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Abstract: We give a short introduction to quantum annealing in the transverse Ising model and
formulate the maximum clique problem in this setting. We then briefly show how problems are
actually implemented in D-Wave’s annealers through the idea of minor-embeddings and chains. We
also provide simulations for a small problem and actual results on D-Wave’s annealers for larger
instances as well as the dependence of the success rate on different parameters.

I. INTRODUCTION

The standard model of quantum computation, the
quantum gate model, has been seen to offer speedups
to classical algorithms as well as efficiently solve a larger
class of problems than classical models [1]. There are,
however, many other computational models that are also
based on quantum effects. One of them is adiabatic quan-
tum computation (AQC), which is extensively described
in [2] and shown to be equivalent to the quantum gate
model in [3] in the sense that one model can simulate
the other in polynomial time and viceversa. Despite this
fact, the nature of these two models looks so different
that it is not strange to expect some particular type of
problems to be easily solved within one model but not
the other.

In this work, we begin in section II by briefly explaining
AQC and its heuristic implementation, quantum anneal-
ing (QA), as well as giving an Ising formulation to the
maximum clique problem. Then, in section III, we focus
on explaining how problems are actually implemented in
D-Wave’s quantum annealers (cf. [4]) using a particular
simple problem. Section IV is devoted to using D-Wave’s
quantum annealers to solve large instances of the maxi-
mum clique problem for which classical simulation of the
annealing is no longer possible. Finally, section V pro-
vides a summary of the results and the conclusions of
this work.

II. AQC AND QA ALGORITHMS

Adiabatic quantum computation consists of the fol-
lowing idea: consider a pair of Hamiltonians H0 and H1

and functions A,B : [0, 1] → R (called schedule func-
tions) satisfying A(1) = B(0) = 0 and A(0), B(1) > 0.
Assume also that the ground state |ψ0〉 of H0 is non-
degenerate. Then, by the adiabatic theorem [2, 5], for
sufficiently large times tf , the system with Hamiltonian

H(t) = A(t/tf )H0 +B(t/tf )H1 (1)

evolves from |ψ0〉 to a state which is reasonably close to
a ground state of H1.

The adiabatic theorem thus opens an avenue to solve
problems whose solution can be identified with the
ground state of some Hamiltonian H1. The general AQC
algorithm consists of finding such H1, preparing |ψ0〉,
making the system evolve with H(t) and performing a
measurement at the end of the evolution.

On the other hand, following [6], a QA algorithm pur-
sues the same idea, but the final Hamiltonian H1 is re-
stricted to represent a classical objective function. In
particular, QA algorithms solve combinatorial optimiza-
tion problems. In practice, however, an actual physi-
cal implementation would take place in an open system
susceptible to all kinds of noises that would cause non-
adiabatic jumps yielding a final state far from the desired
solution. Despite this, one might still hope to obtain rea-
sonable solutions as long as the interactions with the en-
vironment are kept small. This is why QA is sometimes
called an heuristic instead of an actual algorithm when
referring to the physical realization.

We now restrict ourselves to QA in the transverse Ising
model. This consists of further restrictions on the Hilbert
space and the Hamiltonians H0 and H1. Namely, con-
sider a system of n 1/2-spins and define Hamiltonians

H0 = −
n∑

i=1

σ(i)
x , (2)

H1 = c+

n∑
i=1

hiσ
(i)
z +

∑
i>j

Jijσ
(i)
z σ(j)

z , (3)

where σ
(i)
z , σ

(i)
x denote Pauli matrices acting on the ith

spin and c, hi, Jij are real coefficients. A Hamiltonian of
the form Eq. (3) is called an Ising Hamiltonian. Con-
sider also the basis {|z1 . . . zn〉}, where |zi〉 = | ± 1〉
denotes the up or down state in the z direction and

σ
(i)
z |z1 . . . zn〉 = zi|z1 . . . zn〉. Notice then that H1 is di-

agonal in this basis (it thus represents a classical ob-
jective function) and that |ψ0〉 = 1

2n/2 (1, . . . , 1) is the
non-degenerate ground state of H0. QA consists then of
evolving the system Hamiltonian according to Eq. (1) for
some schedule functions A,B and performing a measure-
ment at the end.
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FIG. 1: Simple 5-vertex graph. A maximum clique is indi-
cated by black nodes and solid edges.

