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Abstract: We analyze the spectral properties of one-dimensional spin chains, that can be de-
scribed with a simplification of the Heisenberg model, the XXZ model, in order to study the tran-
sition from a regular to a chaotic behaviour. The spectrum of the system is obtained by direct
diagonalization of the Hamiltonian matrix. We describe the onset of quantum chaos, in terms of
the spectral properties, for a XXZ chain when only one of the spins is subjected to the influence of
an external magnetic field of variable intensity.

I. INTRODUCTION

Classical chaos is referred to the non-deterministic evo-
lution of a dynamical system. Systems whose time evo-
lution is very sensitive to its initial conditions, in which
smooth variations on these can induce exponential diver-
gences on the trajectories in the phase space, are classi-
cally called chaotic systems [1]. However, it is well known
that the concept of trajectories is not applicable to quan-
tum systems. Thus, to introduce the concept of chaos in
quantum systems, one needs to find an alternative ap-
proach.
Quantum chaos studies the properties of the spectrum
that appear when the classical analogous of the system
would be in a chaotic regime. Following the work of
Bohigas-Giannoni-Schmit (BGS) [2], a way to character-
ize the chaoticity of a quantum system relies on studying
the statistical properties of the many-body spectrum [3].
In this work we discuss the appearance of quantum chaos
in spin chains analyzing the spectra of the many-body
system. First of all, in Sec II, we discuss some spectral
properties of a quantum system and how they are related
to chaos. Then, in Sec III, we introduce one-dimensional
spin chains. Finally in Sec IV, we study the transition
from a regular domain to a chaotic regime of a chain with
15 spins by introducing an impurity of variable intensity
but fixed in the 7th site.

II. DESCRIPTION OF THE SPECTRUM

A. Unfolding the spectrum

In order to compare different systems of many sizes we
need to unfold their spectra. As explained in Ref. [3],
locally rescaling the energies we make the local density
of the renormalized states be 1, and we can compare the
level repulsion of spectra that initially could have differ-
ent densities. A way to proceed is sorting the eigenvalues
in increasing values of energy and then separate them
into several sets, computing the mean level spacing of
each set and finally dividing each eigenvalue by this av-
eraged value. Additionally, we can also discard a certain
amount eigenvalues at the edges of the spectrum.

B. Level spacing distribution

The most common way to study the chaoticity of
a quantum system is by the distribution of consecu-
tive energy gaps. An energy gap is the difference be-
tween two consecutive eigenvalues of the Hamiltonian,
si = Ei+1−Ei. One can build a probability distribution
for these energy gaps, P (s).
A system is said to be integrable when the eigenvalues
of its Hamiltonian are uncorrelated. In these cases the
expected level spacing distribution is a Poissonian [4],

PP(s) = e−s. (1)

On the other hand, when a system is chaotic we must
appeal to the BGS conjecture. The distribution of level
spacings of a chaotic system is known to be a Wigner-
Dyson one, just like for the Gaussian orthogonal ensem-
ble [2]. The level repulsion is manifested in the distri-
bution of spacings by having P (s) ∼ sβ for s → 0 [4],
with β = 1 in the Wigner-Dyson case. The distribution
function can be written as

PWD(s) =
π

2
se−

π
4 s

2

. (2)

This distribution has a maximum at smax =
√

2/π, while
in the integrable regime it always decays. The level repul-
sion is manifested by not having two identical consecutive
energies, i.e., P (s = 0) = 0. In chaotic systems there are
no energy degenerations. We must remember that the
spectrum is ordered in increasing values of energy.

