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Abstract: A study of exotic breathers of two-dimensional Bose-Einstein condensates is presented
to verify symmetries associated with the evolution of trapped condensates in harmonic oscillator po-
tentials. We also study if these symmetries are also present in atom mixtures. We perform numerical
simulations to investigate the dynamics of the potential energy and particle density of condensates
trapped in harmonic oscillator potentials. The exotic breathers studied involve geometrical shapes
that reappear periodically, even though they do not present clear spatial symmetries related to the
harmonic oscillator.

I. INTRODUCTION

Bose-Einstein condensation of atomic vapors was first
observed in 1995 with atoms of 87Rb[1], 7Li[2] and
23Na[3] and prompted a Nobel Prize in Physics for the
achievement [4]. Since then, the rise of experimental
techniques in ultra-cold atomic systems has allowed for
the study of new geometries and configurations of Bose-
Einstein condensates (BECs) with great precision, even
allowing the observation of 2D and quasi-1D condensates
[5].

One phenomenon of special interest are breathers. We
consider a breather to be a wave function, in this case
of a Bose-Einstein condensate, that undergoes a periodic
evolution. Motivated by the recent results reported in
[6] in two dimensional BECs, we focus on periodicities
associated with the potential energy and particle density,
which spark great interest in the hidden symmetries these
systems may have.

In this work we study through numerical simu-
lations a symmetry unique to the two dimensional
Gross-Pitaevskii equation and show how this symmetry
appears in different geometries. We also study the be-
havior of mixtures of BECs, which can also be obtained
experimentally by exploiting the hyperfine structure of
87Rb atoms [7].

In Sec. II we characterize the system in the mean-
field theory and discuss two theorems associated with the
ground state and evolution of BECs. We then present a
numerical method for solving the evolution of the system
in Sec. III. Finally, we analyze the results of some exotic
breathers for both single and two-component systems in
section Sec. IV and Sec. V.

II. THEORETICAL BACKGROUND

The evolution of weakly interacting BECs is well de-
scribed in mean-field theory by the Gross-Pitaevskii (GP)
equation,

i~
∂Ψ

∂t
=

(
− ~2

2m
∇2 + Vext + g|Ψ|2

)
Ψ, (1)

where Vext is any external trapping potential and g =
~2g̃N/m where g̃ is a dimensionless parameter that char-
acterizes the interaction strength. The wave function Ψ
is normalized to unity. We focus on the particular case
where the external potential is an harmonic oscillator
V (~r) = mω2r2/2. The potential energy of the conden-
sate in this case reads

Epot =
N

2
mω2

∫
r2|Ψ(~r)|2d2~r. (2)

The kinetic and interaction energy can also be obtained
from the GP equation,

Ekin =
N~2

2m

∫
|~∇Ψ(~r)|2d2~r, (3)

Eint =
N~2

2m
g̃

∫
|Ψ(~r)|4d2~r. (4)

The total energy, Etot = Ekin +Epot +Eint, is conserved
during the evolution.

A. Virial Theorem

The virial theorem relates the different contributions
to the total energy of the system depending on the scaling
of these different contributions. The virial theorem for
a ground state in an harmonic oscillator trap takes the
form [8],

Ekin − Epot + Eint = 0. (5)

This result is useful for checking the accuracy of numer-
ical methods that compute ground states.

B. Dynamical SO(2,1) symmetry theorem

A remarkable theorem which applies to the evolution of
any initial wave function trapped in an harmonic oscilla-
tor potential was presented by Pitaevskii [9]. Let us now
consider an arbitrary interaction potential between the
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particles of the condensate of the form Vint(~rij) = Crnij
where ~rij = ~ri−~rj and ~ri the position of the ith particle
and ~rj the position of the jth. Consider too the quantity
I =

∑
i r

2
i which quantically would be equivalent to the

r2 operator. Classically we can write ∂tI = 2
∑

i ~ri~pi/m
which results in,

∂t
∑
i

~ri~pi =
∑
i

(∂t~ri)~pi +
∑
i

~ri(∂t~pi). (6)

We can associate the first term with two times the ki-
netic energy and the second one with the gradient of the
potential energies,

∂t
∑
i

~ri~pi = 2Ekin −
∑
i

~ri~∇iVpot(~ri)−
∑
i<j

~ri~∇iVint(~rij).

