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Abstract: The aim of this project is to study the interference produced by the collision of two
wave functions. To analyze them, we will program a Crank-Nicolson method in order to solve
the time-dependent Schrödinger equation and obtain the dynamics of a particle under any external
potential. We will first check our Crank-Nicolson algorithm with some analytic cases before studying
a non-analytic situation, with a barrier between both particles.

I. INTRODUCTION

Bose-Einstein condensates have been an interesting
tool for studying quantum mechanic properties. One of
these properties is the interference effect [1] [2]. In this
project we will consider a non-interacting system as a
first step to understand this phenomena.

We will program a Crank-Nicolson method in order
to solve the time-dependent, unidimensional Schrödinger
equation and study some properties of the wave function
under different situations. We will then use these prop-
erties to create interference fringe and we will analyse
them.

A. Theoretical framework

The wave function of a system of non-interacting par-
ticles, Ψ, is described by the Schrödinger equation. The
dynamics in one dimension can be obtained by solving
the time-dependent Schrödinger equation:
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where m is the mass of the particle and V (x) is the trap-
ping potential. Since the Bose-Einstein condensates are
usually confined in a harmonic trap, we will consider the
following potential:
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1
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mω2 x2 , (2)

where ω is the trapping frequency that defines the har-
monic oscillator units of length x0 =

√
~/mω, energy

ε0 = ~ω and time t0 = 1/ω. From now on, we will use
harmonic oscillator units. The dimensionless Schrödinger
equation is:
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The ground state can be obtained analytically, which is
a centered gaussian wave function. As we are interested

in study the dynamics, we will consider as an initial wave
function:

Ψ(x, 0) =
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exp
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]
, (4)

where σ is the width of the gaussian and d is the displace-
ment respect to the origin. The ground state corresponds
to σ = 1 and d = 0.

B. Crank-Nicolson method

The dynamics of a Bose-Einstein condensate cannot
be solved analytically, therefore we need a numerical
method. In this project we will use the Crank-Nicolson
method, which is a time implicit, finite difference method
widely used to solve partial differential equations [3].
It approximates the second derivative at two different
times, at t and t+ ∆t. Here, the discretized Schrödinger
equation takes the following form:
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where j corresponds to the time coordinate, k to the
space coordinate, ∆x the space step and ∆t the time
step.

It can be shown that Eq. (5) can be rewritten in a tri-
diagonal matrix form by rearranging the terms. In this
form, it is computationally easier to solve the equation.
If we define r = i∆t/2∆x2, A as a tri-diagonal matrix
with 2(1 + r) + iV (x)∆t at the main diagonal and −r
at the upper and lower diagonal, and B as another tri-
diagonal matrix with 2(1 − r) − iV (x)∆t at the main
diagonal and r at the upper and lower diagonal, Eq. (5)
can be simplified to

A~Ψj+1 = B~Ψj . (6)

If we know the values of A, B and ~Ψj , one can find the

value of ~Ψj+1. If we compute it Nt times, we obtain a
time-evolution for any potentials.
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FIG. 1: Evolution of the expected value of the position,
< x >, as a function of time for a displaced gaussian wave
function under a harmonic trap in harmonic oscillator units.

II. EVOLUTION OF ONE PARTICLE

Before studying the collision of two wave functions, we
will check the numerical code by studying the dynamics
of an untrapped single particle and also in presence of a
harmonic potential. We consider Eq. (4) as the initial
wave function and we will numerically solve the dynam-
ics by using the Crank-Nicolson method inside a box of
length 100 (in harmonic units). The numerical parame-
ters that we have used are ∆x = 0.05 and ∆t = 0.01.

A. Dipole mode

When the ground state of the harmonic potential is dis-
placed from the center of the trap, it exhibits a periodic
oscillation with the same frequency of the trap without
changing the gaussian shape. This is the so called dipole
mode.

We have obtained numerically the dipole oscillations
by assuming as initial wave function Eq. (4) with σ = 1
and d 6= 0. In order to study them, we have computed
the value of the expected value of the position, < x > as
a function of time. In Fig. 1 we can see the numerical
results for different initial displacements. All the results
follow the same equation:

< x >= d cos (t) , (7)

where t is the time in harmonic oscillator units. An inter-
esting property of this result is that, independently of the
initial separation, the period T = 2π/ω = 2π is always
the same, sine the harmonic frequency ω does not change.
The case d = 0 corresponds to a centered gaussian wave
function, which is the stationary solution.

FIG. 2: Evolution of < x2 > as a function of time for a thinner
or thicker gaussian wave function under a harmonic trap, in
harmonic units.

