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Abstract: We study the time evolution of a particle in a double-well potential using IBM quan-
tum computers and a classical computer. Firstly, we go over the methods for the numerical sim-
ulation and the quantum computer implementation. As an example, we simulate the system in a
4-point space using 2-qubit circuits. Finally, we compare the results obtained with the different
methods and discuss their dissimilarities and sources of error.

I. INTRODUCTION

Quantum simulation in quantum computers has ad-
vantages for large systems over numerical simulation in
classical computers. Quantum computers allow more in-
formation to be stored with fewer resources, which is use-
ful due to the rapidly increasing dimension of Hilbert
space in quantum systems. For this reason, quantum
simulation has been widely studied in recent years.

In this work, we will use the digital quantum simula-
tion method proposed by A.T. Sornborger [1] for small
systems, which does not require ancillary qubits to im-
plement the operators and needs few gates per time step.
Due to the small size of the simulated system, it is possi-
ble to compare the results from the quantum simulation
with a numerical simulation. The simulated system will
be a particle in a double-well. Thence, quantum tunnel-
ing, which is a purely quantum effect, will be observed.

To carry out the project, we use the open-access de-
vices from the IBM Quantum Experience [2]. IBM pro-
vides access to both classical systems to simulate a quan-
tum computer, and also to actual quantum computers.

In section II, the theoretical background of the meth-
ods is explained and afterwards, in section III, the meth-
ods and their implementation in the corresponding de-
vice are described. Finally, the results are presented and
discussed in section IV.

II. THEORETICAL BACKGROUND

The Schrödinger equation in one dimension for a single
particle with a time-independent Hamiltonian is

i~
∂Ψ(x, t)

∂t
= ĤΨ(x, t), (1)

where the Hamiltonian has a potential and a kinetic part,
(Ĥ = V̂ + K̂). They can be expressed as V̂ = V (x) and

K̂ = p̂2

2m , respectively. For simplicity, Eq. (1) has been

adimensionalized with ~ = 1 and m = 1
2 , and from now
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on everything is dimensionless and has no units. Then,
the time evolution of the wave function is

Ψ(x, t+ ∆t) = e−iĤ∆tΨ(x, t) = e−i(V̂+K̂)∆tΨ(x, t). (2)

Even though the two operators do not usually commute,
the exponential from Eq. (2) can be split using the
first-order Suzuki-Trotter decomposition (ei(A+B)∆t =
eiA∆teiB∆t +O(∆t2)), if ∆t is small enough [3],

Ψ(x, t+ ∆t) ≈ [e−iV̂∆te−iK̂∆t +O(∆t2)]Ψ(x, t). (3)

The potential operator is diagonal in the coordinate space
and the kinetic operator in the momentum space. The
latter is useful to use Eq. (3) in practice,

〈x|Ψ(∆t)〉 = 〈x| e−iV̂∆t
∑
p

|p〉 〈p| e−iK̂∆t
∑
x′

|x′〉 〈x′|Ψ(0)〉

= e−iV̂∆t
∑
p

〈x|p〉 e−iK̂∆t
∑
x′

〈p|x′〉 〈x′|Ψ(0)〉

= e−iV̂∆t F†e−iK̂∆t F 〈x′|Ψ(0)〉 ,
(4)

where we have introduced the resolution of the identity
and 〈x|p〉 = 1√

2π
eipx, to obtain the Fourier transform and

its inverse.

III. METHODS

A. Numerical implementation

The numerical simulation of the time evolution of a
system can be implemented in a classical computer with
the following steps:

1. Define the problem parameters such as space di-
mension and time steps.

2. Discretize the space coordinate in an equally spaced
grid, xk = x0 + k∆x.

3. Consider the corresponding discreet momenta. To
make sure it has positive and negative values, it can
be defined as (proposed by [4] and [5]){
pj = 2π

xdim
j 0 ≤ j ≤ xdim

2

pj = 2π
xdim

(
xdim

2 − j
)

xdim

2 < j < xdim
. (5)
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4. Discretize the whole time interval into small enough
steps ∆t = tmax−tmin

tsteps−1 .

