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Abstract: In this work we compare the collective monopole excitation energies for Bose-Einstein
condensates of atoms in spherically symmetric traps, described by either the Gross-Pitaevskii equa-
tion or the Modified Gross-Pitaevskii equation. The excitation energies are computed from the
ground state via energy weighted sum rules, and the results are compared to time-evolving pulsat-
ing condensates. We finally compare the excitation energies for systems obeying both equations and
demonstrate that the results obtained through the Modified Gross-Pitaevskii are clearly different
than the results obtained through the Gross-Pitaevskii equation in the strong interaction regime.

I. INTRODUCTION

A Bose-Einstein condensate (BEC) is a state of mat-
ter in which a large fraction of a diluted gas of bosons
at very cold temperatures (ideally, T = 0) is occupying
simultaneously the lowest single particle quantum state.
This phenomenon, first described by Bose and Einstein
between 1924 and 1925, was first observed in 1995, which
sparked a great interest in both experimental and theo-
retical studies of Bose gases[1].
Most of such experiments are done by cooling magneti-
cally or optically trapped atoms down to extremely low
temperatures, of the order of nanokelvin. These situ-
ations are described through the Gross-Pitaevskii (GP)
equation, which deals with very diluted Bose gases, that
is, when the average distance between particles is much
larger than the range of interatomic interactions. In such
circumstances, the physics of the problem is dominated
by low energy two-body collisions, which are very well
described in terms of the s-wave scattering length as.
In order to characterize the diluteness of a system we
use the gas parameter χ(~r) = n(~r)a3s, where n(~r) is the
local density of the system. The GP equation has been
observed to do an excellent job for low values of the av-
erage gas parameter, χ̄ ≤ 10−3. Recent experiments,
however, have shown values of the gas parameter that
well exceed this number. In these contexts, it seems nat-
ural to expand the energy contribution of the two-body
interaction in the GP equation to the next term in the
local density expansion of the energy density, obtaining
the so called Modified Gross-Pitaevskii equation [2, 3].
Concerns about the validity of this equation have, how-
ever, arisen, mainly questioning if similar results could
be obtained by rescaling the scattering length instead of
adding further orders to the GP equation.
The objective of this work is, then, to study and compare
the results for these two equations for trapped BECs. In
particular, we will compute the energy of the collective
excitations of such condensates under monopole excita-
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tions. This excitation energy will be estimated through
sum rules. In addition, the validity of the sum rules will
also be established by comparing their values with the
pulsating frequency of a monople excited BEC.

II. THEORETICAL BACKGROUND

A. Gross-Pitaevskii equation

Let us consider a condensate of N atoms in a spher-
ically symmetric trap, which takes the form of Vtrap =
1
2mω

2r2, in equilibrium, at T = 0 K. We will study this
system in the framework of the local density approxima-
tion (LDA), considering that the system will behave as a
diluted hard spheres with diameter equal to the scatter-
ing length as. Taking the low density expansion of the
energy density up to second order we obtain

E
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+ · · ·

]
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where m is the mass of the atoms. Within the LDA
framework, the energy functional associated with the GP
equation can be obtained from Eq. (1) by keeping the
first term in the expansion, obtaining the following en-
ergy functional:

eGP [ψ] =

∫
d3r

[
1

2
|∇ψ(r)|2 (2)

+
1

2
r2|ψ(r)|2 + 2πasN |ψ(r)|4

]
.

To write this equation we have used the units that
naturaly arise from the trap potential , i.e. harmonic
oscillator (HO) units, and use dimensionless parameters.
The energy and length units related to the harmonic
oscillator potential are, respectively [3] eHO = ~ω and

aHO =
√

~
mω . HO units will be used throughout this

work.

