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This work is based on replicating the results achieved in the paper ”Exact Ising Model Simulation
on a quantum computer” by Alba Cervera-Lierta et al. (2018) and comparing them with the ones
given by current quantum machines. First, we present a way to analytically diagonalize the one-
dimensional Ising Hamiltonian. Next, we create a quantum circuit that diagonalizes the Hamiltonian
and simulates its eigenstates. Furthermore, thanks to the Ising model being solvable, the circuit can
serve as a benchmark for evaluating the reliability of quantum machines. Through the application
of this circuit, we have obtained the energy spectrum and ground state magnetization of the one-
dimensional Ising Model.

I. INTRODUCTION

The physical world is filled with phase transitions, such
as water freezing into ice, or less common ones, such as
some metals turning superconductive in low tempera-
tures. The most fascinating characteristic of this type
of phenomenon is the abrupt change in the macroscopic
properties of a system after the variation of an exter-
nal parameter of the system, for example, the tempera-
ture [1]. A specific type of phase transitions are Quantum
Phase Transitions which happen at T = 0 K and are due
to quantum fluctuations of the system that are governed
by Heisenberg’s uncertainty principle [2].

One of the most relevant models in the study of phase
transitions is the Ising Model. Even though this model
was first developed to describe classically the phase tran-
sition of ferromagnetism, currently, its resolution extends
to diverse fields of science like, for instance, the prediction
of protein folding [3], or error mitigation algorithms [4],
among others. However, our focus is on the Quantum
Ising Model. This model has recently gained relevance
with the rise of quantum computation as it is one of the
few many-body quantum models that can be solved ex-
actly, which means if simulated in a quantum computer,
it can be used as a benchmark for quantum hardware.
Furthermore, it also motivates the search of algorithms
to simulate more complex N-body quantum models, such
as the Kitaev honeycomb model, among others [5].

In this paper, we replicate the results of Ref. [6] us-
ing newer quantum hardware to show how much it has
improved since 2018. The referenced paper proposes a
quantum circuit for the simulation of the one-dimensional
Ising Model with a transverse magnetic field with four
sites following the analytical solutions for the Hamilto-
nian developed in Ref. [7, 8].

This paper is structured as follows: Section II we intro-
duce the Ising model, the Hamiltonian, and the proper-
ties of the model. In Section III, we follow the analytical
solution for the 1D Ising Hamiltonian with a Transverse
Magnetic field developed in Ref. [7, 8]. In Section IV,
we develop the quantum gates needed for the quantum
circuits that diagonalize and simulate the Ising Hamil-

tonian. In Section V, we present the specific circuit for
a chain with four sites using the gates developed in the
former section. Both of these sections will follow the
methods first introduced in Ref. [5] and then further de-
veloped and implemented in Ref. [6]. Section VI displays
the results achieved for the energy spectrum of the Ising
Model and the magnetization of the ground state for the
Ising state using the quantum circuits proposed in the
prior section. Finally, in Section VII, we present the
conclusions of our paper.

II. THE ONE DIMENSIONAL ISING MODEL

This paper focuses on solving and simulating the one-
dimensional Ising Model with a transverse magnetic field.
The Hamiltonian for this model is

H =

n∑
i=1

σx
i σ

x
i+1 + λ

n∑
i=1

σz
i , (1)

where σz
i , σ

x
i are the corresponding Pauli matrices and λ

represents the strength of the polarizing magnetic field.
We also impose periodic boundary conditions σn+1 = σ1.
If we study the expression of the Hamiltonian, the

first term describes a near-neighbor interaction for a one-
dimensional chain, and the second term is a polarization
term. In this case, the strength of the magnetic field
(λ) characterizes the quantum phase transition with a
critical λ value, which separates the polarized phase for
a strong magnetic field (λ ≫ 1) from the non-polarized
phase for a weak one (λ ∼ 0).

