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Abstract: In this work we make use of quantum annealing simulations to solve a well-known
NP-Problem, the N-Queens problem, by describing it with a Hamiltonian and finding its ground-
state. We use two different methods and a biased Hamiltonian to compare the results obtained with
a biased solution of the 3×3 grid to later solve for the non-biased Hamiltonian and see what we
obtain. Also, we analyze the energy spectrum of both 3×3 and 4×4 grids.

I. INTRODUCTION

Quantum Annealing (QA) has proven to be an effective
method for solving NP-Problems that can be described
as a spin system with global interactions [1] as the sys-
tem becomes larger and larger and classical computation
becomes impossible. In this work we are using Quantum
Annealing (QA) to find the solutions of a well-known
NP-Problem, the N-Queens problem.

Before Quantum Annealing (QA), Simulated Anneal-
ing (SA) was used to try finding the solution to those
NP-Problems that could be reduced to finding a ground-
state of a spin system. The transitions of SA were due
thermal fluctuations rather than quantum fluctuations
as it is done in QA. QA was proposed by Kadowaki and
Nishimori in 1984 [2]. To prove QA was better than SA,
they tested with the quantum version of the Ising Model
and proved this technique got better results than SA in
the same conditions.

Throughout this thesis, we are comparing the results
of QA with the actual solutions of a well-known NP-
Problem. To do so, we use two approaches: the first
approach is used by Kadowaki and Nishimori [2] and O.
Promio [3], the second approach is used by D-wave [4],
who is one of the most important companies that are
working with QA.

The main goal of this work is to solve the N-Queens
problem using QA. The N-Queens problem is a NP-
Problem that consists on having a N×N grid where you
must put N queens in a way they do not kill each other.
The solutions of this problem are well known: for a 2×2
grid you can only put 1 Queen, for a 3×3 grid you can
only put 2 Queens and for N ≥ 4, you can put N Queens.
This work is organized as follows. First in Section II

we present the model, then in Section III we solve the
3×3 grid using the first method, after that, in Section
IV we develop the second method and also present the
energy spectrum of the 3×3 and 4×4 grids, and finally in
Section V we summarize the work and explain the final
conclusions.

II. MODEL

Th first thing we need to do is to find a mapping be-
tween the solution to the N-Queens problem and an Ising

Hamiltonian [1]. For the N-Queens problem, we are able
to write a Hamiltonian that does the job,

Htarget = δ

N×N∑
ij,i′j′

XijXi′j′ − ϵ

N×N∑
ij

Xij , (1)

δ, ϵ > 0,

where Xij is our Ising variable and can only be 1 if there
is a queen at position (i, j) and 0 if there is not. The
first term of Htarget increases the energy by δ if at po-
sition (i, j) there is a queen and can be captured. The
second term is our constrain, adding a queen decreases
the energy by ϵ.
We also need to define the units of our problem. For

the energy, δ is used; and for the time t0 defined as t0 ≡
ℏ/δ is used. If we write Eq. (1) in a way that we can
actually see the units:

Htarget = δ

N×N∑
ij,i′j′

XijXi′j′ −
ϵ

δ

N×N∑
ij

Xij

 . (2)

We can appreciate that ϵ also is an energy, as we ex-
pected, but having an ϵ/δ ratio explicitly written will
help us finding the best weight both terms should have.

A. Optimizing the ϵ/δ ratio

The N-Queen problem requires N queens placed in a
N×N grid, ϵ/δ < 1 because if it is bigger or equal than
1, the ground-state of H could have more than N queens
and that is not the problem we are trying to solve.
Knowing that ϵ/δ < 1 we must determine what is the

value that increases the most the gap between the en-
ergy of the ground-state and the energy of the first ex-
cited state. If we use Eq. (1), the ground-state must
have Egs = −Nϵ, and we have two different candidates
to be the first excited energy: For the first candidate,
we remove a queen. Now, we have N − 1 queens, thus
increasing the energy in ϵ. The energy of this state is
Eϵ = −ϵ(N−1) = Egs+ϵ. And, for the second candidate,
we add a queen, but now one of them can be captured.
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So, we decrease the energy in ϵ but we increase it in δ.
In this case we have Eϵδ = −ϵ(N + 1) + δ = Egs − ϵ+ δ.

Dividing both candidates by ϵ we get Eϵ/ϵ = −N +
1 and Eϵδ/ϵ = −N − 1 + δ/ϵ, imposing Eϵ = Eϵδ we
get δ/ϵ = 2, thus ϵ/δ = 0.5. Having this ratio makes
the difference between the energies of the ground-state
and the first excited state as big as possible reducing the
probability of transitioning from the ground-state to an
excited state while we are doing the Annealing process.