B. Breathing mode

Breathing mode occurs when a centred gaussian wave
function has a width that does not correspond to the
ground state of the harmonic potential. Therefore, we
will aswell have as initial state a gaussian wave function
with =. 0 and σ 6= 1 confined in a harmonic trap.

In this situation, the wave function expands and con-
tracts periodically. This is why, in this case, instead of
computing and representing < x >, we will calculate
< x2 > for σ = 1, 2, 5, 1

2 and 1
5 . The numerical parame-

ters are the same as in the dipole modes.
The numerical results are summarized in Fig. 2 As

expected, < x2 > (t) shows a sinusoidal behaviour with
the same period of T = π in all the cases. It is also
interesting to point out that the cases σ = 2 and σ = 1/2,
or σ = 5 and σ = 1/5, have the same equation to describe
< x2 > but with only a difference of a phase of π. During
either the expansion or contraction, the width σ of the
wave function becomes 1/σ in a time of π/2, the same
periodic behaviour of < x2 > (t) but shifted.

C. Dispersion

The ground state of a harmonic potential, which con-
sists of a gaussian wave function with d = 0 and σ = 1,
does not evolve in time as we have checked numerically
in Fig. 1 and 2 to test our computational code. How-
ever, if the trap is switched off, there will be a dispersion
of the wave function. The probability can be calculated
analytically:

|Ψ(x, t)|2 =
1√

π (1 + t2)
exp

[
− x2

(1 + t2)

]
. (8)

This equation describes the evolution of a free particle.
Our wave function is trapped in a box of length 100. This
will produce edge effects at large enough time, when the
particle reaches the box limits. To avoid them, we will
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FIG. 3: Snapshots of the expansion of the wave function when
the harmonic potential is switched off. The numerical results
and the analytical ones, Eq. (8), are overlapped.

only study the dynamics from t = 0 to t = 10, when
border effects are not relevant.

To study the validity of our Crank-Nicolson using Eq.
(8), an animation sequence was created, plotting the an-
alytical and numerical results. In Fig. 3 there are a few
snapshots at different times. During all the time, the an-
alytical and the numerical results are overlapped. Thus,
showing an excellent agreement.

III. INTERFERENCE

Like a classical wave, when two coherent wave func-
tions superpose, they produce interference phenomena.
The fringes pattern depends on the initial separation,
2d, and the relative phase between them, φ.

Experimentally, the interference pattern is produced
by trapping two Bose-Einstein condensates in a double-
well potential [1]. After switching off the trap, the con-
densates expand and when they overlap, the interference
fringes appear. Another way to create interference is us-
ing the dipole mode, by trapping two particles at ±d in
a harmonic potential. In this section we will study both
ways and the effect of a potential barrier between the two
wave functions.

A. Collision in presence of a harmonic potential

As we have seen before, in a harmonic potential, a
gaussian wave function oscillates periodically with an am-
plitude of d, where d is the distance between the peak of
the wave function and the center of the trap, and a pe-
riod of T = 2π. That means that, if we displace two
gaussian wave functions at ±d, they will collide at t = π

2
and x = 0, forming an interference pattern.

We consider a wave function Ψ(x, t) defined as

Ψ(x, t) = Ψl(x, t)e
iφl + Ψr(x, t)e

iφr , (9)

where Ψl(x, t) and Ψr(x, t) will be our left and right gaus-
sians wave functions, respectively, situated and ±d, and
φl and φr are they respective phases.

After this, we will normalize Ψ(x, t) to 1 by computing∫ −∞
∞ |Ψ(x, t)|2dx = 1 using the Simpsons rule.
Then, using the Crank-Nicolson method, we will ob-

tain the numerical evolution of Ψ(x, t). Since the
Schrödinger equation is a linear equation, the result can
be calculated analytically by computing

N |Ψ(x, t)|2 = |Ψl(x, t)e
iφl + Ψr(x, t)e

iφr |2 , (10)

where N is the normalisation constant. The obtained
result, considering σ = 1, is the following one:

|Ψ(x, t = π/2)|2 = Ne−x
2

cos2
[

1

2
(2dx+ φ)

]
, (11)

where φ = φl − φr is the relative phase and t = π/2 is
the collision instant.

As we can see, the interference depend on the relative
phase of both wave functions and the initial distance.
The shape of the interference pattern will be a gaussian
envelope and sinusoidal peaks. We can also see that, if we
increase the initial distance, the peaks will be closer; and
the phase difference will only add a phase to the peaks.

In Fig. 4 we show the snapshot of the numerical
and analytical results at t = π/2 for two initial relative
phases, φ = 0 (top) and φ = π/2 (bottom). The an-
alytical results are overlapped with the numerical ones.