III. SOLVING THE 1D ISING HAMILTONIAN

To solve the Hamiltonian described in the prior section,
we will follow the resolutions developed in Ref. [7, 8], and
more detailed resolutions were also consulted in Ref. [9–
12].
We explain each step needed to analytically diagonal-

ize the 1D Ising Hamiltonian with a transverse magnetic
field.
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A. Jordan-Wigner transformation

The first step to diagonalize the Ising Hamiltonian is
to perform a Jordan-Wigner transformation. This trans-
formation allows us to map 1

2 -spin operators into spinless
fermionic annihilation/creation operators that satisfy an-
ticommutation relations [13]. The new annihilation op-
erator reads as

aj =

j−1⊗
l=1

σz
j ⊗ (|0⟩j⟨1|j) =

j−1⊗
l=1

σz
j ⊗

(
0 1
0 0

)
j

(2)

where the basis used is |0⟩j =
(
1
0

)
, |1⟩j =

(
0
1

)
. These

new operators are combined to express the Pauli matrices
present in the Ising Hamiltonian with annihilation and
destruction operators.

Consequently, after Jordan-Wigner, the Hamiltonian
becomes [7, 11]

H =

n∑
j=1

(a†ja
†
j+1 + a†jaj+1 + aj+1aj + a†j+1aj)

−

1 + n∏
j=1

(1− 2n̂j)

(
a†na

†
1 + a†na1 + a1an + a†1an

)

+ λ

n∑
j=1

(1− 2n̂j) (3)

It is important to note that the Hamiltonian after
Jordan-Wigner has different boundary conditions de-
pending on the parity of the state applied. When the
number of occupied states is odd the boundary terms are
periodic (an+1 = a1), and when its even then it is an-
tiperiodic (an+1 = −a1). This means that we essentially
have two different Hamiltonians depending on the parity
of the state we work with.

In the thermodynamic limit, the boundary term can
be neglected and so, the Hamiltonian becomes

H =

n∑
j=1

(a†ja
†
j+1 + a†jaj+1 + aj+1aj + a†j+1aj)

+ λ

n∑
j=1

(1− 2n̂j) (4)

which it is the Hamiltonian we use for the rest of this
section.

B. Fourier transformation

The next step to diagonalize the Hamiltonian is to per-
form a Fourier transformation. A transformation that al-
lows us to go from the position space to the momentum
one. In our case, we use the discrete quantum Fourier

transformation, and we take advantage of the transla-
tional invariance of the Ising Hamiltonian so the momen-
tums can be defined in the set k ∈

(
−n

2 ,
n
2

]
[9, 11].

The expression for the Discrete Fourier Transformation
(DFT) is

bk =
1√
n

n∑
j=1

e−i 2π
n jkaj , k = −n

2
+ 1, ...,

n

2
, (5)

where k is the momentum and n is the number of sites.
Applying the Fourier transform to Eq. (4), gives us

H =

n
2∑

k=−n
2 +1

{
2

[
cos

(
2π

n
k

)
− λ

]
b†kbk

+ ei
2πk
n

(
bkb−k + b†kb

†
−k

)}
+ λn, (6)

allowing us to get rid of the first-neighbor interaction,
and instead, it now is between opposite sign momenta.
This type of Hamiltonian is called the Quadratic Hamil-
tonian.

C. Bogoliubov transformation

The final step for our diagonalization is performing
a Bogoliubov transformation, which allows us to get a
Hamiltonian without interaction. This transformation
proposes a new set of operators that are a linear combi-
nation of the original ones{

ck = Akbk +Bkb
†
−k

c−k = Ckb−k +Dkb
†
k

|Ak|2 + |Bk|2 = 1 AkCk +BkDk = 0 ,

(7)

where the conditions of the coefficients are imposed by
the fermionic anticommutation relations.
The development of this transformation in detail can

be consulted in [11, 12]. The new operators for the Bo-
goliubov transformation are{

ck = cos
(
θk
2

)
bk + i sin

(
θk
2

)
b†−k

c−k = cos
(
θk
2

)
b−k − i sin

(
θk
2

)
b†k

(8)

Where the angle is given by θk = arctan

[
sin( 2πk

n )
cos ( 2πk

n )−λ

]
As a result of this transformation, we achieve a non-

interacting fermionic Hamiltonian

H =

n
2∑

k=−n
2 +1

2ϵk

(
c†kck − 1

2

)
, (9)

where ϵk = ±
√

[cos (kn)− λ]2 + sin2 (kn) are the

monoparticular eigenenergies.
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IV. SOLVING THE ISING HAMILTONIAN
WITH A QUANTUM COMPUTER

After explaining the analytical resolution on the
Hamiltonian we now explain how to find a unitary opera-
tor Udis, made up of quantum gates, that can disentangle

the Ising Hamiltonian Hdiag = U†
disHUdis, where Hdiag is

the non-interacting fermionic Hamiltonian.
To construct this operator, we follow the development

explained in the previous section and create quantum
gates for each of the necessary transformations for the
diagonalization of the Hamiltonian. After finding these
gates, we can construct a circuit to diagonalize the Hamil-
tonian with a quantum computer.