5. Define the initial wave function Ψ(x, tmin) for every
point in the coordinate space.

6. Time evolution. Iterate tsteps times:

(a) Implement a Fourier transform from x-space
to p-space acting on Ψ(x, 0),

Ψ̃(pj , 0) =
1√
2π

xdim∑
k=1

e−ipjxkΨ(xk, 0)∆x. (6)

(b) Implement the kinetic operator acting on

Ψ̃(p, 0),

Φ̃(pj , 0) = e−ip
2
j∆tΨ̃(pj , 0). (7)

(c) Implement a Fourier transform to come back
to x-space,

Φ(xk, 0) =
1√
2π

xdim∑
j=1

eipjxkΦ̃(pj , 0)∆p. (8)

(d) Implement the potential operator and finally
obtain Ψ(x,∆t),

Ψ(xk,∆t) = e−iV (xk)∆tΦ(xk, 0). (9)

(e) Repeat the process with Ψ(x,∆t) as the initial
wave function.

7. After tsteps, we have obtained Ψ(x, tmax) and its
probability density, |Ψ(xk, t)|2 = Ψ∗(xk, t)Ψ(xk, t).

1. Example: Free Gaussian

This method allows to obtain the time evolution of any
system with an arbitrary space dimension and length. As
an example, the results of a numerical simulation for a
free Gaussian wave packet are shown in Fig. 1, where the
spreading of the wave packet with time is clearly seen.
The numerical simulation is compared to the analytical
solution, showing a very good agreement.

B. Quantum computer implementation

The time evolution can be achieved on a quantum com-
puter through the implementation of different gates. In
this case, the size of the space (N) is given by the number
of qubits used (n): N = 2n. In this work, as an academic
example and following Ref. [1], only 2 qubits have been
used. Therefore, we have a lattice of 4 points defined by
the following states: |00〉 , |01〉 , |10〉 and |11〉.

FIG. 1: Time evolution of a free Gaussian wave packet in
a space of 32 points and −10 < x < 10. The numerical
simulation (dots) and the analytical results (lines) are shown
for three different times.

1. Potential operator

The potential can be introduced to the system by ro-
tating the state of a certain qubit, as it is proposed in [1].
To do so, the single-qubit Z-Rotation gate can be used.
In a circuit with 2 qubits, the Z-Rotation gate must be
implemented on the lowest order qubit (q0) to obtain a
double-well potential,

e−iV∆t = I ⊗ e−ivσz∆t =


e−iv∆t 0 0 0

0 eiv∆t 0 0
0 0 e−iv∆t 0
0 0 0 eiv∆t

,
(10)

where v is the parameter that characterizes the height of
the potential. If we would like to obtain a step potential,
the Z-Rotation gate should be applied to the highest or-
der qubit (q1). On the IBM quantum computers, it can
be done using the RZ(λ) gate with λ = 2v∆t,

RZ(λ) =

(
e−i

λ
2 0

0 ei
λ
2

)
. (11)

2. Quantum Fourier Transform

The Quantum Fourier Transform (QFT) can be ex-
pressed for an arbitrary number of qubits as [6],

|j〉 → 1√
N

N−1∑
k=0

e
2πijk
N |k〉 . (12)

Developing Eq. (12) for 2 qubits (n=2, hence N=4):

QFT |j1 j2〉 =
1

2

[(
|0〉+e2πi

j2
2 |1〉

)
⊗(|0〉+e2πi(

j1
2 +

j2
22

) |1〉
)]
.

(13)
On IBM, j1 corresponds to q1 and j2 to q0. To imple-

ment the QFT we use Hadamard and controlled-phase
gates:
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FIG. 2: On the left, circuit for a single time step of the time evolution of a particle initially at |01〉 in a double-well potential
with barriers (v = 50) at |00〉 and |10〉 and ∆t = 0.1. Image obtained from the circuit composer in [2]. On the right, the 4-point
space and the potential produced by the circuit, are displayed.

1. First of all, a Hadamard gate is applied to the high-
est order qubit,

H |j1〉 ⊗ |j2〉 =
1√
2

(
|0〉+ e2πi

j1
2 |1〉

)
⊗ |j2〉 . (14)

2. A controlled-phase gate is implemented to both
qubits with the control on the lowest order qubit,

R2

( 1√
2

(
|0〉+ e2πi

j1
2 |1〉

)
⊗ |j2〉

)
=

1√
2

(
|0〉+ e2πi(

j1
2 +

j2
22

) |1〉
)
⊗ |j2〉 .

