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Abstract: We consider a system composed by two coupled Bose-Einstein condensates trapped
in a quasi-1D trap. We consider a specific configuration in which one of the condensates is much
more populated than the other one. In this setup, we study how the less populated condensate gets
trapped in the presence of a dark soliton in the first condensate. Analytical and numerical solutions
are obtained. Then, we consider the case of two dark solitons in the first condensate and study the
tunnelling dynamics of the second component in the effective double-well potential induced by the
dark solitons.

I. INTRODUCTION

In the last decade the stability and dynamics of dark
solitons in Bose-Einstein condensates (BECs) have be-
come an important subject that has motivated a large
amount of studies. Solitons have been observed in a
large variety of systems as optical fibers, magnetic films,
plasmas, and wave guide arrays water or atomic Bose-
Einstein condensates [1]. In our case, dark solitons
are macroscopic structures in BECs, which consist of
localized depressions in the density profile in a one-
dimensional BEC. These structures emerge due to a pre-
cise balance between the nonlinear and dispersive effects
in the atomic system [2]. These nonlinear effects are a di-
rect consequence of the interactions between the atoms.
Furthermore, in the case of dark solitons these interac-
tions are repulsive. Another relevant property of dark
solitons is that they can travel with constant speed while
keeping their shape [1].

In this work we consider a system composed by two
coupled Bose-Einstein condensates trapped in a quasi-1D
trap. In particular we consider a specific configuration in
which one of the condensates is much more populated.
Our aim is to study how the less populated condensate
behaves in the presence of dark solitons associated to
the most populated component in the BEC. To this end,
we will study the extreme case of one impurity in the
presence of one or two solitons of the most populated
component. The first case, with only one soliton, can be
analytically studied. While the two soliton case requires
the construction of a numerical code. The density pro-
file of the two solitons resembles a double-well potential
and we study the dynamics of the impurity tunnelling
through the barrier between the two separated wells.

The present work is structured as follows: in Section
II we describe the mean-field approximation of the two
component system. In Section III we discuss the mathe-
matical model for a single dark soliton in one component.
In the Section IV we present the numerical algorithm to
build two dark solitons in one component. Finally, in
Section V we study the tunnelling dynamics of one im-
purity in the system of two dark solitons considered as a

double-well static potential. A short summary and the
main conclusions are presented in Section VI.

II. MEAN-FIELD DESCRIPTION

In the limit of zero temperature, the dynamics of a
one-dimensional Bose-Einstein condensate with two dif-
ferent components, at the mean-field level, is described by
the wave functions ψ1(x, t) and ψ2(x, t). They obey the
following system of coupled non-linear differential equa-
tions, known as Gross-Pitaevskii (GP) equations [2]

i~
∂ψ1

∂t
=

[
− ~2

2m
∂2x + g11|ψ1|2 + g12|ψ2|2

]
ψ1 , (1)

i~
∂ψ2

∂t
=

[
− ~2

2m
∂2x + g22|ψ2|2 + g12|ψ1|2

]
ψ2 , (2)

where ~ is the Planck constant, m is the atomic mass
of each species (which are taken equal) and gij is the
strength of the different atomic interactions. We con-
sider the homogeneous case. As the second component is
much less populated we can assume that the first com-
ponent is decoupled from the second one. In addition,
we also neglect the inter-atomic interactions in the sec-
ond component. Therefore, under these assumptions the
system is described by the following two equations:

i~
∂ψ1

∂t
=

[
− ~2

2m
∂2x + g11|ψ1|2

]
ψ1 , (3)

i~
∂ψ2

∂t
=

[
− ~2

2m
∂2x + g12|ψ1|2

]
ψ2 . (4)

A. Stationary case

In this subsection we study the stationary case. Con-
sidering that the wave function of the condensate evolves
in time according to [3]

ψ1(x, t) = ψ1(x)e−i
µt
~ , (5)
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where µ is the chemical potential, the GP time-
independent equation reduces to

µψ1(x) =

[
− ~2

2m
∂2x + g11|ψ1(x)|2

]
ψ1(x) . (6)

Notice that a simple constant wave function like,
ψ(x) =

√
n, is a solution of the Eq. (6). In this case,

the density is |ψ(x)|2 = n and the chemical potential is
given by µ = g11n. Another possible solution known as
dark soliton is given by

ψ1(x) =
√
notanh

(
x
√
mg11no

~

)
, (7)

where no is the background density [2, 4]. For this solu-
tion, the chemical potential is given by µ1 = g11no, while
the number of missing atoms from the background den-
sity due to the depression created by the wave function
of Eq. (7) is given by

N =

∫ ∞
−∞

(|ψ1(x)|2 − no)dx = −2~
√

no
mg11

, (8)

which is in agreement with the results of reference [4].