The Gross-Pitaevskii equation is obtained by imposing
the functional in Eq. (2) to be stationary with respect
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to variations of ψ∗:[
−1

2
∇2 +

1

2
r2 + 4πasN |ϕ|2

]
ϕ = µϕ. (3)

Here µ is the chemical potential (as justified by Koop-
man’s theorem), which takes into account the conser-
vation of the number of particles. If we do the same
reasoning taking into account the second term of the ex-
pansion in Eq. (1) we obtain the so called Modified Gross
Pitaevskii equation (MGP):[

−1

2
∇2 +

1

2
r2 + 4πasN |ϕ|2

+ 5π1/2a5/2s N3/2 128

15
|ϕ|3

]
ϕ = µϕ. (4)

B. Virial Theorem

In quantum mechanics we can get the results of the
virial theorem by performing an scaling of the system [4].
In particular, we will use the one body wave function
ϕ(r), which will be rescaled as ϕ̃(~r′) = λ3/2ϕ(λ~r), in
order to maintain the norm. Now, the virial theorem can
be written as

de(ϕ̃, λ)

dλ

∣∣∣∣
λ=1

= 0, (5)

where e(ϕ̃, λ) is the energy per particle of such an scaled
system. In order to use this identity, we will need to
define different contributions to the total energy. For the
GP equation these are:

tkin =

∫
d3r

1

2
|~∇ϕ(r)|2,

eHO =
1

2

∫
d3r|ϕ(r)|2r2,

eint = 2πas

∫
d3r|ϕ(r)|4.

If we apply the scaling introduced formerly, we can see
that the contributions to the energy scale differently, and
the total energy can be written as

e(ϕ̃, λ) = λ2tkin(ϕ) +
1

λ2
eHO(ϕ) + λ3eint(ϕ). (6)

Which, by means of Eq. (5), gives us the relation

2tkin − 2eHO + 3eint = 0. (7)

Let us now proceed similarly with the MGP energy func-
tional in order to obtain a similar expression for systems
under the MGP equation. In this case, we will incorpo-
rate one further term:

eint,2 =
256

15
a5/2s N3/2

∫
d3r|ϕ(r)|5. (8)

With that new term, the scaled energy will be

e(ϕ̃, λ)MGP =λ2tkin(ϕ) +
1

λ2
eHO(ϕ) + λ3eint,1(ϕ)

+λ9/2eint,2(ϕ). (9)

Finally, we obtain the corresponding MGP virial theo-
rem:

2tkin − 2eHO + 3eint,1 +
9

2
eint,2 = 0. (10)

C. Strong and weak interacting limits

One of the first things we can consider is which are the
limits when studying the dependency of a system on the
interaction. First of all we must decide what parameter
better describes the strength of the interaction.
By looking at Eq. (2), we can see that the interacting
energy, depends only on the product asN .
We can see, however, that this does not hold for the MGP
equation. If we separate both expansion terms as two dif-
ferent energy contributions (eint1 and eint2 , respectively),
we can see how eint1 will scale with Nas but eint2 will have
an extra contribution from as, which does not allow us to
freely change N and as while maintaining their product
constant when studying the MGP equation.
With that being said, the first limit is quite obvious, and
takes place when there is no interaction. Then, both
equations will be equivalent to the single particle har-
monic oscillator equation, and the virial theorem will be

tkin = eHO, (11)

for both equations.
The second limit applies when the interactions became
very strong and the interaction terms dominate on the
overall energy. It can bee seen that, as the interaction in-
creases the kinetic energy contribution becomes less and
less important. Then, for large interactions, we can ne-
glect the kinetic term and use only the HO and interact-
ing ones. This is known as the Thomas-Fermi approxi-
mation.

D. Sum Rules

In order to study the differences between the GP and
MGP solutions for large interactions, we will study the
collective excitation energies under a monopole excita-
tion. It would appear necessary, then, to find a way to
compute such excited states. Fortunately, there are pro-
cedures to compute such excited energies from the ground
state [5].
We begin by introducing the dynamic structure function,
which is defined as

SF (E) =
1

N

N∑
j

|〈j|F |0〉|2δ(E − (Ej − E0)), (12)
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where F is the excitation operator and |j〉 and Ej are
the hamiltonian eigenstates and eigenvalues, respectively.
Alternatively, the dynamic structure function can be
characterized by its energy sum rules:

Mn(F ) =

∫ ∞
0

EnSF (E)dE. (13)