A. Gate for Jordan-Wigner transformation

The first step for our diagonalization is the Jordan-
Wigner transformation, but this transformation does not
change any of the coefficients of the wave function. It just
changes from a 1

2 -spin basis

|Ψ⟩ =
∑

nσi
=− 1

2 ,
1
2

ψ1,...,m|nσ1
, nσ2

, ..., nσm
⟩ (10)

to a spinless fermionic basis

|Ψ⟩ =
∑

ni=0,1

ψ1,...,m(a†1)
n1(a†2)

n2 ...(a†m)nm |vac⟩, (11)

for i = 1, ...,m and where |vac⟩ is the vacuum state.
Thus, we do not need a gate for this step of the diago-
nalization.

The only important change when applying Jordan-
Wigner is that the system now is fermionic, so it must
comply with the anticommutation relations of fermions.
Consequently, when performing any SWAP between
qubits, we take these relations into account and use a
modified SWAP gate, which we call ”fSWAP”, and it
reads as

fSWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (12)

As we can observe, the only difference from a standard
SWAP gate is that when applying it to a fully occupied
2-qubit state, we get a negative sign because of anticom-
mutation.

B. Gate for Fourier transformation

The next step is the Fourier transformation, for the
quantum circuit application we perform a Fast Fourier
transformation, which consists of separating the original

transformation Eq. (5) into two sums, one with the even
sites and the other with the odd ones [14].
With this method, when working with 2m sites for

the Ising Hamiltonian, we can decompose the 2m Fourier
transformation into a combination of several of the fol-
lowing 2-qubit gates

Fn
k =


1 0 0 0

0 −e−i 2π
n

k
√
2

1√
2

0

0 e−i 2π
n

k
√
2

1√
2

0

0 0 0 −e−i 2π
n k

 , (13)

where k is the momentum, and n is the number of sites
of our system. The method of getting the matrix and the
algorithm is explained in further detail in Ref. [5, 15]

C. Gate for Bogoliubov transformation

The final step is the Bogoliubov transformation, which
only mixes qubits with opposite momenta see Eq. (8).
Thus, only a 2-qubit gate acting on the corresponding
qubits is needed to perform it. The transformation ends
up being characterized by the matrix [5, 6]

Bn
k =


cos

(
θk
2

)
0 0 i sin

(
θk
2

)
0 1 0 0
0 0 1 0

i sin
(
θk
2

)
0 0 cos

(
θk
2

)
 , (14)

where θk = arctan

[
sin ( 2π

n k)
cos ( 2π

n k)−λ

]
and k is the momentum

and n is the number of sites.

V. QUANTUM CIRCUIT FOR n = 4 CHAIN

Now that we have established the gates needed to solve
the Ising Hamiltonian with a quantum computer, we in-
troduce the circuit that allows us to go from states in the
Ising basis to the diagonal basis [6]. Specifically, for this
work, we present how the quantum gates developed in
the previous section let us build a circuit for the n = 4
1D Ising Hamiltonian.
Considering that we are working with only four sites,

we are not in the Thermodynamic limit. To solve this
without altering the resolution presented before, we mod-
ify the boundary term of the original Hamiltonian

Hfinite =

n−1∑
i=1

σx
i σ

x
i+1 + λ

n∑
i=1

σz
i + σy

1σ
z
2 ...σ

z
n−1σ

y
n ≡ H,

(15)
so that after Jordan-Wigner it becomes Eq. (4).

A. Diagonalization for n = 4 Chain

In Fig. 1 we present a diagram of the quantum cir-
cuit for the diagonalization of a 4-site Ising Model with
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FIG. 1: Diagram of the quantum circuit proposed for a 4-
qubit computer to diagonalize the modified Ising Hamiltonian
Eq. (15) with n = 4.

a Transverse Magnetic Field. The gates necessary for its
implementation have been described in Section IV. For
their implementation the gates have been decomposed
into more basic gates, they can be consulted in Ref. [6].
This circuit is the unitary operator (Udis) that disentan-
gles our Hamiltonian described in the previous section.
If we apply this operator to the Hamiltonian’s matrix,
we obtain the diagonalized matrix and the eigenenergies
of the system.