For the particular case of the harmonic oscillator the sec-
ond term takes the form 2Epot +nEint which reduces the
equation to

∂t
∑
i

~ri~pi = 2Ekin − 2Epot − nEint. (7)

In the specific case where n = −2 we can use energy con-
servation to express the right hand side as 2E − 2mω2I.
Knowing that Epot = 1

2mω
2I then Eq. (7) can be rewrit-

ten in terms of Epot,

∂2
tEpot = −4ω2Epot + 2ω2E, (8)

with the solution

Epot = A
ω2

2m
cos(2ωt+ γ) +

E

2
. (9)

It can be shown that γ = 0 when there are no currents
in the initial state [10], e.g. when the initial state is real.
We can now rewrite Eq. (9) in a simpler form knowing
the energies of the initial state,

Epot = ∆E cos(2ωt) +
E

2
, (10)

with ∆E = 1
2 [Epot(0)− Ekin(0)− Eint(0)].

This result shows that the potential energy associated
with the harmonic oscillator trap is periodic with fre-
quency twice the one of the trap, regardless of the initial
state. Our only assumption for this result is that the in-
teraction potential scales as n = −2 which in 3D is only
achieved by a 1/r2 potential. But in 2D the GP equation,
which uses the contact potential δ(2)(~r), also scales in
this manner. This is due to the property xδ′(x) = −δ(x)
which for the two dimensional Dirac delta produces an
n = −2 scaling.

This means that this oscillation is a general result for
the GP equation of the harmonic oscillator in two di-
mensions. This oscillation is associated with the two-
dimensional Lorentz group SO(2,1) symmetry of the GP
equation [9]. The SO(2,1) encompasses time translations,
dilations and expansions, which is why this system is con-
sidered scale invariant [6].

C. Generalization to two components

Let us now consider two BECs that interact between
them. This system can be described with two coupled
GP equations,

i~∂Ψ1

∂t =
(
− ~2

2m1
∇2 + Vext + g11|Ψ1|2 + g12|Ψ2|2

)
Ψ1,

i~∂Ψ2

∂t =
(
− ~2

2m2
∇2 + Vext + g22|Ψ2|2 + g12|Ψ1|2

)
Ψ2.

(11)
Where g11 and g22 are the coupling constants of each of
the components and g12 the coupling constant for the
interaction between them. We consider a simpler case
where g11 = g22 ≡ g and m1 = m2 ≡ m. In particular
we set N1 = N2 ≡ N and g̃1 = g̃2 ≡ g̃. We now have
both intra and inter-species interaction energies. The
intra-species one, Eintra, is presented in Eq. (4) while the
inter-species reads

Einter =
N~2

m
g̃12

∫
|Ψ1(~r)|2|Ψ2(~r)|2d2~r. (12)

One can check that the virial theorem can now be written
with an extra term,

Ekin − Epot + Eintra + Einter = 0. (13)

In Sec. V we check via numerical simulation if the dy-
namical symmetry theorem is also valid for mixtures of
BECs for a specific configuration. Considering that the
inter-species interaction potential is of the same form as
the intra-species one we suspect that this may be the
case.