B. Method

The dynamics of the problem follow the time-
dependent Schrödinger equation,

iℏ
∂ |ϕ(t)⟩

∂t
= H |ϕ(t)⟩ , (3)

Eq. (3) is the equation we want to solve, and to do so
we are making use of the Cranck-Nicholson algorithm [3]
that approximates |ϕ(t+∆t)⟩ in the following way:

|ϕ(t+∆t)⟩ =
(
1 + i

∆t

2
H
)−1 (

1− i
∆t

2
H
)
|ϕ(t)⟩ . (4)

We are using two different methods to find the solutions.
Each method has a different H(t). For the first method
we have:

H(t) = Htarget − Γ(t)δ

N×N∑
i=1

σx
i , (5)

where Htarget is exactly Eq. (3) and Γ(t) is a mono-
tone descendant function where at t = 0 has a very big

value making δ
∑N

i=1 σ
x
i ≫ Htarget. We need a δ before∑N

i=1 σ
x
i to be coherent with the units. And for the sec-

ond method we have:

H(t) = a(t)Htarget + b(t)δ

N×N∑
i=1

σx
i , (6)

where a(t) = 1, b(t) = 0 when t −→ τ and a(0) =
0, b(0) = 1 and are called schedules. We are discussing
how these methods work on the next sections.

Both method share a common term, δ
∑N×N

i=1 σx
i , this

is the initial Hamiltonian, also known as the transverse
Hamiltonian (we must have a δ to be coherent with
units). This initial Hamiltonian forces all spins to point
at the x direction, and our goal with QA is to get from
the ground-state of this transverse Hamiltonian to the
ground-state of Htarget.

In order to get better results, we must follow the Adi-
abatic Theorem [5] when using both methods. This the-
orem states that, if we start in the ground-state of the
Hamiltonian at t = 0 and the time evolution is suffi-
ciently slow, we will go through all the ground-states of
H(t). For the method using Γ(t) this implies that Γ(t)
must go slowly to zero, and for the method using sched-
ules, the τ value must be large.

C. The states and grid notation

A state is one of the possible configurations that the
grid can have. For example, take a 2×2 grid, two of the
possible states could be:

1 0 1 0
0 1 1 1

These two states are written in grid notation. For each
position we have two possibilities, to have a queen and
to not have, so, for a generic N×N grid, we have 2N×N

possible states. In our 2×2 example we have 22×2 = 24

possible configurations. It looks like we can translate the
grid notation to a binary number notation. Using our
examples, the first configuration (left) can be written as
1·23+0·22+0·21+1·20 = 9, and the second configuration
(right) can be written as 1 ·23+0 ·22+1 ·21+1 ·20 = 11.
Respectively, they will finally be written as |9⟩ and |11⟩.

III. SOLVING THE 3×3 GRID USING A Γ(t)
FUNCTION

This method, that has as a H(t) Eq. (5), does not
actually reach our target Hamiltonian, but one as close
as the target as we want. In general, we start from t = 0

with H(0) ≈ Γ(0)δ
∑N×N

i=1 σx
i , and we end up at t =

τ with H(τ) ≈ Htarget. Ideally, if τ −→ ∞ we would
strictly get H(τ) = Htarget. We are using dimensionless
Γ functions as all the units are included in both the target
and the transverse Hamiltonian.

We are interested in the fidelity and infidelity of the
states we find throughout all the Annealing process and
its expected energy. The fidelity is |⟨ϕ(t)|ϕtarget⟩|2 and

the infidelity is 1−|⟨ϕ(t)|ϕtarget⟩|2. The expected energy
is ⟨ϕ(t)|H(t)|ϕ(t)⟩.
As we know the solutions of a 3×3 grid, we put a bias

towards the state-solution |12⟩ to make clearer compar-
isons of this method. Rather than having an energy of
E = −δ as every other state-solution, |12⟩ will have an
energy of E = −3δ. Our target state now is |12⟩, Htarget

becomes Hbiased and H(t) becomes Hbiased(t).
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FIG. 1: Comparing the infidelity for different Γ(t) depending
on how fast this function goes to 0. Each plot is done using
the same ∆t = 0.2t0.

In Fig. 1 we are studying how four different Γ func-
tions perform. The functions are, also we can see them
in Table I, Γ1(t) = 50

t+1 , Γ2(t) = 50
t2+1 , Γ3(t) = 50

et and

Γ4(t) =
50√
t+1

. They all start with the same Hamiltonian

at t = 0 being H(0) = −50δ
∑N×N

i=1 σx
i . The Γ functions

that go to zero faster (i.e. Γ2 and Γ3) arrive to a lower in-
fidelity value faster, but then they remain constant, they
do not improve. Given that Γ1 and Γ4 are the slowest
ones we can observe that, in the case of Γ1, goes slower
to an infidelity value than Γ2 and Γ3 but reaches a lower
value, thus being better at the end. This should also be
true for Γ4 but it is much more slower than the other
ones making the process very long in time just and we
are not able to see the behavior that should be similar to
the other three.