B. Simulation for n = 4 Chain

Having found a circuit that allows us to go from Ising
states to the corresponding state in the computational
basis we can do the inverse circuit to get the opposite.
Performing the inverse circuit allows us to simulate Ising
states in a quantum computer.

In particular, for this work, we are interested in simu-
lating the ground state and observing the quantum phase
transition characteristic of the one-dimensional Ising
model with a transverse field. For this purpose, we need
to find the ground state of the non-interacting Hamilto-
nian for different ranges of magnetic field strength (λ).
We take advantage of the direct circuit and find the
ground state for Eq. (9) in the computational basis

|G.S.⟩ =


|0000⟩, if λ ≤ −1

|0100⟩, if − 1 < λ ≤ 0

|0111⟩, if 0 < λ ≤ 1

|1111⟩, if λ > 1

(16)

To prepare these states for the simulation, we need to add
additional ”X-Pauli” gates for any qubit in the occupied
state (|1⟩).

VI. RESULTS

The circuit discussed before for the diagonalization of
the Hamiltonian has been first performed with a classi-
cal approach, using the matrices described for the trans-
formations and performing the tensorial products and

FIG. 2: Energies of all the eigenstates of an n = 4 Ising Chain
with the Hamiltonian Eq. (15) as a function of the strength
of the magnetic field (λ). The solid line represents the ener-
gies calculated with the monoparticular energies from Eq. (9),
and the points are the energies found when diagonalizing the
Hamiltonian with the operator Udis using Python.

products of matrices to get the operator that defines the
whole circuit Udis and running it through the Hamilto-
nian’s matrix. This first step’s purpose was to, on the
one hand, verify that the circuit proposed does diago-
nalize the Hamiltonian’s matrix and, on the other hand,
obtain the eigenenergies and compare them to the en-
ergies found with the non-interacting Hamiltonian with
Eq. (9), Fig. 2 shows the results of this.
After checking that the direct circuit works correctly,

we now perform the circuit for the simulation of the Ising
Model, but this time the code is developed with qiskit so
we run it with real quantum hardware. For this part, we
will calculate the expected value of σz for each qubit, and
normalize it. To achieve this, we must run the ground
state in the computational basis, see Eq. (16), through
the inverse quantum circuit to transform it into the Ising
basis, and then measure the final state. This procedure
must be repeated several times (N) to get the expected
value, and it has a statistical error associated. This is
the only error represented in Fig. 3, even though, for
quantum machines, there are other sources of error.
In Fig. 3 we show our results for the transverse mag-

netization of the ground state of the Ising Hamilto-
nian. We can observe how the system goes through a
quantum phase transition in |λ| = 1 where the ground
state changes abruptly from a polarized phase to a non-
polarized phase for λ < 0 and the opposite for λ > 0.
When observing Fig. 3 the results for the real machine

are remarkable for the range λ ∈ [−1, 1], where they
match or are very close to the classically obtained re-
sults. For the other values of λ, the experimental values
diverge more, but we are still able to distinguish where
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FIG. 3: Transverse magnetization of the Ising ground state
as a function of the magnetic field strength (λ). The solid
line represents the results when solving the Hamiltonian
with a classical computer using Python, the blue trian-
gles represent the values when using a quantum simulator,
”generic backend 4q”, and the green dots represent the ones
obtained using real quantum hardware ”ibm kyoto”, in both
cases we have performed 500 measurements. The error bars
are represented for the quantum simulator and quantum ma-
chine and it is the statistical error associated to the measure-
ments.

the phase transition takes place when |λ| = 1.
To finish up this section, all the code for both Fig.2 and

Fig. 3 was developed with Python and qiskit and can be
consulted in Ref. [16]. The qiskit code was developed in
May 2024 and with the 1.1.0 qiskit version, any earlier
or later versions might present compatibility issues.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have succesfully solved the one-
dimesional Hamiltonian with a transverse magnetic field,

following the resolutions developed originally in Ref. [7,
8]. Moreover, we have found quantum gates that allowed
us to apply this exact resolution to create a quantum
circuit, which when applied directly can diagonalize the
Ising Hmailtonian and when we run the inverse circuit,
we can simulate the Ising model by going from the eigen-
states in the diagonal basis to the Ising basis [5, 6].