(15)

Where Rk =

(
1 0

0 e
2πi

2k

)
and it can be applied on

IBM with the phase gate P(λ) =

(
1 0
0 eiλ

)
with

λ = π
2 .

3. Another Hadamard gate is implemented to the low-
est order qubit,

1√
2

(
|0〉+ e2πi(

j1
2 +

j2
22

) |1〉
)
⊗H |j2〉

=
1√
2

(
|0〉+ e2πi(

j1
2 +

j2
22

) |1〉
)
⊗ 1√

2

(
|0〉+ e2πi

j2
2 |1〉

)
.

(16)

4. To obtain the same expression as in Eq. (13), one
needs to swap the order of the qubits,

SWAP
1

2

[(
|0〉+ e2πi(

j1
2 +

j2
22

) |1〉
)
⊗
(
|0〉+ e2πi

j2
2 |1〉

)]
=

1

2

[(
|0〉+ e2πi

j2
2 |1〉

)
⊗ (|0〉+ e2πi(

j1
2 +

j2
22

) |1〉
)]
.

(17)

3. Kinetic operator

The kinetic operator can be implemented in the mo-
mentum space thanks to the QFT. In this space, the
operator is diagonal with the momentum values in the

diagonal elements. It can be implemented as proposed
by [1]:

e−iK∆t = exp

[
−i
(−2π

4

)2

0 0 0 0
0 4 0 0
0 0 1 0
0 0 0 1

∆t

]
= Φ01Z1Z0.

(18)
The first gate in Eq. (18) is

Φ01 = exp

[
− iγc2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

∆t

]
. (19)

This matrix can be applied with the previously pre-
sented RZ(λ) gate on q1 with a control on q0, where
λ = 2γc2∆t = π2∆t,

C− RZ(λ) =


e−i

λ
2 0 0 0

0 e−i
λ
2 0 0

0 0 e−i
λ
2 0

0 0 0 ei
λ
2

 . (20)

The other two gates in Eq. (18) are single-qubit gates
implemented on each qubit,

Z1 = e−iγc1σz∆t ⊗ I =

(
e−iγc1∆t 0

0 eiγc1∆t

)
⊗ I, (21)

Z0 = I ⊗ e−iγc0σz∆t = I ⊗
(
e−iγc0∆t 0

0 eiγc0∆t

)
. (22)

Both can be carried out with the RZ(λ) gate. Z1 must
be applied to qubit q1 with λ = 2γc1∆t = −π2∆t and

Z0 to q0 with λ = 2γc0∆t = −π
2

4 ∆t. The coefficients
obtained by [1] are c0 = −1, c1 = −4, c2 = 4 and γ =(
− 2π

4

)2 1√
4
.

4. Quantum circuit

Applying all the aforementioned gates, one obtains the
time evolution circuit for a single time step shown in Fig.
2. To acquire the evolution for a time t with an interval
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FIG. 3: Time evolution of a particle initially at |01〉 in a
double-well potential with barriers (v = 50) at |00〉 and |10〉.
Results obtained numerically (with ∆t = 0.000001), with the
ibmq qasm simulator (∆t = 0.1) and with the 5-qubit quan-
tum computer ibmq valencia (∆t = 0.1). The shape of the
potential is shown on the right.

∆t, it is necessary to run a circuit with n time steps
so that t = n∆t. Thus, to obtain the results for every
instant until t, n circuits should be ran (each with its own
number of time steps). This procedure implies that the
larger the time we want to achieve, the larger the circuit
and more circuits are required to get the results at every
time step.

IV. RESULTS

In this section, the results for a 4-point system ob-
tained from the methods from section III, are presented.
All results from the IBM’s quantum computers and sim-
ulator have been achieved with 8192 shots (number of
repetitions of a measurement).

A. Double-well potential

When a particle is set in one of the wells of a double-
well potential, it tunnels through the barrier into the
other well. This can be observed in Fig. 3, where a
particle initially at |01〉 passes to |11〉 and comes back to
the initial state. The period of this oscillation is T ≈ 3.

The results from the numerical simulation can be taken
as a reference since its ∆t is small enough to dismiss
the error produced by the discretization of time. The
differences between these results and the ones from the
IBM’s quantum simulator (ibmq qasm simulator) come
from the different ∆t used and the dissimilarities in both

FIG. 4: Time evolution of state |01〉 of a system with a par-
ticle initially at |01〉 in a double-well potential with barriers
(v = 50) at |00〉 and |10〉. Results obtained with 5-qubit quan-
tum computers ibmq valencia and ibmq vigo, and 15-qubit
computer ibmq melbourne. All the results have ∆t = 0.1.

methods. While the numerical results come from a nu-
merical computation, the results from the simulator are
obtained through sampling.