TABLE I: Expected energy and fidelity using Different Γ(t).
Htarget(τ) is different for each Γ(t). Data is from Fig. 1. τ is
the final time, and is the same value for all Γ(t) at τ = 500t0.

Γ(t) ⟨ϕ(τ)|Hbiased(τ)|ϕ(τ)⟩ (δ) |⟨ϕ(τ)|ϕtarget⟩|2

Γ1(t) =
50
t+1

-2.98 0.98

Γ2(t) =
50

t2+1
-1.91 0.71

Γ3(t) =
50
et

0.14 0.39

Γ4(t) =
50√
t+1

-17.61 0.10

On Table I we compare the expected energy and fi-
delity for the states found at t = 500t0 for all different Γ
functions. As we can also see from Fig. 1 Γ1 has a better
fidelity and its expected energy differ only in 0.02δ from
the target energy of −3δ, a difference of energies 10−2

orders of magnitude lower than Γ2, whose difference of
energy with the target is 1.09δ, the next best function.

IV. SOLVING THE 3×3 GRID USING
SCHEDULES

here we use the method of Eq. (6) and has a clear
difference with the method using Γ(t). The difference
is that using schedules we actually start at t = 0 with

H(0) = δ
∑N×N

i=1 σx
i and end up at t = τ with H(τ) =

Htarget. Both a(t) and b(t) are also dimensionless for the
same reason as the Γ functions studied previously.

We are also interested in analyzing the fidelity, infi-
delity and expected energies of the found states like we
did with the previous section.

A. Solving for Hbiased using linear schedules

As we did in the previous section, we put a bias to the
state-solution |12⟩ with an energy E = −3δ. We want
to compare how τ affects the final result using the same
schedules.

FIG. 2: Infidelity of the state found at t/τ depending on the
value of τ . We use ∆t = τ/104 for all plots.

On Fig. 2 we can observe that all τ behave the same
for t/τ < 0.5 almost having a constant infidelity value
at, approximately, 1, but after that the bigger the value
of τ is, the faster the infidelity goes to zero.

TABLE II: Expected energy and fidelity for different τ values.
As H(τ) = Hbiased our ground-state energy is -3δ. Data is
from Fig. 2.

τ/t0 ⟨ϕ(τ)|Hbiased|ϕ(τ)⟩ (δ) |⟨ϕ(τ)|ϕtarget⟩|2

1 2.2 0.08

10 -1.0 0.49

100 -2.86 0.97

1000 -2.999996 0.9999992

On Table II we can appreciate better the data from
Fig. 2 at t/τ = 1. Lower τ values imply a worse fidelity
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and a worse expected energy from the state found. We
can also note that the difference on fidelity between τ =
100t0 and τ = 1000t0 is much smaller than the difference
between τ = 10t0 and τ = 100t0.

B. Solving for Hbiased using different schedules

By leaving the τ value constant, now we are interested
in comparing how the schedules affect the final result.

FIG. 3: Comparison of the infidelity for different schedules.
We use τ = 100t0 and ∆t = τ/104 for all plots.

Fig. 3 shows how different schedules go to lower values
of infidelity. We can see that, like in Fig. 2, all sched-
ules have a similar value of infidelity at, approximately,
1 when t/τ < 0.5. However, each schedule go to lower
infidelity values at a different pace being the Linear ones
the best at t/τ ≈ 1.

The schedules studied in Fig. 3 and Table III are
Linear: a(t) = t/τ, b(t) = 1 − t/τ ; Trigonometric:
a(t) = sin( πt2τ )

2, b(t) = cos( πt2τ )
2; Polynomial (O2):

a(t) = (t/τ)2, b(t) = 1 − (t/τ)2 and Exponential: a(t) =
2t/τ − 1, b(t) = 2− 2t/τ .

TABLE III: Expected energy and fidelity using different
schedules. As H(τ) = Hbiased our ground-state energy is -
3.0 δ. Data is from Fig. 3.

Type of schedule ⟨ϕ(τ)|Hbiased|ϕ(τ)⟩ (δ) |⟨ϕ(τ)|ϕtarget⟩|2

LINEAR -2.86 0.97

TRIGONOMETRIC -2.67 0.91

POLYNOMIAL (O2) -2.62 0.90

EXPONENTIAL -2.81 0.95

On Table III we analyze at t/τ = 1 the expected energy
and fidelity of the different schedules used. Note that all
states found at t/τ = 1 from the different schedules have
a fidelity value equal or bigger than 0.9 making them

good candidates for an Annealing process. Nevertheless,
the Linear ones followed by the Exponential ones get bet-
ter results while the Trigonometric and Polynomial (O2)
differ only in 0.01 between each other and are far away
from the results found with the Exponential schedules
fidelity wise.

