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RESUM

En aquesta tesi, estudiarem les propietats físiques de diversos sistemes de pocs bosons ultrafreds

depenent de les interaccions entre els seus constituents. Avui dia, a nivell experimental, es té un

gran control sobre la geometria i les interaccions entre les partícules, fet que fa aquest sistemes

excel·lents per comprovar de forma directa els principis de la mecànica quàntica. Un punt d’interès

és comprovar l’evolució de les seves propietats amb el nombre de partícules. L’estudi teòric d’aquests

sistemes pretén entendre a nivell microscòpic els resultats experimentals actuals i donar suport pels

nous avenços experimentals.

El mètode que farem servir serà la diagonalització exacta del hamiltonià del sistema. Com

veurem, malgrat les millores que es poden implementar, ens trobarem amb la limitació de no poder

estudiar sistemes de més d’unes quantes partícules. Els avantatges d’aquest mètode són diversos.

En primer lloc, podrem obtenir no només l’estat fonamental del sistema sinó que també els primers

estats excitats. En segon lloc, el mètode és variacional i sabem que convergeix cap a la solució

exacta a mesura que ampliem l’espai de Hilbert en que diagonalitzem. A més a més, en tenir accés

als estats del sistema, podem calcular qualsevol quantitat observable que sigui d’interès.

Primerament, estudiarem un sistema de bosons sense espín atrapats en un potencial harmònic

bidimensional. L’efecte de la trampa és de mantenir el sistema lligat. En haver-hi una interacció

repulsiva, veurem com canvia l’espectre d’energia del sistema i també altres propietats. Per ex-

emple, la seva densitat, que habitualment es pot mesurar, i també la funció de distribució de dos

cossos, que va íntimament lligada a l’existència de correlacions.

Tot seguit, ens centrarem en el cas particular de tenir només dos bosons en el sistema interaccio-

nant a través d’una gran força repulsiva. Inspirats pel cas unidimensional en que té lloc el fenomen

de la fermionització en el limit d’interacció molt forta, estudiarem si en el cas bidimensional hi

queda cap reminiscència d’aquest efecte. En altres paraules, analitzarem si hi ha propietats dels

dos bosons fortament interactuants en dues dimensions que siguin com les de fermions no interac-

tuants en el mateix sistema.

A continuació, tractarem el fenomen de la localització en un sistema unidimensional en el qual

hi ha un potencial extern de tipus speckle que introdueix desordre en el sistema. Veurem que la

localització és un fenomen robust en front de les interaccions repulsives.
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Per últim, estudiarem la influència de l’espín-òrbita en un sistema de bosons amb dues com-

ponents de pseudoespín, associades, per exemple, a dos nivells hiperfins, atrapats en un potencial

harmònic bidimensional. Presentarem un anàlisi exhaustiu dels efectes conjunts de la interacció i

l’espín-òrbita en l’espectre i en les propietats del sistema. En particular, mostrarem l’existència

d’un encreuament en l’estat fonamental del sistema susceptible de ser identificat experimentalment.



ABSTRACT

In this thesis, we study the physical properties of several ultracold few-boson systems depending on

the interactions between their constituents. Nowadays, experimentally, it is possible to have great

control over the geometry and the interactions between the particles, making them an excellent

setup to directly test the principles of quantum mechanics. A very interesting point is to study the

evolution of their properties with the number of particles. The theoretical study of these systems

pretends to understand microscopically the current experimental results and give support to new

experimental developments.

The method that will be used is the exact diagonalization of the Hamiltonian of the system.

As we will see, in spite of the attempts to improve it, the method is limited by the fact that, in

practice, it is only useful to study few-particle systems. The method has several advantages. First

of all, one has access to both the ground and the excited states. In second place, the method is

variational and converges to the exact solution as long as the Hilbert space in which we diagonalize

is enlarged. Moreover, since we have access to the states of the system, it is possible to calculate

any observable quantity of interest.

First, we will study a system of spinless bosons trapped in a two-dimensional harmonic potential.

The effect of the trap is to keep the system bound. It will be seen how the presence of a repulsive

interaction changes the energy spectrum and other properties of the system. For instance, the

density profile, which is usually measurable, and also the two-body distribution function, which is

intimately related to the existence of correlations.

Afterwards, the focus will be on the particular case of having only two bosons in the sys-

tem interacting through a strong repulsive force. Inspired by the one-dimensional case where the

fermionization phenomenon takes place in the strongly-interacting limit, we will study whether in

two dimensions there is a resembling reminiscent effect. In other words, we will analyze if there are

properties of the two strongly-interacting bosons in two dimensions that are like the ones of two

noninteracting fermions.

After that, we will tackle the localization phenomenon in a one-dimensional system that is

caused by an external speckle potential that introduces disorder in the system. We will show that

the localization is a robust phenomenon against repulsive contact interactions.
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Finally, we will study the influence of the spin-orbit coupling in a system of bosons with two

possible pseudospin components, associated, for instance, to two hyperfine levels, confined in a

two-dimensional harmonic trap. We will present an exhaustive analysis of the combined effects of

the interaction and the spin-orbit coupling in the spectrum and the properties of the system. In

particular we will show the existence of a crossover in the ground state of the system susceptible

to be experimentally identified.