C. Ratios of consecutive level spacings

There are other ways to determine in which regime a
system is found. A quantity that can be defined in order
to capture the level repulsion is the following average
ratios of level spacings 〈r〉; where the ratios ri are defined
as,

ri = min

{
Ei+1 − Ei
Ei − Ei−1

,
Ei − Ei−1

Ei+1 − Ei

}
, (3)
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and Ei is the ith eigenvalue of the system [5]. This quan-
tity is able to summarize spectral properties such as the
level spacing distribution. We can see in Ref. [5] that
the Poisson distribution translates to the ensemble aver-
age 〈r〉 ≈ 0.38629, while the Wigner-Dyson distribution
translates to 〈r〉 ≈ 0.53070. Computing this value for
a given spectrum, we can see how close it is to a Pois-
son or a Wigner-Dyson distribution. One must be careful
because obtaining those numbers does not necessarily im-
plies having a Poisson or a Wigner-Dyson, respectively,
so we must always check that the average ratio obtained
fits with the corresponding distribution. This magnitude
allows us to avoid unfolding the spectrum, and summa-
rizes its distribution with a single quantity.

III. ONE-DIMENSIONAL SPIN-1/2 CHAINS

A. States of the system

A single spin-1/2 can be represented by the spin op-

erators Ŝi = 1
2 σ̂

i (i = x, y, z), where σ̂i are the Pauli
matrices. A quantum state of an spin can be represented
through spinors, that usually are written in terms of the
basis vectors, which are eigenvectors of the σ̂z operator.
Now let us take a chain of L spins. Each spin can be
found in both up and down states. As we have 2 possible
configurations for each spin, the total number of combi-
nations that our system can have is 2L, which fixes the
dimension of the Hilbert space.
We can also divide the system in subspaces setting re-
strictions of a certain number of up-spins (Nup). The
dimension of each subspace can be calculated by the com-
binatorial number

(
N
Nup

)
[3], which tells us in how many

ways we can achieve a configuration with a fixed number
of spins pointing up. By using the binomial theorem, we
recover the total dimension as,

2L =

L∑
Nup=0

(
L

Nup

)
. (4)

B. The XXZ Hamiltonian

1. The Heisenberg model

When the spins are located on a chain, the states of
each one can be affected by the presence of other spins.
We consider the following XXZ Hamiltonian [3],

ĤXXZ ≡ J
∑
n

(ŜxnŜ
x
n+1 + ŜynŜ

y
n+1 + ∆ŜznŜ

z
n+1), (5)

where n labels the site of the chain. The sum over n is
extended from 1 to L − 1 when open boundary condi-
tions are imposed, and from 1 to L when we have peri-
odic boundary conditions and the first spin can interact

with the last one. J is the strength of the interaction be-
tween neighbouring spins and ∆ is a symmetry breaking
parameter. We are working with a simplification of the
Heisenberg model.
This Hamiltonian can be decomposed in two terms. On
one hand we have the Ising interaction,

ĤZZ ≡ J
∑
n

ŜznŜ
z
n+1. (6)

We are considering interactions only between first neigh-
bours and neglecting the magnetic field contribution.
The Ising interaction is diagonal, so it is not properly
a quantum model since the eigenstates of this Hamilto-
nian are uncorrelated:

ŜznŜ
z
n+1 |↑n↑n+1〉 =

1

4
|↑n↑n+1〉 (7)

and

ŜznŜ
z
n+1 |↑n↓n+1〉 = −1

4
|↑n↓n+1〉 . (8)

On the other hand, we have the flip-flop term,

Ĥflip−flop = J
∑
n

ŜxnŜ
x
n+1 + ŜynŜ

y
n+1, (9)

which introduces the truly quantum effects on the sys-
tem. It can be seen that it interchanges the spins of two
anti-parallel adjacent spins, thus mixing the basis:

(ŜxnŜ
x
n+1 + ŜynŜ

y
n+1) |↑n↓n+1〉 =

1

2
|↓n↑n+1〉 , (10)

(ŜxnŜ
x
n+1 + ŜynŜ

y
n+1) |↓n↑n+1〉 =

1

2
|↑n↓n+1〉 . (11)

While the Ising term does not couple any state, the
nearest-neighbour flip-flop contribution correlates states
that are similar except for both orientations in a pair of
consecutive antiparallel spins, as seen in Eqs. (10) and
(11). This is translated in a tridiagonal structure for the
Hamiltonian matrix.