C. Solving for the target Hamiltonian

The main goal of having a biased Hamiltonian was
to see better the differences that appear when we mod-
ify certain parameters of the QA. Now, we solve, using
the linear schedules, the non biased Hamiltonian (i.e.
Htarget). As there is no unique solution, the solution
is 8-times degenerate, we can not compute a realistic fi-
delity.
The result we get is a superposition of all possible

states, specially the solution-states. We can write this
result state as |ϕ⟩ =

∑
i ci |i⟩, where |ci|2 is the probabil-

ity of measuring the i-th state, so
∑

i |ci|2 = 1.

FIG. 4: Probability of measuring each state from the result
found solving Htarget. The plot has been done with 10,000
points, τ = 100t0 and using the linear schedules. The energy
found is E = −0.998δ and the ”target” energy is E = −δ.

If we take a look at Fig. 4, we can see that 8 states
have almost the same |ci|2. The other states do have a
non-zero value but are from order 10−5 or lower.
The 8 states that differ so much from the others all

share the same |ci|2 value of 0.1247. So, if we sum all
of them we get that the probability of measuring one
of those 8 states is P8−states = 0.998. But the im-
portant thing they all share is the associated energy at
E = −δ, the ”target” energy. Those 8 states are actu-
ally rotations of one of them as the system has so many
symmetries, also, they have only two queens and are
in a position they cannot capture each other, and are:
|12⟩ , |33⟩ , |66⟩ , |96⟩ , |129⟩ , |132⟩ , |258⟩ , |264⟩.
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D. Energy spectrum of the 3×3 and 4×4 grids

In the previous subsections we were interested on how
the overlap of our |ϕ(t)⟩ with the target state went to
1, but now we are interested on how the energy levels
evolve as t/τ goes from 0 to 1. We are going to see this
time-dependent spectre for the 3×3 grid and for the 4×4
grid.

Knowing this time-dependent spectre can help us iden-
tify points or regions susceptible of having transitions to
higher energy levels and not ending up at the ground-
state of the system but an excited energy level. If the
method was ideally adiabatic, then, we would always go
through the ground-state of H(t).

FIG. 5: Energy spectrum of both 3×3 (top) and 4×4 (bottom)
grids for t/τ = 0 to t/τ = 1. The energy levels that end up
to have the same energy as the ground-state of Htarget are
represented in blue, and the others, in black.

We get to see that in Fig. 5 there are at least five
energy levels that go to the ground-state of the target
Hamiltonian of the 3×3 grid and only two that go to the
ground-state of the 4×4 grid. Indeed, only two energy
levels go to the ground-state of the 4×4 grid as it only has

two solutions. But, for the 3×3 grid, we get five energy
levels and we should be getting eight. The reason that
we can only see five is that at three levels are degenerate.
If we are following the ground-state of the transverse

Hamiltonian, we should not worry about the evolution
of the 3×3 grid as other seven (only four visible) levels
go to the same energy. For the 4×4 grid, we must be
more cautious as only two energy levels go to the ground-
state of Htarget and the energy levels are much closer
throughout all t ∈ [0, τ ].

V. SUMMARY AND CONCLUSIONS

Using QA we solved the N-Queens problem for the
3×3 grid, we already knew there was no possible way of
putting 3 queens in a 3×3 grid without them killing each
other, and found that only two queens can be put in a
position where they cannot kill each other.

Both methods, Γ(t) and the schedules, have helped us
compare the results we obtained from QA with the true
solution. The results obtained with the Annealing pro-
tocols is in agreement with the solution to the problem,
which for the case considered can be checked easily. Ad-
ditionally, we made the time-dependent energy spectre
for both 3×3 and 4×4 grids to observe the differences
and see critical points and regions.

In a future work, it would be nice to consider larger sys-
tems and implementing the protocol on a real annealer,
such as the one of dwave systems or the future one at the
Barcelona Supercomputing Center.
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[3] Oscar Promio Muñoz, Quantum Annealing in the trans-

verse Ising Model (2018) .

[4] https://www.dwavesys.com/learn/
quantum-computing/.

[5] T. Albash and D. A. Lidar, Rev. Mod. Phys. 90, 015002
[6] https://lyndenlea.uk/nqueens/?page=solutions

Treball de Fi de Grau 5 Barcelona, June 2024