Chapter 1

INTRODUCTION

The main goal of this doctoral thesis is to study the effect of interactions in ultracold few-boson

systems. In particular, four topics are analyzed: i) the formation of quantum correlations between

the particles; ii) the fermionization of interacting bosons in two dimensions; iii) the few-body local-

ization in a one-dimensional system with a speckle potential; and iv) spin-orbit coupling effects in

interacting ultracold bosons in a two-dimensional harmonic trap. From a theoretical point of view,

ultracold means that the temperature is fixed at absolute zero, thus temperature effects are not

considered. We are interested in the ground state and the low-energy spectrum of these systems.

To this aim, we have developed an exact diagonalization method that allows to obtain their eigen-

states and eigenenergies. In addition, we have performed perturbative and variational calculations

with trial correlated wave functions to enlighten the physics of these systems.

A major motivation to study ultracold atomic systems is the rapid experimental advances in

the field. In particular, it is noticeable the high control that the experimentalists have over the

geometry and interactions between the particles. Presently, the strength of the interactions has

a wide range of variation, from being attractive to repulsive by using Feshbach resonances [1].

Traditionally, weak interactions have been treated in mean-field approximations [2]. However,

strongly-interacting regimes present in current experiments generate correlations beyond mean

field. The proper theoretical description of these systems requires the use of sophisticated many-

body methods [3], which serve to understand the structure of the system and also to propose new

experiments.

Atoms are usually prepared in a trap, that is engineered using magnetic and optical fields. In

particular, the use of optical laser fields have opened up many possibilities. That makes possible

1



2 Chapter 1. Introduction

to create different trapping potentials. For instance, with two counter-propagating beams forming

a standing wave an optical lattice is built [4]. Moreover, with appropriate laser configurations and

taking advantage of the fact that the intensity of the laser is tunable, the atoms can be arranged in

an effective one- or two-dimensional system, just tightly confining them in the desired directions [5].

In addition, the variety is also reflected in the fact that both fermionic and bosonic species are

experimentally available and one can explore different statistics, including mixtures.

Apart from the experimental advances in the preparation and manipulation of these systems, a

significant achievement is the improvements to measure their properties. Nowadays, the detection

of single atoms is a reality [6] with a high resolution, by detecting its fluorescent emitted light. For

instance, this allows to directly measure two-body correlations between atoms. It is also relevant

the control over the number of particles, which allows to study quantum properties of few-body

systems [7]. The interpretation and analysis of these experiments make necessary the theoretical

microscopic calculations of these systems [8].

Another important feature of ultracold atomic systems is that they are sufficiently isolated to

maintain quantum coherence. Therefore, time-evolution studies in these systems are performed

and there are efforts to use that in the implementation of quantum protocols to efficiently produce

interesting states for potential applications [9, 10].

In short, there are multiple reasons to consider ultracold atoms an excellent platform to study

quantum systems. In particular, an interesting idea is to use them as quantum simulators [11,12].

Quantum simulators are quantum systems that are prepared and controllable in the laboratory

which can be used to describe (simulate) an analogous system whose properties are impossible to

calculate.

The thesis is organized as follows. In Chapter 2, we introduce the formalism and explain in

detail the diagonalization method and the improvements that we have proposed to optimize the

Fock space and obtain reliable results with reduced Hilbert spaces. In Chapters 3–6, we report

and discuss the main results obtained in each studied system. Below, we introduce these systems.

Finally, the conclusions and summary of this thesis are found in Chapter 7.

Chapter 3 is mostly based on the article [13], published in Physical Review A. In this paper,

we studied the properties of two, three, and four identical bosons interacting through a finite-range

interaction confined in a two-dimensional isotropic harmonic trap.

The problem of a particle trapped in a harmonic trap is one of the best-known quantum systems.

Going from a single particle to a system composed of N interacting particles is, however, far more

involved. Interestingly, recent advances in ultracold-atomic gases have opened the possibility of

studying systems of a few atoms, either fermions or bosons, trapped in potentials of different
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kinds [7, 14–16].

For the bosonic case, there have been very interesting results in one dimension, where the

fermionization of the bosonic gas was recognized by Tonks and Girardeau [17] for the case of in-

finitely repulsive bosons and later confirmed experimentally in ultracold atomic gases [18,19]. There

are many works studying fermionization in one dimension, for instance, in optical lattices [20], in

few-atom mixtures [21–23], for attractive interactions [24] and for few dipolar bosons [25]. In other

cases, the focus is on quantum correlations [26, 27] and their effects in mixtures of distinguishable

and identical particles [28] or in the construction of analytic ansatzes to capture the physics in all

interaction regimes [29].

The case of two particles with contact interactions was considered in one, two, and three di-

mensions in Ref. [30]. There, they obtained semianalytic results, finding the energies and wave

functions as a solution of transcendental equations. More general cases of few-body systems have

been studied mostly in three dimensions; see Ref. [8] and references therein.