A. Ising formulation of the maximum clique
problem

A k-clique of a graph is a subgraph consisting of k
vertices that are all neighbors of each other. The clique
problem (CP) asks:

Given a graph, does it have a k-clique?

Notice that this is a decision problem, i.e. it is only
necessary to answer ’yes’ or ’no’ and it is not required to
find such a k-clique. This is one of the 21 Karp’s NP-
complete problems [7], i.e. it is as hard as the hardest NP
problems in the sense that any other NP problem can be
efficiently mapped to it. In other words, finding efficient
algorithms to solve CP, also gives efficient algorithms to
any other NP problem. Apart from this property, clique
problems are also interesting by themselves as they are
naturally encountered in many different topics such as
computational chemistry [8] and signal processing [9]. In
this work, though, we focus on solving a harder version
of CP, namely the maximum clique problem (MCP):

Given a graph, find its largest clique.

This is an NP-hard problem because it solves its cor-
responding NP-complete decision version (i.e. CP) for
every natural k.

Many NP problems have an Ising formulation [10], i.e.
a Hamiltonian in Ising form (3) whose ground states ex-
actly encode the solutions to the problem. The MCP is
not an exception and, in fact, its Ising formulation is par-
ticularly simple and is a good representative of how can
one encode solutions as ground states.

It goes as follows: given a graph, denote the set of
vertices by V = {1, . . . , n} and the set of edges by E. We
propose working with a system of n spins. It is convenient

to define ρ
(i)
z = (1 + σ

(i)
z )/2. A subgraph is encoded in

a state |z1 . . . zn〉 by the rule that it contains vertex i if,
and only if, zi = +1. Then, the Hamiltonian

H1 = −α
n∑

i=1

ρ(i)z + β
∑

(i,j)/∈E

ρ(i)z ρ(j)z (4)

does the job as long as α < β [11]. For the sake of
concreteness, we just choose α = 1 and β = 2. To give
an actual expression in Ising form (3), we still need to

FIG. 2: Overlap of the instantaneous state with the target
states throughout the evolution parametrized by s = t/tf .
The black line represents the ideal adiabatic evolution. Color
corresponds to values of tf ranging from 0.2 ns to 1.4 ns.
Also, motivated by the behaviour of D-Wave’s annealers, we
have used actual schedule functions A, B for the DW 2000Q 6
annealer (cf. [12]) and coefficients hi, Jij are scaled according
to section III B.

develop Eq. (4). This gives:

hi =
β(n− 1− ei)− 2α

4
, Jij =

βgij
4
, (5)

where ei is the number of neighbours of vertex i and
gij = 0 if (i, j) ∈ E and gij = 1 otherwise.

B. Numerical simulation

The simulation of the evolution is performed by numer-
ically solving the time-dependent Schrödinger equation

i~
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉. (6)

We have used the Crank-Nicolson algorithm, as it is
unconditionally stable. Namely, we set

|ψ(t+ ∆t)〉 =

(
1 + i

∆t

2~
H

)−1(
1− i∆t

2~
H

)
|ψ(t)〉 (7)

and iterate.
To exemplify the procedure, we present now simula-

tion results (cf. [13]) for the 5-vertex graph of Fig. 1. In
Fig. 2 we show the evolution of the overlap with target∑
|ϕ〉 |〈ψ(s)|ϕ〉|2, where |ϕ〉 ranges over all ground states

of H1 and |ψ(s)〉 is the instantaneous state parametrized
by the scaled time s = t/tf . We can see that larger
annealing times tf fit the ideal adiabatic case (black
line) and give a better overlap at the end as well.
Since the schedule functions A and B take maximum
values of 6 GHz, we see that success probabilities
> 0.95 are achieved when the dimensionless quantity
tf ·max{A(t), B(t)} is of the order of 10.
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III. D-WAVE’S QUANTUM ANNEALERS

D-Wave offers to the public one minute of computation
time for both of their quantum computers: DW 2000Q 6
and its successor, Advantage system4.1. The main dif-
ferences between these two are the number of available
qubits (∼ 2000 for the former and ∼ 5000 for the latter)
and the underlying graph in which the Ising Hamilto-
nian is embedded: DW 2000Q 6 is based on the Chimera
graph and Advantage system4.1 on the Pegasus graph,
which has far more connections (cf. [14]).