Specifically, we have used the circuit for n = 4, first
proposed in Ref. [6], and we have successfully recovered
the eigenenergies of the n = 4 Ising Hamiltonian, apply-
ing it numerically. Furthermore, we have run the inverse
quantum circuit, simulated the ground state for the Ising
Model, and calculated the expected value for the trans-
verse magnetization with different methods: a classical
computer, a simulation of a quantum computer, and a
quantum machine (”ibm kyoto”).

If we use this as a benchmark for ”ibm kyoto”, al-
though the experimental results do not match up exactly
with the classical ones, particularly in the polarized phase
(|λ| > 1), the overall results have improved significantly
when comparing them to the ones obtained in the orig-
inal paper Ref. [6]. This shows us that the accuracy of
IBM quantum machines has improved since 2018 when
the paper was originally published.
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VIII. APPENDIX

A. Development of the Bogoliubov transformation

In this section we explain in more detail the Bogoliubov
transformation proposed in Eq. (7) and how to get the
final operators, Eq. (8) [12].

First we need to rewrite the Hamiltonian before Bo-
goliubov, Eq. (6)

H =

n
2∑

k=−n
2 +1

{[
cos

(
2π

n
k

)
− λ

]
(b†kbk + b†−kb−k) (A1)

+ i sin

(
2πk

n

)(
bkb−k + b†kb

†
−k

)}
+ λn

taking advantage of the symmetries of the Hamiltonian
and its periodic boundary condition.

As a result, now we can write this expression for the
Hamiltonian in matrix form

H =

n
2∑

k=−n
2 +1

X†
khXk, (A2)

where h =

(
cos

(
2πk
n

)
− λ i sin

(
2πk
n

)
−i sin

(
2πk
n

)
−
[
cos

(
2πk
n

)
− λ

]) and

Xk =

(
bk
b†−k

)
.

With this new way of expressing the Hamiltonian, first,
we can straight away get the eigenvalues of the h matrix,
which correspond to the monoparticular energies for our
future non-interacting Hamiltonian

±ϵk = ±
√
[cos (kn)− λ]2 + sin2 (kn). (A3)

Then, we can rework Eq. (A2) to get a diagonal matrix
for the Hamiltonian with the new operators from Eq. (7)

H =

n
2∑

k=−n
2 +1

Y †
k UkhU

†
kYk =

n
2∑

k=−n
2 +1

Y †
k hdiagYk (A4)

where Uk =

(
Ak Bk

C∗
k D∗

k

)
, hdiag =

(
ϵk 0
0 −ϵk

)
and

Yk =

(
ck
c†−k

)
.

Using the relations between coefficients written in
Eq. (7) and imposing in Eq. (A4) that the non-diagonal

terms of UkhU
†
k are zero, we can obtain the values for

the transformation matrix, and thus getting the new op-
erators for our diagonal Hamiltonian, see Eq. (8).

B. Boundary term for the Modified Ising
Hamiltonian

In this section we discuss the boundary term of the
Modified Ising Hamiltonian, Eq. (15).
First, we apply the Jordan-Wigner transformation,

Eq. (3), to this new boundary term

σy
1σ

z
2 ...σ

z
n−1σ

y
n = a†na

†
1 + a†na1 + a1an + a†1an. (A5)

We can see it gives us a periodic boundary condition
(an+1 = a1) and we recover the Hamiltonian for the ther-
modynamic limit, Eq. (4).

Next we show a few examples on how this boundary
term (σy

1σ
z
2σ

z
3σ

y
4 ), acts on some spin states for a system

with n = 4 sites

σy
1σ

z
2σ

z
3σ

y
4 | ↑↑↑↑⟩ = −| ↓↑↑↓⟩

σy
1σ

z
2σ

z
3σ

y
4 | ↑↓↑↑⟩ = | ↓↑↑↑⟩ , (1)

compared to the original boundary term (σx
nσ

x
1 )

σx
nσ

x
1 | ↑↑↑↑⟩ = | ↓↑↑↓⟩

σx
nσ

x
1 | ↑↓↑↑⟩ = | ↓↑↑↑⟩. (2)

As we can see the modified boundary term gives us
periodic boundary conditions for an odd number of up
spins and antiperiodic for an even number of up spins.
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