In two dimensions, semianalytical approximate solutions to the case of two bosons with finite

range interactions have been presented in Ref. [31]. Other two-dimensional works include two- and

three-body exact solutions for fermions and bosons with contact interactions [32], fast-converging

numerical methods for computing the energy spectrum of a few bosons [33], the study of finite-

range effects [34,35] and universality [36–39], condensation in trapped few-boson systems [40], and

interacting few-fermions systems [41, 42].

In this Chapter, we study with exact diagonalization the energy spectrum for the two-, three-,

and four-boson systems depending on the interaction strength. The analysis is completed by using

perturbation theory for weak interactions and it is extended to the strongly-interacting regime by

introducing correlated variational ansatzes. In particular, we focus on the formation of correlations

and explain the breaking of degeneracies in the energy spectrum. In addition, we characterize the

ground state of the system by means of computing some representative properties, i.e., the different

energy contributions, the density profile, the condensed fraction and the pair-correlation function.

In Chapter 4, we have revised and extended the contents of the article [43], published in Con-

densed Matter. In this paper, we compared the numerical calculations for the ground state of two

interacting bosons in two dimensions with a short-range interaction with the properties obtained

from the analytical wave functions that describe two noninteracting bosons, two noninteracting

fermions, and the corresponding symmetrized wave function. The main purpose is to show if some

of the properties of the interacting two-boson system resemble the noninteracting fermionic ones.

In one dimension, the Bose–Fermi mapping [17] theorem relates the ground state energy and the

wave function of strongly interacting bosons with those corresponding to noninteracting fermions

in the same trapping potential. Several works have discussed the onset of the Tonks–Girardeau
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regime in one dimension [14, 15, 18–30,44–46].

In contrast, in two or more dimensions, the theorem does not apply. However, the emergence

of correlations between the particles due to the repulsive character of the interaction that we have

found in the previous Chapter encourages us to study further the properties of the two-body system.

Therefore, we have performed an exhaustive study of the possible existence of a certain mapping

between bosons and fermions in two dimensions.

In this Chapter, we have carried out calculations using explicit variational wave functions that

allow to understand the mechanism [47] that the particles use to avoid the repulsive interactions

and to discuss the similarities and differences compared with the one-dimensional case.

Chapter 5 is based on the article [48], published in Physical Review A. Since Anderson’s 1958

seminal article [49], it is known that disorder can induce localization of noninteracting quantum

particles. If and when Anderson localization can be stable against inter-particle interactions has

been an outstanding open question ever since [50–52]. In recent years, this question has been

addressed in many theoretical articles, putting forward the theory of so-called many-body local-

ization [53, 54]. This phenomenon is expected to occur in isolated one-dimensional systems with

disorder.

While some previous theoretical predictions on many-body localization, based mostly on per-

turbative calculations, considered continuous-space models [53–56], most numerically-exact simu-

lations considered one-dimensional discrete-lattice models within the tight binding formalism. In

fact, whether many-body localization can occur in a continuum is still a controversial issue. In

Ref. [57], it is claimed that many-body localization can occur even in continuous-space systems if

the (non-deterministic) disorder is in the impurity limit, but it might be unstable if the correlation

length of the disorder is finite. Ref. [58], instead, states that many-body localization cannot occur

at all in a continuum. On the other hand, the continuous-space simulations of Ref. [59], which

considered fermionic atoms in a quasi-periodic (hence, deterministic) potential and were based

on time-dependent density functional theory within the adiabatic approximation, displayed one

of the experimental hallmarks of many-body localization, namely the long-time persistence of an

initially imprinted density pattern. This phenomenon has indeed been observed in the cold-atom

experiments on many-body localization [60–62]. Resolving this controversy is essential. In this

Chapter, we shed some light on this issue, considering a few-body setup. Specifically, it describes

bosonic atoms in a one-dimensional continuum, interacting via a repulsive zero-range interaction.

The atoms are exposed to the spatially correlated random potential corresponding to the disorder

pattern that is generated when an optical speckle field is shone onto the atomic cloud. Due to

the higher computational cost of continuous-space models, we focus on one-, two-, and three-boson

systems. The main goal of our analysis is to verify whether localization is stable against the re-
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pulsive contact inter-particle interaction, meaning that many-body localization can be observed in

a few-body setup. Indeed, many-body localization has recently been experimentally identified for

relatively small systems of eight atoms [63]. Previous theoretical studies investigated interaction

effects in continuous-space bosons within the Gross-Pitaevskii theory [64, 65].

In this Chapter, we do an intensive use of the diagonalization method to find the spectrum and

perform a statistical analysis of the energy levels over different speckle potentials to elucidate on

the presence of localized states.

Chapter 6 is based on the article [66], which has been submitted for publication to Physical

Review A. We make use of analytical approaches and numerical diagonalization techniques in order

to describe the trapped single-particle and two-boson systems in the presence of Rashba spin-orbit

coupling.