III. NUMERICAL METHOD

We now solve numerically the GP equation. Formally
one could try to solve the GP equation computing the
time evolution operator,

Ψ(~r, t) = e−iHt/~Ψ(~r, t = 0), (14)

with H being

H = − ~2

2m
∇2 +

1

2
mω2r2 + g|Ψ(~r, t)|2. (15)

As we can see, H is the sum of different parts parts H =
H1 +H2 +H3. The difficulty of solving Eq. (14) is that
[Hi, Hj ] 6= 0, so we cannot expand the exponential as a
product of exponentials. The Trotter-Suzuki expansion
[11, 12] can be expressed as

eA+B = lim
n→∞

[
eA/neB/n

]n
. (16)

If we discretize time in elements of ∆t and apply the
expansion two times we can write

e−i(H1+H2+H3)∆t/~ = lim
∆t→0

e−iH1∆t/~e−iH2∆t/~e−iH3∆t/~.
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FIG. 1: Real time evolution of the potential energy per par-
ticle of a 2D 87Rb condensate for an initial H.O. ground
state (crosses) and square (dots). The H.O. ground state
is trapped in a harmonic trap of frequency ω/2π = 232.6 Hz
while the square is trapped in an harmonic trap of frequency
ω/2π = 744.3 Hz. Each set of data has a cosine function fit
(dashed lines) which produces frequencies of 231.974(1) Hz
(R2 = 0.999997) and 738.28(2)Hz (R2 = 0.9997) respectively.

By taking ∆t� 1 we can approximate this expansion as

e−iH∆t/~ ≈ e−iH1∆t/~e−iH2∆t/~e−iH3∆t/~. (17)

The error in this approximation scales as (∆t)2 and is
proportional to the commutators of the operators Hi (if
all operators commute, this is an exact expansion). By
discretizing space we can compute the exponentials in
Eq. (17) easily, as the potential and interaction oper-
ators are diagonal and, if we approximate the laplacian
with three points, the kinetic operator is tridiagonal. The
method has been implemented in an extremely efficient
way in [13]. This code allows for both real and imaginary
time evolution, so we can use the latter to compute the
ground state of different geometries. It is also capable of
simulating two-component systems, which we will use in
Sec. V.

A. Accuracy test of imaginary time evolution

To test the accuracy of imaginary time evolution of this
numerical method, we compute the ground state of the
system at different values of g and check if the virial the-
orem is fulfilled, which is usually not trivial in numerical
simulations.

We compute the ground state of a condensate in an
harmonic trap of frequency ω/2π = 232.6 Hz for values
of g ranging from gm/~2 = 0 to gm/~2 = 1000. We con-
sider that the state has converged when the total energy
between consecutive iterations is of less than 5×10−4~ω.

The quantity Ekin −Epot +Eint was less than 0.7% of
the total energy in all cases. Notably, the case without
interaction presented a total energy which was in agree-
ment with the known solution of the harmonic oscillator
(E/~ω = 1) to a 99.99998%, which gives confidence in
the accuracy of the numerical method with imaginary
time evolution

IV. TWO-DIMENSIONAL BREATHERS OF
SINGLE COMPONENT BECS

We now study the evolution of trapped BECs in differ-
ent initial geometries with the aim of verifying the theo-
rem presented in section II B. The geometries include an
harmonic oscillator (H.O.) ground state, a square and a
triangle. The latter are particularly interesting because
while the triangle presents a breather, the square does
not [6].

The evolution is performed using the method men-
tioned in the previous section. We consider a similar
configuration as the one reported in [6]. In all cases the
atoms of the condensate are 87Rb atoms due to their pop-
ularity in the experiments. The condensate is confined
in a 20µm× 20µm box dicretized with 512× 512 points.
The time discretization step is of ∆t = 1.37× 10−5 ms.

A. Harmonic oscillator ground state breather

The first configuration we consider is that of a sudden
increase of the interaction strength. We start by prepar-
ing the system in the non-interacting ground state of an
harmonic oscillator trap. Then, we suddenly change the
interaction strength to gm/~2 = 4350 and perform real
time evolution for ∼ 4 oscillations in the same harmonic
trap. The results of the potential energy are presented
in Fig. 1. The fitted frequency is compatible with the
dynamical symmetry theorem to 0.3%. The standard
deviation of the total energy is of less than 0.1%.