III. ANALYTICAL SOLUTION

In this section we solve analytically the Gross-
Pitaevskii equation of the second component Eq. (4), in
the presence of the dark soliton of the first component
Eq. (7) acting as a potential well.

The time-independent Gross-Pitaevskii equation cor-

responding to Eq. (4), assuming ψ2(x, t) = ψ2(x)e−i
µ2t
~ ,

is given by

µ2ψ2(x) =

[
− ~2

2m
∂2x + g12|ψ1(x)|2

]
ψ2(x) . (9)

Taking the density profile of the dark soliton of Eq. (7)
we arrive to the following equation

µ2ψ2(x) =

[
− ~2

2m
∂2x + g12notanh2

(
x
√
mg11n∞

~

)]
ψ2(x) .

(10)
A relevant quantity for the description of a soliton is the
healing length of a soliton

ξ =
~

√
mg11no

, (11)

which measures the minimum spatial scale of density
variations [1]. Introducing the healing length in the pre-
vious equation we obtain

µ2ψ2(x) =

[
− ~2

2m
∂2x + g12notanh2

(
x

ξ

)]
ψ2(x) . (12)

Measuring the length in terms of the healing length,
x̃ = x

ξ , we can rewrite the time-independent Schödinger

equation Eq. (12) as,

[
−1

2

∂2

∂x̃2
+
g12
g11

tanh2(x̃)

]
ψ2(x̃) =

µ2

µ1
ψ2(x̃) . (13)

A physical interpretation of Eq. (13) is to consider that
the static dark soliton acts as a potential well to the
second component,

V (x̃) =
g12
g11

tanh2(x̃) . (14)

It turns out that it is convenient to shift the energy po-
tential such that V (x̃) → 0, when |x̃| → ∞. The shifted
potential is defined by

V (x̃) =
g12
g11

(tanh2(x̃)− 1) = −g12
g11

sech2(x̃) , (15)

which resembles the Pöschl-Teller Potential [5]. The
equation to solve is the following[

−1

2

∂2

∂x̃2
− g12
g11

sech2(x̃)

]
ψ2(x̃) =

µ2

µ1
ψ2(x̃) . (16)

To solve this equation, we transform it to a Associated
Legendre differential equation as [6, 7]

d

dx

[
(1− x2)

d

dx
ψ(x)

]
+

(
n(n+ 1)− m2

1− x2

)
ψ(x) = 0 ,

(17)
where m,n ∈ R, which general solution is [6, 8]

ψ(x) = APmn (x) +BQmn (x) , (18)

where Pmn (x) and Qmn (x) are the Associated Legendre
polynomials of the first and second type respectively.

The appropriate change of variable to transform
Eq. (16) to a Legendre differential equation is u =
tanh(x̃), which allows to write the Eq. (16) as

d

du

[
(1− u2)

∂ψ2

∂u

]
+

[
2
µ2

µ1

1

1− u2
+ 2

g12
g11

]
ψ2 = 0 . (19)

Comparing Eq. (17) and Eq. (19), we can identify

n =
1

2

(
±
√

1 + 8
g12
g11
− 1

)
, (20)

µ2

µ1
=
−m2

2
. (21)

The positive values of the index n define the bound
states solutions of the Schrödinger time-independent
equation as Associated Legendre polynomials, with m =
−n,−n+ 1,−n+ 2, · · · < 0,

ψ(x̃) = APmn (tanh(x̃)) , (22)
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where A is a normalization constant, and boundary con-
ditions are ψ(−∞) = 0 and ψ(∞) = 0.

For instance, if the ratio g12
g11

is equal to one, then the

indexes of the Associated Legendre polynomial will be
n = 1 and m = −1. And therefore the normalized wave
function of the only bound state, which corresponds to
the ground state, for a single particle of the second com-
ponent is given by

ψ(x̃) =

√
2

2
sech(x̃) , (23)

with energy µ2

µ1
= − 1

2 .