Spin-orbit coupling in ultracold atoms [67–72] has been an issue of great interests in the last

years in the atomic physics community. Since the first experiment was carried out successfully [73]

dressing the atoms with two Raman lasers, many other works were performed. For example,

studying temperature effects [74] or engineering the spin-orbit coupling in alternative ways: with a

gradient magnetic field [75]; and within optical lattices [76–78]. Interesting phenomena have been

observed in spin-orbit coupled systems, for instance, a negative effective mass [79].

In the absence of a confining potential, in a homogeneous system, the single-particle energy

dispersion relation is simple and the Hamiltonian is solvable in momentum space in the presence of

spin-orbit coupling. In that case, and at zero temperature, for the many-body system two phases

were predicted in Ref. [80], the plane wave phase and the standing wave phase. The transition

from one phase to the other was characterized depending on the inter and intraspecies interactions

between the atoms. Further studies exploring the phase diagram of spin-orbit coupled Bose-Einstein

condensates have been done within a mean-field description [81], studying the stability of the system

in the presence of quantum and thermal fluctuations [82–86].

However, in the presence of a confining harmonic trap, the situation is fairly different due to

the introduction of a new characteristic length and the fact that the momentum is no longer a

good quantum number. At the single-particle level, even when the spin-orbit coupling is strong,

the spectrum remains discrete, forming a Landau-level-like structure [87–91], which is altered when

the trap is anisotropic [92, 93]. At the mean-field level, more phases, like a half-quantum vortex

state, are found in the trapped system [87–89,91, 94–96].

The inclusion of interactions between the atoms adds an additional challenge, specially in the

strongly interacting regime [97–100], where quantum correlations are expected to dominate the

physics [101]. Under these circumstances, it is evident that microscopic methods that go beyond

mean field are required [102]. In this sense, the exact diagonalization provides a good tool to unveil
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the nature of the correlations present in the system. We derive the virial theorem in the presence of

spin-orbit and also check its fulfillment as a proof of the accuracy of the results. The contributions

to the total energy of the different parts of the Hamiltonian serve to understand the interplay of

the spin-orbit and the interaction terms. Moreover, the density profile of the system is also notably

affected by the correlations.



Chapter 2

METHODOLOGY AND FORMALISM

The methods used in this thesis to unveil the nature of the different few-boson systems considered

are analytic perturbation theory, variational Monte Carlo and exact diagonalization. In general,

perturbative expansions only work for fairly small interactions and rarely capture the correlations

appearing in the system. They are developed specifically for some of the problems considered. In

Chapters 3 and 4, variational Monte Carlo methods are employed with a multiparametric wave

function. In this way, fairly good upper bounds for the ground-state energy are obtained together

with a clear physical interpretation of the results. The variational Monte Carlo method only

allows us to study ground-state properties. To go beyond that, we resort to exact diagonalization

techniques in Chapters 3, 4, 5, and 6. For this purpose, we make use of the ARPACK library

that implements the Lanczos algorithm, that allows to find the lowest eigenvalues of a matrix and

their corresponding eigenvectors. In general, the systems that we consider are described in a Hilbert

space of infinite dimension. For this reason, the diagonalization in a finite Hilbert subspace provides

approximations to the eigenstates and eigenenergies of the Hamiltonian. The method relies on the

convergence of the approximate values to the exact ones by increasing the dimension of the Hilbert

space in which the diagonalization is performed. In any case, the resulting eigenenergies are upper

bounds to the exact ones because for any size of the subspace the method keeps its variational

properties. After the diagonalization, due to the fact that we obtain also the eigenstates of the

system, in principle, we have access to any observable quantity that can be computed numerically.

In the following sections, the second-quantized formalism used to implement the diagonalization

method in a truncated Hilbert space is extensively explained. First of all, in Sec. 2.1, we present the

general form of the Hamiltonians that are found in the other Chapters. After that, in Sec. 2.2, we

introduce the Fock states that are built populating single-particle states with bosons and describe

7
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how the many-body basis is constructed in Sec. 2.3. Later on, in Sec. 2.4, we discuss the degeneracies

of the system in the noninteracting limit and their consequences when we increase the number

of particles. Finally, we introduce the basis employed for both the two-dimensional and one-

dimensional systems of bosons in Sec. 2.5 and Sec. 2.6, respectively.

2.1 The second-quantized Hamiltonian of a system of interacting

bosons

In general, the Hamiltonian is decomposed in two pieces,

Ĥ = Ĥ0 + Ĥint . (2.1)

In order to write explicitly each part of the Hamiltonian, we introduce the following creation and

annihilation operators, âi and â†j , associated to a single-particle basis, that fulfill the commutation

relations

[âi, â
†
j ] = δij ,

[âi, âj ] = [â†i , â
†
j ] = 0 .

(2.2)

The symmetry of the full system of bosons under the exchange of any pair of particles is guaranteed

by these commutation relations. All in all, this procedure is equivalent to the use of symmetrized

wave functions for bosons in the first-quantization formalism. The subindex i of an operator

indicates in which single-particle state, |ψi〉, the bosons are created or annihilated. The set of

states {|ψi〉}, with i = 1, 2, ... , form an orthonormal basis of the single-particle Hilbert space.