2. Symmetries of the Hamiltonian

The Hamiltonian of the system commutes with Ŝz,
where Ŝz =

∑
n Ŝ

z
n is the third component of the total

angular momentum. Each eigenstate of the XXZ Hamil-
tonian can be constructed with a linear combination of
states with a fixed number of up-spins [3], since each one

has to be also an eigenstate of Ŝz. Thus, the matrix can
be organized in boxes, which only the diagonal ones are
different from zero. For this, the subspaces with different
Nup can be treated independently. The whole system is
the union of all these subspaces, as expressed in Eq. (4).
Realizing that the configuration of lowest energy cor-
responds to a configuration with all the spins pointing
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down, we could understand an up-spin as an excitation,
but as a consequence of the total spin number conserva-
tion, we can not create nor annihilate these excitations.
In this model they only can be moved on the chain [1].
Then, we talk about excited states for those whose con-
figurations let the system be in a larger energy without
changing Nup.
If we make a reflection transformation, then the Hamilto-
nian remains invariant [3]. The parity (Π̂) is a conserved
quantity, where

Π̂ =

{
P̂1,LP̂2,L−1 · · · P̂L

2 ,
L
2 +1 if L=even

P̂1,LP̂2,L−1 · · · P̂L−1
2 ,L+3

2
if L=odd

, (12)

and

P̂n,m = ŜxnŜ
x
m + ŜynŜ

y
m + ŜznŜ

z
m +

1

2
1. (13)

IV. CHAOTICITY IN 1D SPIN-1/2 SYSTEMS

From now on, we are going to consider a chain of
L = 15 spins governed by the XXZ model, Eq. (5). The
number of up-spins is set to Nup = 5, so the dimension

of this subspace is
(

15
5

)
= 3003, which allows to obtain

enough statistics of the consecutive gaps. In this case,
the system is known to be integrable and the level spac-
ing distribution should follow a Poissonian one [3]. We
take the anisotropy parameter as ∆ = 0.5. Large values
of this parameter make the flip-flop term negligible and
we may lose quantum effects; correlations between states
may disappear.

A. Achieving the chaotic regime

If we want to lead the system into chaos we must add
some perturbation on the system that can make such an
important change on the spectrum that the level spacing
distribution becomes a Wigner-Dyson one. An easy way
to achieve that would be by allowing the spins to have
interactions with 2nd neighbours [1]. But, the one we are
studying in this article is just adding a single impurity
(or defect) on a site of the chain. This impurity can turn
an integrable system into a chaotic one if it is added
in the proper site of the chain and it has a reasonable
intensity. The Hamiltonian of a system with a single
impurity located at site “α” (1 < α < L) is

Ĥimpurity = ĤXXZ + εJŜzα. (14)

We have added a magnetic field, of magnitude εJ , that
only interacts with that spin α. We call ε the strength,
or intensity, of the impurity.
We can see in Fig. 1 that there is a correspondence be-
tween the difference average ratio of level spacings com-
puted with respect to the theoretical ones and how sim-
ilar is each distribution to the respective ones. In Fig. 1

FIG. 1: Four examples of the level spacing distributions. (a)
〈r〉 = 0.36987, no impurity (integrable domain); (b) 〈r〉 =
0.47914, impurity at 7 with ε = 0.05; (c) 〈r〉 = 0.42485,
impurity at 8 with ε = 0.5; (d) 〈r〉 = 0.50745, impurity at 7
with ε = 0.1 (chaotic domain).

panels (b) and (c) we can see that the distributions are
something in between a chaotic and a non-chaotic regime,
what tells us that the transition is implemented in a pro-
gressive way.
As we discuss below, the presence of this local magnetic
field has large consequences for the whole system. Ad-
ditionally, we can notice that if we apply the same mag-
netic field on every site of the chain we will not see any
effect, since it only would produce a displacement on the
diagonal elements of the matrix. Note that the original
Heisenberg model includes a magnetic field term that we
neglected, in which the impurity would increase the Zee-
man splitting on the site where it is located [6].