The indexes of the Associated Legendre polynomials
depend on the ratio g12

g11
. In Fig.(1) we show the ener-

gies of the single-particle bound states, as a function of
the ratio g12

g11
, for different potential wells obtained as the

result of using different interspecies interaction. We see
that the more profound is the well of the potential de-
scribed by Eq. (15) more bound states appear. In Fig.(2)
we can see the single-particle density distribution of the
second component, in different bound states. The num-
ber of bound states shown in each panel depends on the
value of g12

g11
. As expected, the density distributions are

located around the center of the dark soliton which de-
fines the minimum of the potential felt by the particle of
the second component. Moreover, the number of zeros
of the wave function increases as the excitation energy
gets larger, and at the same time the particle gets less
localized.

FIG. 1: Energies of the single-particle bound states of the
second component for different potential wells obtained by
varying the interspecies interaction.

IV. NUMERICAL METHODS

In this section, we discuss a numerical algorithm to face
more difficult situations where simple analytical solutions
do not exist. Our aim is to consider two dark solitons in
the first component. These dark solitons are separated
by 2d ξ and in a static configuration they will define a

FIG. 2: Density profiles of each single-particle bound state for
different potential wells. The red line describes the ground
state, while the orange, yellow, green, and blue lines corre-
spond to the first, second, third and fourth excitation re-
spectively, in the case that they exist. Panel (a) is the case
n = 0.78 (g12/g11 = 0.7) with only one bound state. Panel
(b) corresponds to n = 1.88 (g12/g11 = 2.7) with two bound
states. Panel (c) n = 3.63 (g12/g11 = 8.4) with four bound
states. Finally, panel (d) shows the results for n = 4.42
(g12/g11 = 12.0) with five bound states.

double-well potential for a particle of the second BEC
component, under the same conditions of the previous
sections. In this case, the Schrödinger equation for the
impurity is given by[
−1

2

∂2

∂x̃2
− g12
g11

(sech2(x̃− d) + sech2(x̃+ d))

]
ψ2(x̃) =

=
µ2

µ1
ψ2(x̃) . (24)

To solve this equation numerically, we have to con-
sider the values of the wave function as a set of dis-
cretized points (the mesh points) to define a vector:
ψ = (ψ0, ψ1, ψ2, . . . , ψN ). Imposing the boundary con-
ditions at the walls of the box as ψ0 = 0 and ψN = 0,
and expressing the second derivative by means of a three
point formula, we can write the Eq. (16) in a matrix way
[9].

A1 B 0 · · · 0 0
B A2 B · · · 0 0
0 B A3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · AN−2 B
0 0 0 · · · B AN−1





ψ1

ψ2

ψ3

...
ψN−2

ψN−1


=
µ2

µ1



ψ1

ψ2

ψ3

...
ψN−2

ψN−1


,

(25)

where An and B are given by

An =
1

∆x̃2
− g12
g11

[
sech2(n∆x̃2 − d) + sech2(n∆x̃2 + d)

]
,

(26)
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B =
−1

2∆x̃2
. (27)

Diagonalizing the tridiagonal matrix, Eq. (25), we can
get the eigenvalues and the eigenvectors of the problem,
|M − µ2

µ1
I| = 0. We will be mainly interested in the

bound states, i.e., localized and with negative energy. To
validate our numerical procedure, we have first checked
that the analytical results for the case of having only one
soliton are well reproduced.

The bound-state energies as a function of the distance
between both wells are shown in Fig.(3) for four differ-
ent values of the ratio g12

g11
. Notice that for d = 0, one

recovers the previous results obtained for the potential
created by only one soliton described by a double ratio
g12
g11

. It is interesting to observe that for each double-

well, the energies of the different bound states merge by
couples, when the distance between the wells increases.
As expected, the energies of the bound states saturate
when the distance between the wells gets large, i.e., they
become independent of the distance.

FIG. 3: Energies of the single-particle bound states in a
double-well potential generated by the presence of two dark
static solitons as a function of the separation between them
in dimension of the healing length, for different values of the
ratio g12/g11.