The first piece of the Hamiltonian in Eq. (2.1) corresponds to the single-particle part,

Ĥ0 =
∑

i,j

ǫij â
†
i âj . (2.3)

The coefficients ǫij depend on the single-particle basis chosen and are computed as

ǫij = 〈ψi| Ĥsp |ψj〉 , (2.4)

where Ĥsp is the Hamiltonian of the single-particle system. Eventually, one can use a basis where

Ĥ0 is diagonal.

The second piece,

Ĥint =
1

2

∑

i,j,k,l

vijkl â
†
i â

†
j âkâl , (2.5)

is the interaction part. In the present work, we consider two-body interaction potentials, v̂, in all

cases. Consequently, Ĥint is a two-body operator. In this case, the interaction coefficients are given

by the two-body matrix elements:

vijkl = 〈ψi| 〈ψj | v̂ |ψk〉 |ψl〉 . (2.6)
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The formalism described in this section is applicable to any system of identical bosons with two-

body interactions, regardless of the dimension of the real space or the internal degrees of freedom of

the particles. In particular, in next Chapters, we will study one-dimensional and two-dimensional

systems. The explicit forms of the single-particle Hamiltonian and the two-body potential will be

given in each particular case, together with the considered single-particle basis.

2.2 The many-body Fock space

Once the single-particle basis is selected, the next step is to fix the number of states of this basis.

In other words, we truncate the basis so that only the first M states, |ψ1〉 , ... , |ψM 〉, in order of

increasing energy, ǫii, given by Eq. (2.4), are kept. Those chosen single-particle states are the ones

that the bosons are allowed to populate. Notice that the truncation is based on an energy criterion

as long as the focus of our interest is on the lowest-energy physics of the systems. This truncation

is reflected in the Hamiltonian by the fact that the sums run over a finite number of single-particle

states; Eqs. (2.3) and (2.5) are replaced, in practice, by:

Ĥ0 =

M
∑

i,j=1

ǫij â
†
i âj , (2.7)

and

Ĥint =
1

2

M
∑

i,j,k,l=1

vijkl â
†
i â

†
j âkâl, (2.8)

respectively.

The Fock states are constructed by adding particles to the vacuum state, |vac〉 ≡ |0, ... , 0〉. In

terms of creation operators, they are defined as

|n1, ... , nM 〉 ≡ (â†1)
n1 . . . (â†M )nM

√
n1! ... nM !

|vac〉 , (2.9)

where ni is the number of bosons populating the single-particle state |ψi〉. The factor 1/
√
n1! ... nM !

ensures that they are normalized to unity and orthogonal to each other:

〈n′1, ... , n′M |n1, ... , nM 〉 = δn′
1,n1

· · · δn′
M ,nM

. (2.10)

In all cases, we consider a fixed number of particles, N . Accordingly, the quantum numbers in each

Fock state are constrained by the conservation of the total atom number,

M
∑

i=1

ni = N. (2.11)

The connection between Fock states and their equivalent first-quantized representation is shown

in the following examples. For instance, the Fock state |Ψ〉 = |N, 0, ... , 0〉, would be written in first-

quantized notation as the product state |Ψ〉 = |ψ1〉 · · · |ψ1〉 = |ψ1〉⊗N . A more illustrative example,
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where the second-quantization formalism simplifies the notation, is considering the Fock state |Ψ〉 =
|N − 1, 1, ... , 0〉. In first-quantized notation it would be written as |Ψ〉 = 1√

N
(|ψ2〉 |ψ1〉 · · · |ψ1〉 +

|ψ1〉 |ψ2〉 |ψ1〉 · · · |ψ1〉 + ... + |ψ1〉 · · · |ψ1〉 |ψ2〉), as we need to take into account the symmetric

character of the state under the exchange of two particles.

The action of creation and annihilation operators on a Fock state is the following:

â†i |n1, ... , nM 〉 =
√
ni + 1 |n1, ... , ni + 1, ... , nM 〉 ,

âi |n1, ... , nM 〉 = √
ni |n1, ... , ni − 1, ... , nM 〉 .

(2.12)

The Fock states are our starting point before setting the many-body basis of our many-body

Hilbert space. The conventional approach [103] uses all Fock states for the N -boson system and

M single-particle states. That results in a Hilbert space of dimension

DM
N =

(M +N − 1)!

(M − 1)!N !
, (2.13)

which, for instance, in the cases N = 2, 3, and 4, gives, respectively,

DM
2 =

M(M + 1)

2
,

DM
3 =

M(M + 1)(M + 2)

6
,

DM
4 =

M(M + 1)(M + 2)(M + 3)

24
.

(2.14)

Notice that, even for a system of few bosons, the dimension of the Fock space grows rapidly

with M . In our calculations, we need to increase M in order to obtain well-converged results in the

presence of interactions between the particles. In practice, this issue is a real problem, because our

computational resources in terms of memory and computational time are finite. However, we will

show in the following section how to construct the many-body basis so that with smaller Hilbert

spaces we are able to have well-converged results.