B. Collision in free space

In absence of a trapping potential, the wave functions
expand. Due to the expansion, the wave functions will
mix up, creating an interference pattern which will de-
pend on the initial distance between them, 2d, and their
relative phase φ.

This pattern can also be found analytically. To calcu-
late it, we can use Eq. (10) considering that the evolution
of Ψ(x, t) is described by Eq. (8). The final result is the
following one [5]:

|Ψ(x, t)|2 =
N√

1 + t2

[
e
− (x−d)2

(1+t2) + e
− (x+d)2

(1+t2) +

2e
− (x2+d2)

(1+t2) cos

(
2dx

t+ 1/t
+ φ

)
.

(12)

The first two terms describe the expansion of the two
wave functions, without considering the interaction be-
tween them, and it is consistent with Eq. (8). The third
therm describes the interference pattern. We can see
that, as before, it depends on the relative phase of both
wave functions and its initial separation. There is also
an additional time contribution, which did not appear
in the harmonic potential. That contribution makes the
envelope evolve like the wave function, and separates the
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FIG. 4: Snapshot of the probability density at t = π/2 as a
function of the position. The initial separation is 2d = 6. Top
panel corresponds to φ = 0, and bottom panel to φ = π/2.
Numerical and analytical results are overlapped.

peaks at large times. We can also see that, at small times,
there will no be interference, since the wave functions will
not have mixed yet.

We have obtained the dynamics by using the Crank-
Nicolson method. Again, the numerical and analytical re-
sults are in agreement and they appear overlapped. Fig 5
shows two snapshots of the probability density at t = 10,
with an initial separation 2d = 14, and different relative
phase, φ = 0 (top panel) and φ = π/2 (bottom panel).

C. Potential barrier effect

Let us consider a gaussian barrier centered in the har-
monic potential,

Vbarrier(x) = Ae−
x2

2 , (13)

where A is the height of the gaussian potential. In this
case, the total external potential will be

V (x) =
1

2
x2 + Vbarrier(x) . (14)

The dynamic in this case cannot be solved analyti-
cally, so numerical results are needed to study it. We
will consider three different cases affect the interference.
To simplify the analysis, we will consider φ = 0.

The first case we will consider is A = 1. Under this
situation, the barrier potential will be almost negligible.

FIG. 5: Snapshot of the probability density at t = 10 as a
function of the position. The initial separation is 2d = 14.
Top panel corresponds to φ = 0, and bottom panel to φ =
π/2. Numerical and analytical results are overlapped.

FIG. 6: Snapshot of the probability density at t = π/2 as
a function of the position. The initial separation is 2d = 6.
Probability is represented in red and the potential in black.

To study how it affects, we will plot the density pro-
file of the wave functions at the moment of the collision,
which is t = π/2. Fig. 6 represents the snapshot of that
instant. In it, we can see that the barrier is not strong
enough to modify the interference.

Now we will consider a barrier of A = 30. In this case,
the barrier is much stronger than the harmonic trap, so
it will modify the interference pattern notably. To study
it, we will plot the density profile at t = π

2 , which is the
collision frame, like in the previous case. The result is
shown Fig. 7.
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FIG. 7: Snapshot of the probability density at t = π/2 as
a function of the position. The initial separation is 2d = 6.
Probability is represented in red and the potential in black.

FIG. 8: Snapshot of the probability density at t = π/2 as
a function of the position. The initial separation is 2d = 6.
Probability is represented in red and the potential in black.

As we can see, in this case the barrier is much stronger
than the harmonic trap, so the wave functions stay in
the minimal potential well. Because of that, there is no

collision.
The last barrier potential we will study is the most in-

teresting one, since the barrier is strong enough to modify
the interference pattern, but not strong enough to stop
the collision. This is the case of A = 4. As before, we will
proceed to plot the density profile at t = π

2 to study the
interference pattern. The results are summarized in Fig.
8. As we can see, the interference are shown, and the pat-
tern is the same of Fig. 4, but they are clearly deformed
if we compare them with the case without barrier.

IV. CONCLUSIONS

We have investigated the interference produced by
the collision of two wave functions. We have con-
structed a numerical code to solve the time-dependent
Schrödinger equation by mean of the Crank-Nicolson nu-
merical method. We have used it to study the dynamic
of a gaussian wave function under a harmonic trap and
without external potential. By comparing our numerical
results with the analytical predictions, we have checked
the validity of our program.

We have then studied the interference produced by
two wave functions in a few analytical and non-analytical
cases.

An interesting next step would be to study a more real-
istic Bose-Einstein condensate, by adding the interaction
term, and comparing those results with the ones obtained
in this project to understand the role of interactions in
the interference phenomena.
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