B. Square condensate

We study next the evolution of a BEC in an initial
square-shaped state. The generality of the theorem pre-
sented in Sec. II B means that the evolution of the poten-
tial energy should show the same oscillations as the ones
presented in Sec. IV A, even if it is very different from
the eigenstates of the system.

We begin by obtaining the initial state. We perform
imaginary time evolution on a condensate of gm/~2 =
1000 with very high barriers that form a square of side
5 µm, the ground state of this potential is similar to a
square, see first frame of top row of Fig. 3. We consider
that the imaginary time evolution method has converged
when the difference in total energy of the system between
iterations is less than 1.6 × 10−6 ~ω. After finding the
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FIG. 2: Real time evolution of the projections of a 2D 87Rb
condensate on to initial triangle state. The condensate is
on a harmonic trap of frequency ω/2π = 744.3 Hz. Times
t/T = 0.5 and t/T = 1 are marked with dashed vertical lines.

ground state we remove the square barriers and perform
real time evolution for ∼ 4 oscillations in an harmonic
trap. The results are presented in Fig. 1. The fitted
frequency is compatible with the dynamical symmetry
theorem to 0.3%. The standard deviation of the total
energy is of less than 0.1%.

C. Triangle breather

Another notable case is the evolution of a BEC in an
initial triangle-shaped state. Unlike the square, this ini-
tial state also presents an oscillation in the particle den-
sity of the same period as the potential energy oscillations
(see Fig. 3).

We proceed in the same manner than in the square.
First, we perform imaginary time evolution on a con-
densate of gm/~2 = 14500 with very high barriers in an
equilateral triangle shape of side 10µm, see first frame of
bottom row of Fig. 3. The criterion of convergence is the
same as in the square. Then we remove the triangle walls
and perform real time evolution for about 8 oscillations
on an harmonic oscillator.

We can also fit a cosine to the potential energy to con-
firm the dynamical symmetry theorem. In this case the
fitted cosine yielded a frequency of 728.1(3) Hz (R2 =
0.96). This result is compatible with the dynamical sym-
metry theorem to 2.2%. The standard deviation of the
total energy is of less than 0.1%.

Additionally to the oscillations in the potential energy,
the system also presents a breather with the same pe-
riod as the potential energy oscillations, see bottom row
in Fig. 3. To study this in more detail we computed
the scalar product of the initial condensate and the con-
densate at a certain time, | 〈Ψ(t = 0)|Ψ(t)〉 |. The closer

FIG. 3: Particle densities of 87Rb condensates in harmonic
trapping potentials at times t/T = 0, 0.25, 0.5, 0.75, 1, increas-
ing in time from left to right. From top to bottom: initial
harmonic oscillator ground state, initial square-shaped state
and initial triangle-shaped state. The boxes shown for the
H.O. ground state and square are of 10 µm × 10 µm and for
the triangle of 15µm×15µm. The white lines in all represent
2.5 µm.

this quantity is to 1, the more similar is the condensate
to the initial triangle-shaped state. The projections are
showed in Fig. 2 and show maximums at t/T = 1, 2, 3....
Additionally one can observe smaller maximums at half
periods.

The oscillation appears to have a smaller frequency
than predicted, which is reflected in both the fitted co-
sine and in the projections, where the maximums do not
appear at the predicted times and instead get slightly
delayed.

D. Comparison between the square and triangle
breathers

As we have seen, both the initial square-shaped and
triangle-shaped states have oscillations in the potential
energy whose frequency is directly related with the har-
monic trapping potential. However, an interesting dis-
tinction was reported in [6] when comparing the particle
density evolution. The square shape does not present a
clear periodicity while the triangle shape does. To illus-
trate this, in Fig. 3 we show the particle densities in the
initial states and at 4 different times in the first period
of evolution.