2.3 The many-body Hilbert space basis

For systems of more than one particle, we are usually interested in the lowest-energy physics.

Consequently, we will consider Fock states with a noninteracting energy smaller than a given

maximum energy of the noninteracting system. More precisely, for each Fock state, we compute

the energy

E|n1, ... ,nM〉 = 〈n1, ... , nM | Ĥ0 |n1, ... , nM 〉 =
M
∑

i=1

ǫii ni. (2.15)

Following the approach in Ref. [104], the many-body basis is set by taking the Fock states whose

energy, E|n1, ... ,nM 〉, is lower than a given cutoff, Emax. Namely, we use the following energy criterion:

E|n1, ... ,nM 〉 6 Emax, (2.16)
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in order to truncate the many-body Hilbert space. The efficiency of the method for the description

of the lowest part of the spectrum is also shown in Ref. [104]. In fact, one can use smaller Hilbert

spaces without spoiling the quality of the results.

To better understand the procedure, it is more convenient to express the criterion in terms

of noninteracting excitation energies in order to relate the truncation of the single-particle basis,

determined by M , to the truncation of the many-body basis. For this purpose, we use the Fock

state with less energy, the state |N, 0, ... , 0〉, to establish an energy reference and rewrite (2.16) as

Eexc
|n1, ... ,nM 〉 6 Eexc

max, (2.17)

where Eexc
|n1, ... ,nM 〉 = E|n1, ... ,nM 〉−E|N,0, ... ,0〉 and Eexc

max = Emax −E|N,0, ... ,0〉. The number of single-

particle modes, M , used is the minimal one that is required in order to include the Fock states

that accomplish the energy criterion in (2.17). Therefore, the truncation of the many-body basis

determines the truncation of the single-particle basis. The Fock state with the largest energy that

is included is the state |N − 1, 0, ... , 1〉, with only one particle in the M th mode. Consequently, its

excitation energy is the maximum one reached,

E|N−1,0, ... ,1〉 − E|N,0, ... ,0〉 = ǫMM − ǫ11 = Eexc
max, (2.18)

that is used to find the value of M once Eexc
max is fixed. The explicit dependence of ǫMM on M is

determined by the particular choice of the single-particle basis.

2.4 Degeneracies of noninteracting systems and many-body Hilbert

space dimension

In this section, we determine the many-body Hilbert space dimension when it is constructed fol-

lowing the procedure described above. In the present section, we consider the single-particle basis

formed by the set of eigenstates of Ĥsp, so the single-particle part of the Hamiltonian is diagonal,

Ĥ0 =

M
∑

i=1

ǫi â
†
i âi, (2.19)

and ǫi is the eigenenergy corresponding to the single-particle state |ψi〉. Then, at the many-body

level, the Fock states are eigenstates of Ĥ0, so they are the eigenstates of the noninteracting system

of bosons,

Ĥ0 |n1, ... , nM 〉 =
M
∑

i=1

ǫi ni |n1, ... , nM 〉 = E |n1, ... , nM 〉 , (2.20)

where E =
∑M

i=1 ǫi ni.
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The arguments presented above would also hold if Ĥ0 is not diagonal, since we can always write

it as a diagonal part plus a non-diagonal one,

Ĥ0 = Ĥd
0 + Ĥnd

0 , (2.21)

with Ĥd
0 =

∑M
i=1 ǫii â

†
i âi, and Ĥnd

0 =
∑M

i 6=j,j=1 ǫij â
†
i âj. Then, the discussion would refer to Ĥd

0 and

its eigenstates, despite the fact that it would not describe all the effects present in the noninteracting

system.

In general, using the method of building the many-body basis described previously, we do not

know an expression, analogous to Eq. (2.13), that tells us the Hilbert space dimension given the

number of bosons N and the number of single-particle modes M . The reason is that we have to care

about the single-particle energies and their degeneracies that, together with the bosonic statistics

of the many-body states, determine the degeneracies of the many-body states. However, we can

state some general characteristics, distinguishing two possible situations, before we concentrate on

specific cases.

The first situation is when the first single-particle state of the basis, |ψ1〉, that has the smallest

energy ǫ1, is non-degenerate with the others. We assume that other degeneracies of the energies

might be present for the rest of the states of the single-particle basis but the number of degenerate

states is always finite. With these conditions, the Fock state |N, 0, ... , 0〉 is the non-degenerate

ground state of the noninteracting system, that we label with KE = 0. The higher-energy states

of the many-boson system can be degenerate, and we label with KE each manifold of degenerate

excited states, with KE = 1, 2, ... . The number of degenerate states in each manifold, dKE
, has

a maximum dmax
KE

, that is reached when the total number of bosons, N , is equal or larger than a

particular value, NKE
, that depends on the manifold.

