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Abstract: We consider a one-dimensional system of few-bosons in a harmonic trap that interact
via a contact potential. In addition, we explore a system of non-interacting bosons in the presence
of an impurity. The Variational Monte Carlo method is utilised to calculate an upper bound of
the ground state energy. Furthermore, we numerically obtain the one-body density matrix, which
allows us to determine the occupation numbers and the impurity density profile. The occupation
numbers reveal that, in the absence of any impurity, the condensation diminishes as the repulsive
interaction strength among bosons increases. Finally, in the presence of an impurity, we show the
existence of two distinct regimes: a miscible regime and a non-miscible one.

I. INTRODUCTION

There have been several experimental studies on ultra-
cold atomic gases, which demonstrate their potential as
quantum simulators for complex systems in the fields
of condensed matter and high energy physics [1–3]. To
understand and study the phenomenology of ultra-cold
atomic gases, various theoretical and numerical meth-
ods, such as Monte Carlo simulations, have been devel-
oped. Monte Carlo simulations are of great importance
as they allow to obtain the ground state properties of
many-particles systems [4].

In this work we investigate a one-dimensional system
of few bosons confined in a harmonic trap and interact-
ing via a contact potential. Since all particles are identi-
cal, we refer to this system as single-component gas. We
treat the interaction strength as an independent variable,
adjusted by tuning the scattering length. Additionally,
we explore a system of non-interacting bosons under the
same conditions but in the presence of an impurity. As
this system consists of two types of particles, the impu-
rity and the bosons, we refer to it as a two-component
gas.

To initiate our analysis, we propose a trial wave func-
tion (TWF) that captures relevant properties of the
ground state for each system under investigation. Using
this TWF, we initially calculate an upper-bound estimate
for the ground state energy. Subsequently, we optimise
one or more variational parameters within the TWF to
lower this upper-bound. Furthermore, by calculating the
one body density matrix (OBDM), we obtain density pro-
files and occupation numbers for further analysis.

We place particular emphasis on two specific config-
urations. In the absence of interaction and impurity,
bosons form a Bose Einstein Condensate (BEC), where
they all occupy the same single-particle state [5]. Con-
versely, when the interaction strength tends towards in-
finity, bosons behave as impenetrable point particles.
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This configuration is known as the Tonks-Girardeau gas
(TG), and its significance lies in the fact that the squared
modulus of its wave function is equivalent to that of a
system of non-interacting fermions [6]. Additionally, we
explore the behaviour of the impurity density profile as
a function of the interaction strength, which is another
intriguing phenomenon of interest.
The document is structured as follows. In Sec. II, we

introduce and describe the two systems under investiga-
tion. Sec. III explains the algorithms and calculations
utilised. The results are presented in Sec. IV, where we
discuss the two distinct configurations studied in Subsec.
IVA and Subsec. IVB. Finally, in Sec. V, we provide
the conclusions.
Throughout the document all quantities are expressed

in oscillator units: energies in units of ℏw and distances
in units of aosc =

√
ℏ/(mw).

II. THE MODEL

A. Single-component gas

The system under study consists of N bosons confined
in a one-dimensional harmonic trap. These bosons in-
teract with each other through a contact potential. The
system is described by the following Hamiltonian:

Ĥ = − ℏ2

2m

N∑
i

∆i +
mω2

2

N∑
i

x2i + g
∑
i<j

δ(xi − xj) , (1)

where g = ℏ2

m
(−2)
ao

characterises the strength interaction,

and ao is the scattering length [7]. For ao < 0, cor-
responding to g > 0, the interaction between the par-
ticles is repulsive, with the strength increasing as | 1

ao
|.

The TG gas is obtained in the limit ao = 0, while
the absence of interaction between bosons results in a
BEC when 1

ao
= 0. To investigate this system under

repulsive interactions, we initiate our study by propos-
ing a non-normalised TWF for the particles positions
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R⃗ = (x1, x2 . . . xN ),

ψT (R⃗) =

N∏
i=1

e
−α

x2
i

a2
osc

N∏
j<k

( |xk − xj | − ao
aosc

)
, (2)

where α is a variational parameter that must be tuned to
minimise the energy. The first term introduces the effect
of the harmonic trap, while the second term ensures that
the wave function cancels if two bosons are at a distance
equal to ao. It is important to note that the TWF is
symmetric under the permutation of any two bosons. As
an initial approach, we set α = 0.5. In the BEC and
TG limits, Eq. (2) coincides with the exact ground state
wave function after proper normalisation [4].