Therefore, if the response of the system to a certain ex-
citation operator is concentrated in a narrow range of
energies, we will be able to describe SF (E) with only a
few moments.
The most interesting thing, however, is that we can
compute these moments without explicitly knowing nei-
ther SF (E) nor the excited state, but we can compute
it through expected values of a given operator on the
ground state. Then, we can also see that using the previ-
ous equations we will be able to estimate the excitation
energy as

Ēm =

√
Mn

Mn−2
. (14)

Our objective will be to compute this energy from the
ground state of the BEC given by either the GP or the
MGP equation.
We will now see what form take some of these energy
sum-rules for the excitation we will focus mainly on
monopole excitations, F = r2. First, it can be shown
that M1 is simply computed as [6]

M1 =
1

2
〈0|r2|0〉 =

1

2

∫
d3rr2ρ(r) = eHO, (15)

so it will be equal to the harmonic trap energy contribu-
tion, EHO.
M−1 can be computed through a perturbational method.
In this case, we will add a certain excitation term to the
Hamiltonian, F (α) = αr2, and compute the energy as-
sociated to the new ground state, E0(α). Then, the sum
rule can be computed as [6]:

M−1 = − 1

2

∂2E0(α)

∂α2

∣∣∣∣
α=0

. (16)

Finally, we also compute M3 through a scaling approach
equal to that used for the virial theorem. If we consider
the energy of an scaled system as E(λ), the sum rule will
read as [6]

M3 =
1

2

d2E(λ)

dλ2

∣∣∣∣
λ=1

. (17)

This allows to obtain upper and lower bound values for
Ēm. By taking Eq. (17) into account, we can see that,
for the GP equation, we obtain:

M3 = eHO

(
5− tkin

eHO

)
. (18)
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FIG. 1: Comparison of the density profiles ρ(r) for systems
under the GP and MGP equations, for as = 0.1, N = 1000,
which corresponds to χ ∼ 10−2, beyond the range of validity
of the GP equation.

Then, by knowing that M1 = eHO, we can compute the
excitation energy as

Ēm =

√
M3

M1
=

(
5− tkin

eHO

)1/2

. (19)

That expression is useful because it let us set both
upper and lower bounds on the value of Ēm. When
there is no interaction, we will get the results of Eq.
(11) back and Ēm = 2. If the interactions are large, we
will enter the domain of validity of the Thomas-Fermi
approximation and Ekin ∼ 0, so Ēm =

√
5. That tells us

a very interesting result, however large the interactions
are, the excitation energy cannot be greater than

√
5

(in HO units, of course) in the framework of the GP
equation.

Let us now compute a parallel result for the MGP
equation. Using the same development we obtain

M3 = eHO

(
5− tkin

eHO

+
27

8

eint,2
eHO

)
. (20)

In that case we recover the lower bound Ēm = 2 back,
but clearly overpass the upper bound in the MGP case.
This is a very characteristic difference between the result
for the MGP and the result for the GP equation which
can allow for an experimental verification.

III. RESULTS

To check the results presented in the previous section,
numerical simulations were used. To begin with, we ob-
tain the ground state from the GP and MGP equations.
First, we will solve the equation for a spherically sym-
metric system, so our wave function will be written as
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FIG. 2: Ēm for a monopole excitation as a function of Nas
for a system obeying the GP equation, computed via both√
M3/M1 and

√
M1/M−1.

ϕ(r) = R(r)
r Y00, so we will only need to compute the

radial part R(r). If we assume our ground state non de-
generate, we can use imaginary time methods, with time
increments such that the linear approach is reliable:

R(r, t+ ∆t) = R(r, t)−∆t µ(r)R(r, t), (21)

where the chemical potential µ(r) is computed from ei-
ther the GP or the MGP equations. This method, how-
ever, does not guarantee that the norm 〈R(r)|R(r)〉 = 1
is conserved, so this will have to bee imposed in every
iteration. After a large number of iterations, we will get
an stable solution for R(r), with µ independent of r. The
results for the wave function of the GP and MGP equa-
tions can be seen in Fig. (1).
Once the ground state wave function is computed we may
start tackling the computation of the sum rules. Com-
puting M1 is straightforward, as the wave function is nec-
essarily real (given the method used to obtain it) we will
only need to multiply the squared wave function times
the operator, 1

2r
2 and integrate the result.