A. The idea of minor-embeddings and chains

Physical realizations of QA thus have to deal with a
problem we have not yet spoken about, namely, that of
not having couplings between each pair of spins. D-Wave
solves this by chaining physical spins (i.e. actual spins
in the annealer) together and make them represent the
same logical spin. To be more precise, we need a few
definitions.

A minor-embedding of a graph H = (VH , EH) in an-
other graph G = (VG, EG) is a map φ : VH → P(VG)
such that

(i) the subgraphs φ(v) are connected for every v ∈ VH ,

(ii) the sets φ(v) and φ(u) are disjoint for v 6= u, and

(iii) if (v, u) ∈ EH , then there has to be at least one edge
in EG joining φ(v) and φ(u).

In this setting, the vertices in VH and VG depict the log-
ical and the physical spins, respectively. The subset φ(v)
is said to be a chain representing v. Heuristics to find
such minor-embeddings and chains can be found in [15].

The coefficients hi, Jij for the physical system are
then determined by fairly distributing the logical values
hv, Jvu among all physical spins and available connec-
tions. For instance, if v is represented by the chain φ(v) =
{i1, . . . , im}, then hik = hv/m for every k = 1, . . . ,m.
Furthermore, in order to penalize chained physical spins
not having the same value, a negative enough coupling
Jij = −chain strength < 0 is added whenever i and j
belong to the same chain and (i, j) ∈ EG.

B. What value of chain strength should be used?

According to the explanation above, larger values of
chain strength should always give better results. How-
ever, D-Wave’s annealers do not accept arbitrary val-
ues of hi and Jij . More precisely, hi has to lie inside
[−2,+2] for the DW 2000Q 6 and [−4,+4] for the Ad-
vantage system4.1; and Jij has to be in [−1,+1] for both
annealers.

FIG. 3: Solid lines represent success probability vs RCS for
different annealing times ranging from 0.5 ns to 1.7 ns distin-
guished by color. Dashed lines represent success probability
of the logical problem as in section II B.

Thus, the input physical coefficients hi, Jij are actually
divided by

max

{
|hi|

h range
,
|Jij |

J range

}
(8)

before the annealing starts. As a consequence, setting too
large values of chain strength yields an Ising Hamilto-
nian with negligible problem coefficients hi, Jij , i.e. a
smaller minimum gap, more non-adiabatic jumps and,
hence, less probability to obtain an actual solution at
the end of the annealing.

On the other hand, too low values of chain strength
may not even correspond to a Hamiltonian whose ground
state represents a solution to the problem. Therefore, a
finite and non-zero optimal chain strength is expected
to exist.

Following recent work [16], we define the relative chain
strength

RCS =
chain strength

max strength
, (9)

where max strength = max {|hi|, |Jij |}. The intention of
this definition is to express the optimal chain strength
in terms of a less problem-specific parameter.

Simulations of the evolution on the graph of Fig. 1
with this new setup give the results shown in Fig. 3. No-
tice that no matter the annealing time, there is always
a spike at RCS = 0.5. This is just a consequence of the
fact that, with our expression of RCS (9), the scaling
factor (8) changes definition precisely at RCS = 0.5. No-
tice also that any solid line lies below its corresponding
dashed line, i.e. success rates with this new setup are
slightly worse than when we just solved for the logical
case without chains in section II B.

In Fig. 4, we can see the corresponding results on the
actual DW 2000Q 6 annealer (cf. [13]) with annealing
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FIG. 4: Success rate vs RCS on DW 2000Q 6 with 20 µs
annealing time and 500 repetitions together with simulation
results with 5.5 ns annealing time.

time tf = 20 µs together with the simulation outcome
with annealing time tf = 5.5 ns. Despite the huge differ-
ence in tf , the dashed line fits the blue points remarkably
well. This has an accidental meaning and can be justi-
fied by saying that our simulations are of an ideal closed
system, while D-Wave’s annealers are open and suscep-
tible to noise, as they are actual physical realizations. In
fact, recent simulations of the annealing together with
a heat bath using several models give better agreement
with D-Wave data [17].

One thing, though, that does not seem accidental and
agrees with simulations is having a maximum success rate
at RCS ∼ 0.5.