The case of two cold atoms is particularly interesting
for testing our methods, as the ground state energy is an-
alytically known for both repulsive and attractive inter-
actions [7]. Therefore, in addition to the TWF proposed
for the repulsive interaction regime in Eq. (2), we also
propose a TWF for the attractive regime specifically for
the case of two particles:

ψT (x1, x2) = e
− 1

2

x2
1

a2
osc e

− 1
2

x2
2

a2
osc e−

|x1−x2|
ao . (3)

This attractive TWF exhibits exponential decay as the
distance between the two bosons increases relative to the
scattering length.

B. Two-component gas

In this case, we consider a gas of non-interacting bosons
confined in a one-dimensional harmonic trap that interact
repulsively with an impurity. The total number of non-
interacting bosons, commonly referred to as bath parti-
cles, is denoted as NB = N − 1. The system is described
by the following Hamiltonian,

Ĥ = − ℏ2

2m

N−1∑
i

∆i −
ℏ2

2m
∆I +

mω2

2

N−1∑
i

x2i +
mω2

2
x2I

+ g

N−1∑
i=1

δ(xi − xI) , (4)

where the position of the impurity is denoted by xI .
We propose the following non-normalised TWF with two
variational parameters αI and αB :

ψT (R⃗) = e
−αI

x2
I

a2
osc

N−1∏
i=1

e
−αB

x2
i

a2
osc

N−1∏
i=1

( |xi − xI | − ao
aosc

)
,

(5)
where the first term introduces the effect of the harmonic
trap on all particles, and the second term ensures that,
if the impurity and any boson are at a distance equal to
ao, the wave function cancels. As an initial approach, we
set αI = αB = 0.5. It should be noted that for N = 2
the system is completely equivalent to the one discussed
in Sec. IIA.

III. METHODS AND OBSERVABLES

Given one of the TWFs presented in Sec. II, ψT (R⃗), its
square modulus can be treated as a probability distribu-
tion function after proper normalisation. The positions
of the particles can then be sampled using the Metropolis
algorithm [8]. It is important to note that the TWF itself
does not require normalisation for this sampling proce-
dure, as the Metropolis algorithm only involves ratios of
probabilities. Once the positions are sampled, we can
use Monte Carlo methods to evaluate integrals involving

|ψT (R⃗)|2 and derive various properties of the system.

A. Energy computation

According to the variational principle, the expectation
value of the Hamiltonian with respect to a TWF pro-
vides an upper bound for the ground state energy. This
principle can be expressed mathematically as follows,

⟨E⟩ =
∫∞
−∞ ψ∗

T (R⃗)ĤψT (R⃗)dR⃗∫∞
−∞ ψ∗

T (R⃗)ψT (R⃗)dR⃗
> Eg.s. (6)

Thus, to optimise the variational parameters in the
TWF, we aim to minimise the energy. For a general
Hamiltonian consisting of kinetic and potential terms

U(R⃗), the ground state energy can be estimated using

M samples R⃗j as follows,

⟨E⟩ =
1

M

M∑
j

(
− ℏ2

2m

∆ψT (R⃗j)

ψT (R⃗j)
+ U(R⃗j)

)
. (7)

B. One body density matrix

The one body density matrix (OBDM) is defined as,

ρ(x, x′) = N

∫
ψ∗(x′, x2 . . . xN )ψ(x, x2 . . . xN )dx2 . . . dxN .

(8)
It can be estimated as a Monte Carlo integral with M
samples with

⟨ρ(x, x′)⟩ =
N

M

M∑
x1j∈(x′+ δx

2 ,x′− δx
2 )

ψ∗
T (x, x2j . . . xNj

)

ψT (x1j , x2j . . . xNj )

1

δx
,

(9)
where δx is the step used for discretising the space. We
can deduce several important properties of the system
from the OBDM, such as the density profile, the momen-
tum distribution or the natural orbitals with their occu-
pation numbers. The density of the system corresponds
to the diagonal of the OBDM,

n(x) = ρ(x, x) . (10)

The occupation numbers of the natural orbitals are given
by the eigenvalues of the OBDM.
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FIG. 1: Energy of two particles as a function of the inverse
of the scattering length for both attractive and repulsive in-
teractions in green crosses. The TWFs used are Eq. (2) with
α = 0.5 and Eq. (3). The analytical energy derived in Ref.
[7] is represented in a red dashed line.