Theorem 2.1. dKE
= dmax

KE
⇐⇒ N > NKE

Proof. From left to right, the excited states are obtained by promoting particles to higher-energy

modes. Since the number of degenerate single-particle states is finite, there is a finite number

of ways to populate states with bosons and obtain the same energy E. Consequently, there is a

maximum value for the number of degenerate states. If the maximum degeneracy is reached, the

number of bosons of the system has to be sufficiently big in order to include all possible combinations

of populating single-particle states that build Fock states with the same energy. From right to left,

if the number of bosons is sufficiently large, increasing it does not change the degeneracy of a given

manifold, since it does not introduce new possible ways of arranging the bosons and obtaining the

same energy but the old ones remain there. Therefore, we have reached the maximum degeneracy

in that energy manifold.
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The main feature of this kind of systems is that the degeneracy of the lowest-energy states is

independent of the number of particles of the system if this number is above a certain value.

The second situation is found when the first single-particle state of the basis, |ψ1〉, is degenerate

with one or more states. In this case, the previous theorem (2.1) is not applicable. For instance,

when |ψ1〉 and |ψ2〉 are degenerate, then all Fock states of the form |N − k, k, 0, ... , 0〉, with k =

0, ... , N , are degenerate, so the degenerate ground-state subspace of the noninteracting system,

in this case, has dimension N + 1. In a more general scenario, where the first M0 single-particle

states, |ψ1〉 , ... , |ψM0〉, are degenerate, all the Fock states of the form |n1, ... , nM0 , 0, ... , 0〉 become

degenerate and, as a result, the degeneracy of the ground state subspace is (M0+N−1)!
(M0−1)!N ! . In this kind

of systems, as the number of particles increases, so does the degeneracy of the ground state. The

lowest-energy physics in this situation is explained, without interactions, by bosons populating only

the first M0 single-particle states, basically, and this effect would be more notorious in the case of

increasing the number of particles.

In the following sections, we explicitly consider practical situations, that we use for our cal-

culations in the next Chapters. We will see that in some cases we are able to derive an analytic

expression for the dimension of the truncated many-body Hilbert space.

2.5 Many-boson basis in a two-dimensional harmonic trap

In this section, we present the basis that is used in Chapter 3. The single-particle Hamiltonian for

a particle of mass m in a two-dimensional isotropic harmonic trap of frequency ω is

Ĥsp =
1

2

(

p̂2x + p̂2y
)

+
1

2

(

x̂2 + ŷ2
)

, (2.22)

where we use harmonic oscillator units, i.e., energies in units of ~ω, lengths in units of
√

~/(mω),

and momenta in units of
√
~mω. Their eigenstates are |ψi〉 = |nx(i), ny(i)〉, where the index

i = 1, ... ,M runs through the pair of quantum numbers nx and ny, that take the values 0, 1, ... .

The corresponding eigenenergies are ǫi = nx(i)+ny(i)+1. In the position representation, the wave

functions associated to the states, ψi(x, y), are written as

ψi(x, y) = NnxNnyHnx(x)Hny(y)e
−x2+y2

2 , (2.23)

with Hn(x) the Hermite polynomials and the normalization constant

Nn =

(

1√
π2nn!

)1/2

. (2.24)

Thus, the creation and annihilation operators, â†i and âi, create and destroy bosons in the

previous states, |nx(i), ny(i)〉. The Hamiltonian of the noninteracting many-boson system is

Ĥ0 =

M
∑

i=1

(nx(i) + ny(i) + 1) â†i âi , (2.25)



14 Chapter 2. Methodology and formalism

Eigenstates E NE dNE

|N, 0, ... , 0〉 N 0 1

|N − 1, 1, 0, ... , 0〉
|N − 1, 0, 1, 0, ... , 0〉 N+1 1 2

|N − 1, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 2, 2, 0, ... , 0〉 N+2 2 6

|N − 2, 0, 2, 0, ... , 0〉
|N − 2, 1, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 1, 0, 0, 0, 0, 0, 0, 0, 1, 0... , 0〉
|N − 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ... , 0〉
|N − 2, 1, 0, 1, 0, ... , 0〉
|N − 2, 0, 1, 1, 0, ... , 0〉
|N − 2, 1, 0, 0, 1, 0, ... , 0〉
|N − 2, 0, 1, 0, 1, 0, ... , 0〉 N+3 3 14

|N − 2, 1, 0, 0, 0, 1, 0, ... , 0〉
|N − 2, 0, 1, 0, 0, 1, 0, ... , 0〉
|N − 3, 1, 2, 0, ... , 0〉
|N − 3, 2, 1, 0, ... , 0〉
|N − 3, 3, 0, ... , 0〉
|N − 3, 0, 3, 0, ... , 0〉

Table 2.1: Eigenstates, energy, E, excitation energy number, NE , and degeneracy, dNE
, for the low-

energy levels of a system of N > 3 noninteracting identical bosons trapped in a two-dimensional

isotropic harmonic potential. The energies are in units of ~ω.

so the energy of each Fock state is

E|n1, ... ,nM 〉 =
M
∑

i=1

(nx(i) + ny(i) + 1)ni . (2.26)