The results running in the quantum computer
(ibmq valencia) show the correct trend for very short
times, t ≤ 0.5. Above that, the results are clearly differ-
ent from the expected ones, i.e. the tunneling is no longer
observed. The reason for this disagreement, is that the
implementation of gates in a real quantum device has an
associated error, which becomes more important for big-
ger times (more time steps require more gates). There is
also a readout error when measurements are performed.

Another important issue that occurs in the quantum
computer is quantum decoherence. When the running
time of a circuit exceeds the coherence time of the qubits,
the system does not show a quantum behaviour anymore
and the results are not useful. Observing Fig. 3, it can
be deduced that quantum decoherence happens approxi-
mately around the running time of a 10 time steps circuit.

1. Comparison of the results of different quantum
computers

As it has been mentioned before, the implementation
of a circuit in a quantum computer has some associated
errors. These errors depend on the gates and the qubits
of each computer. Thus, as it can be seen in Fig. 4,
the results obtained for different devices differ from one
another due to their own sources of errors. It can also
be seen that in all cases, the initial state does not have a
100% probability as a consequence of the devices’ noise.

2. Comparison of the results with different ∆t

The discretization of time due to Suzuki-Trotter de-
composition in Eq. (3) produces an error that scales as
O(∆t2). To minimize this error one should work with
the lowest possible ∆t. This is plausible for the numer-
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FIG. 5: Root mean squared errors per time step for differ-
ent ∆t in the numerical simulation, the ibm qasm simulator
and the 5-qubit quantum computer ibmq valencia. The er-
rors have been obtained comparing the results for every ∆t
with the numerical results for ∆t = 0.000001. Results corre-
spond to the time evolution of a particle initially at |01〉 in a
double-well potential with barriers (v = 50) at |00〉 and |10〉.

FIG. 6: Expected x values of the time evolution of a free par-
ticle and a particle in a double-well. Both results have been
acquired with the numerical simulation using ∆t = 0.000001.
The inset shows a close-up view of the initial instants. (x = 0
represents state |00〉, x = 1 is state |01〉 and so on.)

ical simulation, but in the IBM’s simulator and quan-
tum computer, reducing ∆t implies that more gates are
required to achieve a certain time. Therefore, the accu-
mulated gate error becomes bigger (in the quantum com-
puter case). It also increases the running time, which can
exceed the coherence time of the qubits and produce un-
useful results as mentioned previously. It is necessary to
use a ∆t small enough to reduce its error, but big enough
to be able to achieve some time evolution.

In Fig. 5, it is observed that for smaller ∆t, the error
becomes lower. In the quantum computer case, the noise

from the device does not allow to obtain errors as low as
in the numerical simulation or the simulator. It can be
seen as well, that the error reduces faster in the simula-
tor than in the numerical computation. This disparities
probably come from the differences between methods.

B. Free particle

If we now set v = 0, a free particle is obtained. Com-
paring it with the double-well potential results, it can be
seen how the potential operator effects the system.

While for the particle in a double-well we observe how
it smoothly passes from one well to the other, for a free
particle it is first observed an equally spreading through
the space, which maintains 〈x〉 constant (as shown on
the inset of Fig. 6). Since the space is really small, the
particle rapidly encounters the limits of the space and
bounces back. This creates phenomena such as interfer-
ence. Because the initial position of the particle is not
centered, it first encounters the lower limit of the space,
which gives an impulse to the particle that makes it stay
in the superior part of the space.

V. CONCLUSIONS

In this work, we have solved the dynamics of a single
particle in presence of an external potential by means
of classical algorithms and quantum algorithms imple-
mented in both quantum simulators and IBM quantum
computers. We have used the digital quantum particle
simulation proposed in Ref. [1] and numerical computa-
tion to simulate a particle in a double-well potential.

The obtained results with the IBM devices have been
compared with the numerical results. We have seen that,
even in small simulations such as this one, where the
space is discretized to just four points, the errors inherent
to the quantum computer implementation are still large
for practical uses.
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