B. Dependence on the position of the impurity

Unlike in a closed chain, in an open one the posi-
tion where we locate the impurity is very important be-
cause, as we can see below, depending on its position, the
chaoticity of the system changes. For example, if we have
an impurity at an edge of the chain it is difficult for the
one on the opposite edge to see any influence. In fact, if
we locate it at an edge of the chain there is an analytical
proof of the integrability of the system [1]. We should
expect to find the system nearer to chaos as the more
centered the impurity is located. Although the magnetic
field only affects to a single spin, the polarization of that
spin inevitably influences on its neighbours, since they
are correlated.
In Fig. 2 we see that there is a symmetric behaviour due
to the parity conservation and there is what seems an
anomaly on the central spin (8th site) that we can also
see in Fig. 1 panel (b). The most chaotic situation, for
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FIG. 2: Representation of the average ratio 〈r〉 for the differ-
ent locations of the impurities in the chain. The different sym-
bols correspond to different values of the impurity strength,
ε, see Eq. (14). The corresponding values for the Poisson and
Wigner Dyson distributions are marked with dotted lines.

every intensity, occurs when the impurity is located in
sites 7 and 9, in a chain of 15 spins. Previously we had
commented that the chaotic behaviour should be more
prominent the more centered the defect is located. This
hypothesis is surprisingly broken when the impurity is
found on the 8th site. It happens because when the im-
purity is located just in the center, the system is able to
be split in two parts that can be statistically studied sep-
arately, thus breaking the chaoticity. When the impurity
fixes the polarization of the spin, forbidding this one to
flip, then the spins on the right side of the one with the
defect become uncorrelated with the ones on the left side.
The strength necessary to let it happen is much smaller
if the location of this impurity is exactly in the center.
Later we will see that it can also happen for other posi-
tions depending on the intensity of the applied magnetic
field.

C. Evolution of the system depending on the
impurity strength

Starting with a non-chaotic chain of 15 spins where
there would not be any impurity, i.e. ε = 0, we can study
the evolution as the intensity of an impurity located at
the 7th site of the chain (or by the parity symmetry it
is equivalent to locate it at the 9th site) is increased.
In Fig. 3 we can see how a system evolves with ε, and
we can observe that the chaotic domain is present for a
finite range of the strengths of the impurity. At first,
the transition from a regular to chaotic behaviour is very
fast. Further increasing ε, the system returns to the non-
chaotic domain, but the transition is much softer than the
first one.

FIG. 3: Representations of the evolution of the average ratios
of level spacings with the strength of an impurity located at
the site 7 of a chain of 15 spins. The inset shows a zoom on
the lower ε region.

For the case of ε = 0, we obtain an exponential decay of
the level spacing distribution, see Fig. 1 panel (a). As
we increase the value of ε, we expect to reach a chaotic
regime. Representing an histogram of the level spacings
we can see that, for small values of ε, the distribution
starts diverging from a Poissonian and the distribution
progressively changes until reaching a Wigner-Dyson dis-
tribution, see Fig. 1 panel (d). Between both regimes we
see that there is a range of strengths of the impurity that
leads the system into a kind of intermediate state, as the
ones seen in Fig. 1 panel (b). The average of the ratios of
level spacings gets values in between the expected ones
for a Poisson and a Wigner-Dyson.
Once the chaotic regime is achieved, the system does not
remain there forever. If we continue increasing ε, the sys-
tem returns to the non-chaotic behaviour. The external
magnetic field tries to align the spin where it is located.
When that external interaction is large enough to make
the interaction between the spin where it is applied and
its neighbours negligible, we can consider that that spin
has no other choice but to be parallel to the external field
and the system loses the chaoticity. When the strength
of the impurity becomes much bigger than the interac-
tion between neighbours, then the chain is broken in two
[1]. We can see in Fig. 4 (a) the evolution of the average
magnetization, for a given intensity of the defect, of the
7th spin in the ground state, and notice that this mag-
nitude converges to 〈Ŝz〉 = ~/2. If we set the restriction
that the 7th spin must always point up, then for all the
values of the strength we do obtain 〈r〉 = 0.37940, what
lets us verify the last discussion. If the 7th spin is always
polarized in the same direction, then the strength does
not affect the system. Since the 6th and 8th spins no
longer influence the 7th one, and they can not interact
between them, then we can consider the system is formed
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FIG. 4: (a) Dependence on the strength of the impurity, ε,
located at the 7th site of the chain of the magnetization of
that spin (for the ground state). (b) Dependence on ε of
the maximum gap (energy difference between eigenstates) of
each spectrum. (c) Representation of the eigenvalues, for 2
different strengths of the impurity, in terms of its index (they
are ordered in increasing values). (d) Magnetization of the
7th spin for all the excited states of the system.