IV. LARGER PROBLEMS

In this section we test D-Wave’s annealers at solving
the maximum clique problem for graphs with sizes rang-
ing from 15 to 60 vertices. All graphs are randomly gen-
erated according to the Erdös-Rényi model [18]. In this
model, for every pair of vertices there is an edge joining
them with fixed probability p. We consider three values
of p, 0.2, 0.5 and 0.8, which correspond to sparse graphs,
balanced ones and dense graphs, respectively.

We first scan over RCS with fixed tf = 20 µs and then
over annealing times with fixed optimal RCS.

A. Scanning RCS

Results are shown in Fig. 5 and Fig. 6. Several conclu-
sions can be drawn from these:

(1) As expected because of its higher connectiv-
ity, Advantage system4.1 gives better results than
DW 2000Q 6, although there are some exceptions.
The former even finds solutions for dense graphs with

FIG. 5: Success rate vs RCS for different graph sizes and con-
nectivity on both D-Wave annealers. Green data corresponds
to dense graphs (p = 0.8), orange to balanced ones (p = 0.5)
and blue data to sparse graphs (p = 0.2). All instances are
solved with 20 µs annealing time and 500 repetitions.

60 vertices, while the latter cannot deal with 45-
vertex graphs.

(2) Dense graphs are easier to deal with than sparse
graphs. This is because the denser a graph is, the
more coefficients Jij vanish (cf. Eq. (4)) and the less
physical spins are needed. This is on the other hand
rather surprising because classical algorithms work
the other way around: large cliques on sparse graphs
are easier to find [19]. This suggests using a hybrid al-
gorithm that somehow deals with sparse components
classically and with dense components quantically.

(3) The quality of the annealing heavily depends on the
value of RCS, but optimal RCS seems to lie in the
range [0.2, 0.3], especially for large graphs. When
solving the MCP we can thus restrict ourselves to
this range (or similar ones) instead of scanning RCS
over huge intervals.

B. Scanning annealing times

Results for dense graphs (p = 0.8) with 30 and 40
vertices are show in Fig. 7. Annealing times lie in the
interval [1.0 µs, 2000.0 µs], which is the available D-Wave
range. Better performance with larger annealing times
is generally observed for Advantage system4.1, but it is
not as clear with DW 2000Q 6. Another aspect to notice
is that using larger annealing times does not seem to
pay off. Indeed, take for example the 30-vertex instance
solved with Advantage system4.1. The success rate with
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FIG. 6: Maximum success rates for graphs of different
sizes and connectivity on both DW 2000Q 6 and Advan-
tage system4.1 with 20 µs annealing time and 500 repetitions.

FIG. 7: Success rate vs annealing time for dense graphs of 30
and 40 vertices on both D-Wave annealers. Blue data corre-
sponds to DW 2000Q 6 and red data to Advantage system4.1.
Statistics are gathered over 400 repetitions for each annealing
time.

tf = 1 µs is 0.1, while for tf = 2000 µs is 0.6, The
annealing is thus 2000 times longer, but the success rate
is only enhanced by a factor of 6, which ends up being
worse in terms of computing time.

V. SUMMARY AND CONCLUSIONS

In this work we have studied quantum annealing at
solving the maximum clique problem. We first gave simu-
lation results of DW 2000Q 6 on a simple 5-vertex graph
and already got high success probabilities (> 0.95) for
annealing time tf >∼ 1.0 ns.

In reality, however, this simple problem needs a minor-
embedding in the Chimera graph to be physically solved
by the DW 2000Q 6 annealer. Simulations of this em-
bedded problem gave worse results, but success proba-
bilities were still > 0.95 for annealing time tf >∼ 1.7 ns.
Actual results on the annealer with tf = 20 µs, though,
seemed to fit simulation outcome with tf = 5.5 ns. This
behaviour is justified by introducing a finite temperature
through a heat bath as environment in the simulation
[17].

Finally, we have used DW 2000Q 6 and Advan-
tage system4.1 to solve larger random instances of MCP.
Results generally show better success rate with the lat-
ter than with its predecessor. Also, although optimal
RCS depends on the problem, it is seen to generally lie
in [0.2, 0.3] for large instances. Another remarkable ob-
servation is the fact that contrary to classical algorithms,
QA works best with dense graphs.
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