Focusing on the triangle (bottom row), it can be seen
that after a period it has recovered its initial shape (last
frame). The harmonic oscillator (top row) also recovers
its initial shape but the square (middle row) does not.
It is also worth noticing that the triangle experiences
a vertical inversion at half a period (bottom row, third
frame). This is not reproduced in either the harmonic
oscillator nor the square, which have shapes that cannot
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FIG. 4: Particle densities of two 87Rb condensates in a har-
monic trap of frequency ω/2π = 744.3 Hz at times t/T =
0, 0.25, 0.5, 0.75, 1. The initial state is triangle shaped divided
vertically such that each half is filled by one component. The
box is shown is of 20µm×20µm and the white lines represent
5 µm

be related to their initial states.
Additionally, the states at t/T = 0.25 and t/T = 0.75

(second and third frames of each row) are also interesting,
in the harmonic oscillator and square the shape at t/T =
0.25 appears to be different to the shape in t/T = 0.75.
This is not the case for the triangle, where the shapes
appear to be vertical mirrors of each other.

These behaviors indicate that a condensate in a trian-
gle shape is unique in its evolution in an harmonic trap,
at least when described by the GP equation.

V. TWO-DIMENSIONAL BREATHERS IN TWO
COMPONENT BECS

We now extend the study to the case of two compo-
nent BEC systems with the aim of analyzing the fate of
similar triangle-shaped breathers and verifying if the dy-
namical symmetry theorem also holds in this case. We
focus in particular on a breather similar to the triangle
one we saw in the previous section but the initial triangle
is divided vertically in two halves, which are filled each
with a component of our system. We set gm/~2 = 14500
and, to avoid the mixing of the species, g12m/~2 = 25000
so that g/g12 = 0.58. Other parameters take the same
values as in the single component simulations.

We perform imaginary time evolution with the same
criteria as in the previous cases but now the triangle bar-
riers have an additional barrier that restricts the first
component of the system to the left half of the box and
the second component to the right half. The ground state
of this system has a collective shape of an equilateral tri-

angle of side 10 µm, see Fig. 4. We then remove the
barriers and place the condensates on an harmonic trap
and perform real time evolution for about 8 oscillations.
The evolution of the first period can be seen in Fig. 4

The evolution in this case is similar to the single com-
ponent evolution but with an increased expansion at T/2
due to the additional repulsion between the species. How-
ever at t = T the initial triangle shape is recovered like
with a single component. A cosine fit to the potential en-
ergy of both components yields a frequency of 724.0(2)Hz
(R2 = 0.98), which has a discrepancy with of 2.7% with
the theoretical predictions. The standard deviation of
the total energy in this case was of 0.6%, on account of
the increased complexity of the system.

This confirms that under certain conditions the exotic
breather produced by the triangle shape in an harmonic
trap can be reproduced for mixtures of BECs, which has
not been checked experimentally yet.

VI. CONCLUSIONS

In this work we have investigated the consequences of
the symmetries of the GP equation and how they reflect
on some exotic breathers which present clear oscillations
on their potential energy as they evolve. By means of
direct numerical simulations of the GP equation we con-
firmed that the triangle in particular presents a unique
periodic motion in contrast to the square. Reportedly,
other geometries like pentagons and hexagons did not
present the same kind of evolution as the triangle [6], al-
though the cause of these behaviors is still an open issue.

We have extended the study to the case of two com-
ponent BECs, observing a similar behavior for breathers
where the two components do not mix due to the re-
pulsive inter-species interaction. This fact opens up a
lot of uncharted phenomena regarding mixtures of BECs
and could shed some light on the cause of these exotic
breathers. The breather we have considered can be read-
ily studied in state-of-art laboratories worldwide.

Acknowledgments

I would like to thank Dr. Bruno Juliá and Dr. Artur
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