IV. RESULTS

A. Single-component gas

Energy of the two-particle case. For the simpler
case of N = 2, we can calculate the energy using TWF
(2) for repulsive interactions and TWF (3) for attrac-
tive interactions. The computed energy is compared to
the analytical energy in Fig. 1. The computed results
show a close agreement with the analytical curve. In the
repulsive regime, the energy increases as the interaction
strength strengthens approaching the TG limit where en-
ergy equals E = N2ℏω/2 = 2ℏω and it corresponds to
the energy of a system of N non-interacting fermions in
a one-dimensional harmonic trap.
In the repulsive regime, the TWF can be optimised

by varying α. Without optimising α, the maximum
discrepancy ∆max = max(|EMC − Eexact|) between the
results and the exact value of the energy is ∆max =
0.013± 0.002 ℏω. However, by optimising α, a lower up-
per bound is obtained, reducing the maximum discrep-
ancy to ∆max = 0.006±0.002 ℏω. It is important to note
that the computed energy is always an upper bound of
the exact energy, as expected from the variational princi-
ple. The discrepancies obtained are very small compared
to the actual energy value.

Energy of the few-particles case. When N > 2,
we only focus on the repulsive regime. We can compare
our results with the results obtained in Ref. [9] using
the exact diagonalization method (ED). In Fig. 2 we ob-
serve that both results fit really well, specially for small
values of N . Once again, optimising α leads to a lower
upper bound for the energy of the system. For weak
interactions, the results obtained by ED give a lower up-

FIG. 2: Energy for N particles as a function of the inverse
of the scattering length for the repulsive regime. Both the
results obtained with (VMC) and without (MC) optimisation
of α are shown by crosses and open circles, respectively. VMC
stands for Variational Monte Carlo and MC for Monte Carlo.
The obtained energy in Ref. [9] is also plotted with dashed
lines (ED). Each colour represents a different N . The TG

limits E = N2

2
ℏω are plotted with grey dot-dashed lines.

per bound of the ground state energy, while the opposite
is true for strong interactions. The maximum discrep-
ancy between both results ∆max = max(|EMC − EED|)
increases with the number of particles. For N = 3,
when α is not optimised, the maximum discrepancy is
∆max = 0.07± 0.01 ℏω. After optimising α, the discrep-
ancy significantly decreases to ∆max = 0.02 ± 0.01 ℏω.
For N = 6, the maximum discrepancy without optimisa-
tion is ∆max = 0.76 ± 0.02 ℏω, while after optimisation,
the discrepancy is reduced to ∆max = 0.19± 0.02 ℏω.

Occupation numbers. The OBDM has been com-
puted for various interaction strengths and number of
particles. Then, by diagonalising the computed ma-
trices, we obtain the occupation numbers for different
strength interactions and number of particles. The oc-
cupation numbers obtained for three particles under dif-
ferent strength interactions are shown in Fig. 3. The
sum of all the eigenvalues obtained for a given OBDM
is equal to its trace, which is equal to N . In the ab-
sence of interaction, bosons form a BEC and we obtain
only one non-zero occupation number with a value of
λ0 = N . As the repulsive interaction increases, con-
densation diminishes, i.e. the largest occupation number
decreases while the other occupation numbers increase.
In the TG limit, the behaviour of the largest occupation
number λ0TG with respect to N is non-trivial and clearly
differs from that of non-interacting fermions, where the
OBDM has N non-zero eigenvalues λj = 1. To determine
the parameters of a hypothesised power-law relationship
λ0TG(N) = cN b for the TG limit, we perform a lineal
regression using log λ0TG as the y-coordinate and logN
as the x-coordinate for N ranging from 2 to 10. The
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FIG. 3: OBDM eigenvalues of 3 particles as a function of
the inverse of the scattering length for the repulsive regime.
The dashed lines correspond to the computed value of the
eigenvalues at the TG limit.

coefficient of determination is found to be R2 = 0.9996.
The obtained parameters are

c = 1.042± 0.008 b = 0.586± 0.005. (11)

These values are in reasonable agreement with the
power law obtained in Ref. [10], where they state that
λ0TG ≈ N0.59.