To compute M−1 we will need to perform perturbations
to the system. To do so, we will compute the ground
state energy for a system with an excitation of the form
αr2. Since there is already one contribution of the form
of r2 in both the GP and MGP equations, we will only
need to add the perturbation parameter as a constant to
such contribution. This is done for five values of α and
then a 5-point finite differences method is used to com-
pute the second derivative.
On the other hand, the computation of M3 only requires
to combine the different energy contributions to the virial
theorem.
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FIG. 3: Ēm for a monopole excitation in function of as for
systems with N = 1000 obeying the MGP and the GP equa-
tion, respectively. Ēm is computed through

√
M3/M1. The

values of as greater than 0.01 correspond to χ > 10−3.

A. Results for Ēm

First of all, given that we have two different ways to
compute Ēm =

√
M3/M1 and =

√
M1/M−1, we want to

explore the compatibility of the results.
We can see in Fig. 2 that while the energies computed
using the two methods are slightly different, both meth-
ods render what we expected from Eq. (19): the energy
starts at Ēm = 2 and increases up to values close to
Ēm ∼

√
5. This is usually attributed to the fact that

there could be more than one excited state available for
the considered perturbation.

So now that we have seen how should Ēm behave for
the GP , let us compare the results of Ēm for the GP and
MGP equations. Now, however, as discussed in section
II.C, Nas is not a suitable choice for the interaction pa-
rameter, as the extra interaction term in the MGP will
have an extra as term, so we will use as as a parameter.

As we can see, the MGP renders greater excitation
energies than the GP equation. what is more interesting,
while the results for the GP equation are clearly bounded
by Ēm =

√
5, the results for the MGP exceed the upper

bound, thus marking a clear difference in the behaviour
of the system under the GP or the MGP equations. We
can see also common points: as expected both energies
are equal to 2 when there is no interaction.

B. Comparison of Ēm with a pulsating BEC.

While we have been able to accurately compute and
compare the values of Ēm, we still have to see how well
they represent the excitation energy, since they have been
computed through only two sum rules. To this end, we
will first compute the ground state wave function of a per-
turbed system, with a monopole excitation βr2. Then,
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FIG. 4: < r2 > (t) for a system with N = 1000, following the
MGP equation. We can see how for weaker interactions the
frequency is smaller.

we will make this wave function evolve with the Hamilto-
nian of the non perturbed system. The condensate pul-
sates with a given frequency, which, by means of E = ~ω
should coincide with Ēm.

As we can see, the system does indeed pulsate, since
〈r2〉(t) follows a periodical form. This, however, only
holds for weak and medium interaction values. When
the interactions are very strong the solutions become
unstable and no frequency can be extracted from the
evolution of the system.
Let us now see how does the pulsating frequency
compare to Ēm. In Fig. 5 we can see that the values
computed through either the sum rule or frequency
method are in agreement, . In this figure we can also see
that the values for the MGP and GP equations are very
similar, this is due to the low interaction values.

IV. CONCLUSIONS

• First of all, we have been able to see that, in the
framework of mean field theories for BEC given by
the GP and MGP equations, sum rules from the dy-
namic structure function are useful tools to extract
information about the dynamics of system,

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

E
m

as

MGP, Sum rule

MGP, Time dependant

GP, Sum rule

GP, Time dependant

FIG. 5: Comparison of Ēm, obtained through sum rules and
the time dependant method (extracting the frequency form
pulsating BEC such as found in Fig. 4) for systems with
N = 1000 obeying the MGP and GP equation respectively.
The value for as from Fig. 4 is marked.

at least for condensates under monopole excita-
tions.

• We have also seen that, within the sum rules for-
malism, the results obtained for the MGP are
clearly different to those from the GP equation, due
to the fact that the system under the MGP equa-
tion exceeds the upper bound of Ēm for systems
under the GP equation at the regime of strong in-
teractions. That clearly indicates the impossibility
to obtain the MGP results by scaling the scatter-
ing length in the GP equation and should allow us
to discriminate between the two equations by com-
paring with experimental results.
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