by 2 chains, one of 6 spins, and another of 7 spins.
For different intensities we can represent the spectrum
just by plotting all the eigenvalues as a function of the
spectral index, see Fig. 4 panels (c) and (d). Then we
can notice that, for ε ' 3.3, a considerable large gap
appears just in a third of the spectrum. When it hap-
pens we can see that the spectrum is divided in two sets
of eigenvalues that have similar shapes. We can study
the evolution of the maximum gap in the spectrum as
a function of the impurity strength, see Fig. 4(b). Be-
low strengths of ε ' 3.3, the maximum gap is smaller
than the order of J . Above that value, the maximum
gap of all the spectrum increases linearly with ε as
f(ε) = (1.99476 ± 0.00017)ε − (7.0787 ± 0.0012) (with
a correlation coefficient of R2 = 0.9999996) . By plot-
ting the magnetization for each eigenstate, for a given
strength, we can notice that this term corresponds to the
amount of energy required in order to flip the spin from
up to down, see Fig. 4 panel (d), 2εJ .
The ground state for a chain with a large ε has the
7th spin pointing up. All the configurations that have
this spin pointing down, for these strengths, are excited

states. We can notice that the first set of eigenstates, see
figure 4 (d), contains every state that have the 7th spin
pointing up, while the second set has that spin point-
ing down. We have 2/3 of combinations with the spins
pointing down and a third pointing up, as seen in Fig. 4
(d). The index where the gap appears is the fraction of
eigenstates that have the spins pointing up,

igap =
Nup
L

(
L

Nup

)
=

(L− 1)!

(Nup − 1)!(L−Nup)!
. (15)

V. SUMMARY & CONCLUSIONS

We have studied some notions about quantum chaos on
a chain of spins induced by the presence of an impurity
that only affects on one site of the chain. A regular chain
can suffer a transition to chaos if we set the strength of
the impurity properly.
We have considered a well known spin model, the XXZ
model. By introducing a perturbation, i.e. an impu-
rity, on one of the spins we have been able to character-
ize the transition from an integrable regime to a chaotic
one. Interestingly, as the strength of the magnetic field
associated to the impurity is increased further, the sys-
tem turns integrable again. This has been explained by
noting, in that case, that the perturbed spin gets pinned
and the system divides in two similar to the original XXZ
chain. When the intensity of the impurity is large enough
to fix an spin, it can not be considered only as a pertur-
bation. Thus, we conclude that an appropriate range
for the strength of the impurity, in order to study the
chaoticity of spin chains, is |ε| <∼ 1. For the same reason
we must avoid locating the impurity at the edges and the
center of the chain.
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A 100, 013603 (2019).

[6] J. Vahedi, A. Ashouri, and S. Mahdavifar, Chaos: An
Interdisciplinary Journal of Nonlinear Science 26, 103106
(2016).

Treball de Fi de Grau 5 Barcelona, June 2020