B. Two-component gas

Energy of the system. Using the proposed TWF
in Eq. (5), we compute the energy of the system as a
function of the interaction strength. In Fig. 4, we show
the computed energy of the system with and without op-
timising αI and αB , and compare it to the ED results.
The energy obtained is always an upper bound of the
ED energy. When we optimise αI and αB we obtain a
significantly lower upper bound, although it is still larger
than the energy obtained with ED. In this case, since
the system includes an impurity and is more complex,
the proposed TWF is not as accurate as the one used for
the single-component gas. The discrepancy between the
computed energy and the ED energy increases with the
total number of particles. Additionally, the discrepancy
increases when the interaction becomes stronger, indicat-
ing that the proposed TWF is more accurate for weaker
interactions.

Impurity density profile. By following the method-
ology outlined in Sec. III, we have computed the OBDM
for the impurity. From it, we can obtain the density pro-
file of the impurity with Eq. (10). In Fig. 5, we show the
impurity density profile for a system of 3 particles (two
bath particles and the impurity).

FIG. 4: Energy as a function of the inverse of the scattering
length in the repulsive regime for NB bath particles with one
impurity. The data with αI = αB = 0.5 is plotted with circles
(MC). The data optimising αI and αB is plotted with crosses
(VMC). The obtained energy in Ref. [9] is also plotted with
dashed lines (ED). Each colour represents a different N .

FIG. 5: Impurity density profile for 2 bath particles for dif-
ferent interaction strengths.

For weak interaction strengths, we observe a maximum
in the impurity density profile located at the centre of the
trap. As the interaction strength increases, this maxi-
mum becomes a minimum, and two symmetric maxima
appear on each side. These two configurations can be
interpreted as a miscible and a non-miscible regime, re-
spectively. In the miscible regime, the impurity is located
around the centre of the trap along with the bath parti-
cles. In the non-miscible regime, the impurity tends to
be located far from the bath particles. The transition
between these two regimes occurs at different values of
1
ao

for different NB . To characterise the total interaction

strength acting on the impurity, we use g(N −1) = gNB .
We can then evaluate the position of the maximum as
a function of gNB . In Fig. 6, we observe that for any
number of particles, there is an abrupt transition oc-
curring around the same value of gNB , approximately
g ≈ 1.9

NB
ℏωaosc. When comparing with the ED results,
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we find that the actual transition occurs at a higher gNB .
This indicates that our TWF does not accurately predict
the critical strength, but it does reveal the existence of
this phenomenon.

FIG. 6: Position of the impurity density profile maximum
value |x|ρmax as a function of gNB for 3, 4, 5 and 6 particles.
The data obtained with Monte Carlo is plotted with crosses
while the data obtained with ED is plotted with circles.

V. CONCLUSIONS

In this project, we have investigated a system of many
bosons confined in a harmonic trap, both with and with-
out the presence of an impurity. We have proposed and
optimised a TWF for the ground state of each system
and estimated upper bounds for the ground state energy
as a function of the interaction strength. We have also
computed the OBDM for different configurations and ex-

plored the occupation numbers of the one-component gas
as well as the impurity density profile. The main conclu-
sions of our study are:

• The proposed TWF for the system without any im-
purity is highly accurate. In fact, for strong inter-
actions, it provides a lower upper bound for the
ground state energy compared to the ED results.

• The computation of the occupation numbers re-
veals that the condensation of bosons diminishes
when the repulsive interaction between them in-
creases. In the TG limit, the occupation numbers
exhibit a distinct behaviour from those of a non-
interacting fermionic system. We have confirmed
the dependence with N of the largest occupation
number in the TG limit, λ0TG ≈ N0.59 as predicted
in Ref. [10].

• When an impurity is introduced, the estimated up-
per bound of the ground state energy significantly
deviates from the actual ground state energy, indi-
cating that the TWF is not as accurate as in the
case without an impurity. However, the TWF still
captures the transition between a miscible and a
non-miscible regime.
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