation
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of the entanglement properties and we are losing relevant
information of the state as well.

As seen in the mentioned figure, a larger time step
needs fewer iterations (steps) and consequently compu-
tational time, in order to obtain a converged result. As
we explained, this is at the expense of relevant infor-
mation, that can be captured by the error on the final
obtained quantities. This error is shown in the zoomed
plot in Fig. 1, where we can see that although the re-
sult is fully converged, there is a discrepancy between the
results obtained with each dt. Thus, a larger dt has a
certain error in the obtained quantities.

Also, the number of steps needed to obtain a con-
verged result, changes significantly in the region of the
phase space. More iterations are needed in the regions
near the transition than in the center of the MI and SF
phases. This forces us to keep track of the convergence
and to make sure the result is converged.

IV. RESULTS

In this section we will focus on the results obtained
with the explained iTEBD method. The quantities we
compute are: The order parameter 〈âi〉 which is non-
zero in the SF phase and zero in the MI one; the mean
particle number per site 〈n̂i〉; the variance of the parti-
cle number operator per site ∆n̂i; the nearest-neighbour

correlation
〈
â†i âi+1

〉
c

=
〈
â†i âi+1

〉
−
〈
â†i
〉〈
âi+1

〉
, which is

zero when there is no spatial correlation; the von Neu-
mann entanglement entropy per site s = S/M and the
energy per site e = E/M .

We compute the results with trunc = 3, so we are
strongly limiting the entanglement in the system. Even
though the small amount of entanglement it is enough
to capture the SF to MI phase transition. The results in
the Phase diagram subsection (IV B) are obtained with
dt = 0.015 in order to obtain fast converged results, since
we need to compute all the quantities for a large number
of J/U and µ/U values and the error due to the big dt
in the third decimal will not be relevant in the colormap
plots. In subsection Phase transition (IV A), since we
obtain the results with µ/U fixed, we can do much more
steps of the algorithm and we use dt = 0.002 to obtain
better results.

A. Phase transition

We can see [11] in Fig. 2 that all the quantities show
an abrupt change in their behaviour in J/U ' 0.105,
manifesting the presence of the phase transition.

The value 〈âi〉 will be the quantity we will use to char-
acterize the two phases since it is clearly non-zero only
on the SF phase. We can also see a local maximum in

s and
〈
â†i âi+1

〉
c

in the transition point. This signals the
increase of quantum correlations at the phase transition.
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FIG. 2: Evolution of the different quantities described in the
text as J/U is increased for µ/U = 0.6 and trunc=3, where i
represents an arbitrary site in the lattice. This figure repro-
duces Fig. 3a of [9].

B. Phase diagram

We now compute the quantities for a range of values
of µ/U and J/U , so we can obtain the phase diagram of
the BH model, in which we can clearly differentiate the
MI and SF phases.
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FIG. 3: Visualization of the first Mott lobe in the phase di-
agram for trunc=3, where we represent the evolution of the
order parameter 〈âi〉 along the phase space. The red horizon-
tal line shows the cut displayed by Fig. 2.

In Fig. 3 we represent the SF order parameter 〈âi〉
in the phase space. In the figure we clearly see the
MI region where 〈âi〉 ' 0 and the SF region where the
order parameter is non-zero. The difference between
both phases can also be seen in most of the plots in
Fig. 4. This MI region in µ/U ∈ [0, 1] is called the
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first Mott lobe, and higher order Mott lobes can be
obtained for µ/U ∈ [1, 2], µ/U ∈ [2, 3], . . . Mott lobes
are characterized by 〈âi〉 = 0 and an integer value in the
number of particles per site [10], going from 〈n̂i〉 = 1 for
the first Mott lobe and getting increased by one unit for
each succeeding Mott lobe. In the 〈n̂i〉 plot in Fig. 4(c)
we can see this 〈n̂i〉 = 1 filling, and in this same figure,
in the plot of ∆n̂i (d) we can also see that the variance
in the number of particles per site in the Mott lobe is
much smaller compared to the SF, coinciding with the
limit mentioned in eq. (2) and (3).
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FIG. 4: Ground state properties of the system, e/U (a), s (b),
〈ni〉 (c) and ∆n̂i (d) as a function of the relevant parameters
µ/U and J/U . In all cases the truncation is set to trunc=3.

In this phase diagram we can also see the slight tri-
angular shape of this Mott lobe. Bigger values of trunc
would enable us to see how this shape sharpens and ex-
hibits reentrance from the SF to the MI phase [9], but
in our work we limit our simulations to small values of
trunc and we consider it a good approximation to the
BH model.

In Fig. 4(b) we can also see the so-called tip of the

Mott lobe in the entanglement entropy per site, s. This
tip shows us a maximum in the entanglement entropy,
where we can understand that our approximation with a
low value of trunc will fail, being compatible with the
beforementioned sharpening of the Mott lobe for bigger
values of trunc.

V. CONCLUSIONS

We have studied the phases of the one-dimensional
Bose-Hubbard with the MPS formalism and the iTEBD
algorithm. In doing so, we have characterized the en-
tanglement of the system and we have benefited of the
area law for the entanglement entropy verified by TNs,
to obtain results impossible to obtain via the traditional
exact diagonalization study.

We have also studied the convergence and applicabil-
ity of the iTEBD algorithm. With the quantities we ob-
tained, we characterized the MI and SF phases and the
transition between them.

Both algorithms we programmed show a lot of poten-
tial to do further exploration in this system, it would
be interesting to use the TEBD algorithm to analyze
how the different quantities scale with the system size,
in particular the entanglement entropy, enabling us to
study the difference in scaling between the MI and SF
phases.

Finally, this work has reflected the importance of ten-
sor network algorithms in modern simulations of quan-
tum many-body systems.
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