In Fig.(4) the shape of the potential as a function of
the position is shown together with the energy of the
different bound states. Panels (a) and (b) describe the
potential for g12/g11 = 0.99, for two different distances
2.24 ξ (a) and 10.43 ξ (b) between them. In panel (a)
we see the two existing bound states well separated in
energy. When the distance between the two wells in-
creases, both states merge to a very similar value of the
energy. In addition, this energy becomes independent of
the distance when this distance increases. Panels (c) and
(d) shows the corresponding results for g12/g11 = 2.95.
In this case, there are four bound states with different

energies when the distance between the wells is 2.24 ξ.
However, these states merge into two levels when the
distance increases. Again the energy of these two levels
becomes independent of the distance between the wells,
when the distance increases.

FIG. 4: Shape of the potential generated by two dark solitons.
Panel (a) corresponds to a ratio of g12/g11 = 0.99 with a
distance 2.24 ξ between the wells. In this case, two bound
states are obtained. Panel (b) shows the potential for the
same ratio when the distance is 2d = 10.4 ξ. The energies of
the two states become almost degenerate. In the lower panels
we have the case of g12/g11 = 2.95. In panel (c), 2d = 2.24 ξ
where we see four bound states. Panel (d) corresponds to
2d = 10.4 ξ, the four bound states merge into two levels.

V. TUNNELLING DYNAMICS

In this section we consider the tunnelling dynamics of
the second component in the double-well created by two
static dark solitons in the first component. To simplify
the problem we consider a double-well static potential de-
fined by the ratio of g12/g11 = 1, where the two effective
wells are separated by a distance 7 ξ. In this case there
are only two bound states involved in the dynamics of
the impurity. We prepare the second component in one
of the effective wells to see how it tunnels to the other
one. To this end, we compute the first two eigenstates of
the second component, ψ0(x̃) and ψ1(x̃). Then, taking a
linear combination 1√

2
(ψ0(x̃) + ψ1(x̃)) we have an initial

state localized in the left well. Its dynamical evolution
can be easily computed,

ψ(x̃, t) =
1√
2

(
ψo(x̃)e

−itεo
~ + ψ1(x̃)e

−itε1
~

)
, (28)

where ~ is the Planck constant, the εi are the energies of
the bound states and ψi(x̃) are the wave functions of the
respective states.

Treball de Fi de Grau 4 Barcelona, January 2019



Dynamics of one impurity in the presence of dark solitons in atomic mixtures Laura Laia Olivella Eritja

In Fig.(5), we present the dimensionless time evolu-
tion of the probability density to illustrate how the wave
packet goes from one well to the other.

FIG. 5: Density profile of the wave packet for different times.
Panel (a),(b),(c) and (d) are for t̃ = 0, 295.2, 568.8 and 856.8
respectively, for the case where the separation of double wells
is 7 ξ and g12/g11 = 1.

FIG. 6: Expected value of x
ξ

of a wave packet as a function
of time in a double-well potential created by two static dark
solitons separated by 2d = 7 ξ, characterized with a ratio
g12
g11

= 1 .

Fig.(6) shows the expected value of x
ξ , denoted by

〈xξ 〉, as a function of the dimensionless time variable

t̃ = tµ1/~. One can see how the wave packet oscillates
between the two wells. Moreover, we observe that the
number of oscillations increases when the distance be-
tween the two wells decreases.

VI. SUMMARY AND CONCLUSIONS

We have considered a system of two quasi 1D Bose-
Einstein condensates at zero temperature described by
the mean-field coupled Gross-Pitaevskii equations. We
have studied a configuration in which one of the conden-
sates is much more populated than the other one, and
thus neglect the backaction of the second condensate on
the first one. In this case, we have studied the possible
bound solutions of the second condensate in the presence
of a dark soliton in the first one.

We have found analytic solutions for the problem in
terms of the Associated Legendre polynomials. We can
thus, obtain analytically the number of bound states and
their energy as a function of the interspecies coupling
constant. We have numerically confirmed our analytic
solutions. With the numerical tools developed we have
studied and interesting dynamical configuration in which
we pin two dark solitons on the first component and con-
sider the tunnelling dynamics of the second component
trapped in the soliton depression of the first one. An-
alyzing how the wave packet oscillates from one well to
the other one, we observe that the frequency of the oscil-
lations increases as the distance between the two solitons
decreases.
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