For this system, we are in the first case described above, where the Theorem 2.1 applies. The

particular feature of this system is that the eigenenergies are equispaced at both single-particle and

many-body levels. Moreover, the proof of the theorem is simpler than in the general case. That
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allows us to directly relate the minimum number of bosons required to maximize the degeneracy

to the energy of the manifold. These manifolds are labeled with the excitation energy number

NE = E − E0, with E0 = E|N,0, ... ,0〉, and the maximum number of degenerate states, dmax
NE

, is

reached when N > NE . We can rewrite the Theorem 2.1 in this particular case as follows:

Theorem 2.2. dNE
= dmax

NE
⇐⇒ N > NE

Proof. From left to right, if we have reached dmax
NE

, one of the degenerate states is the one with NE

bosons in the single-particle states with excitation energy, Esp
exc = Esp − Esp

0 = 1. Therefore, we

have N > NE bosons. From right to left, if we have N > NE bosons, we have reached the maximum

degeneracy because having less bosons would not allow us to have the previous discussed state,

which is degenerate. Adding more bosons would not increase the number of degenerate states, since

it is impossible to introduce new states with the same energy as the previous ones. This is due to

the finite ways of decomposing NE as a sum of positive integers, without considering the order,

that is, the number of partitions p(NE) [105, 106].

Therefore, the degeneracy of the first NE + 1 energy levels is independent of the number of

particles N for any N > NE . In Table 2.1, we give the low-energy states with their corresponding

energies, excitation energy numbers and degeneracies for a system of N bosons. In Table 2.2,

we give dmax
NE

for the first values of NE. Computing the maximum degeneracy is analogous to

computing the number of partitions of the integer NE where there are n+1 different kinds of part

n for n = 1, 2, 3, ..., [107] and we can obtain it from its generating function,

1
∏∞

k=1(1− xk)k+1
=

∞
∑

NE=0

dmax
NE

xNE , (2.27)

and also,

dmax
NE

=

NE
∑

k=0

p(NE − k)PL(k), (2.28)

where PL(k) are the planar partitions of k [108]. Notice that the number of partitions is a lower

bound of the maximum degeneracy,

dmax
NE

> p(NE), (2.29)

and the equality would hold for non-degenerate single-particle states, e.g. for the 1D case.

Finally, for the dimension of the truncated Hilbert space, DMB(NE), if we want to include all

the states up to the manifold Nmax
E , we can say that

DMB(N
max
E ) 6

Nmax

E
∑

NE=0

dmax
NE

, (2.30)

and the equality would hold when the number of bosons of the system accomplishes N > Nmax
E

(see Table 2.3). The number of single-particle modes required following the criterion (2.18), M , is
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E NE p(NE) dmax
NE

N 0 1 1

N+1 1 1 2

N+2 2 2 6

N+3 3 3 14

N+4 4 5 33

N+5 5 7 70

N+6 6 11 149

Table 2.2: Energy, E, excitation energy number, NE , number of partitions of the excitation energy

number, p(NE), and maximum degeneracy for the low-energy levels of a system of N noninteracting

identical bosons in a two-dimensional isotropic harmonic potential, dmax
NE

. The maximum degeneracy

is equal to the degeneracy of the level NE if and only if N > NE .

obtained summing the single-particle modes involved up to the manifold Nmax
E , knowing that the

single-particle degeneracy is (k + 1):

M =

Nmax

E
∑

k=0

(k + 1) =
(Nmax

E + 1)(Nmax
E + 2)

2
. (2.31)

2.5.1 The spinless two-boson system

For the spinless two-boson system, that is considered in Chapters 3 and 4, the degeneracy of each

energy manifold has an analytic expression (see Appendix A), that is

dbNE
= −1

3

(⌊

NE

2

⌋

+ 1

)

[

4

⌊

NE

2

⌋2

+ (2− 3NE)

⌊

NE

2

⌋

− 3(NE + 1)

]

, (2.32)

where ⌊NE/2⌋ indicates the floor function of NE/2. As a result, we can obtain an expression for

the two-body truncated Hilbert space as

D2B(N
max
E ) =

Nmax

E
∑

NE=0

dbNE
=

1

6

{

3(1 +Nmax
E )(2 +Nmax

E ) +

⌊

Nmax
E − 1

2

⌋

×
(

1 +

⌊

Nmax
E − 1

2

⌋)(

2 +

⌊

Nmax
E − 1

2

⌋)(

5 +

⌊

Nmax
E − 1

2

⌋)

+

⌊

Nmax
E

2

⌋(

1 +

⌊

Nmax
E

2

⌋)(

3 +

(

5 +

⌊

Nmax
E

2

⌋))}

.

(2.33)
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Nmax
E M DMB(N

max
E )

0 1 1

1 3 3

2 6 9

3 10 23

4 15 56

5 21 126

6 28 275

Table 2.3: Dimension of the many-body Hilbert space, DMB(N
max
E ), depending on the truncation

manifold labeled with Nmax
E , and the number of single-particle modes required, M , in a system of

bosons with N > Nmax
E .

2.5.2 The two-boson system with two pseudospin components

In the case that we consider two possible pseudospin components, as in Chapter 6, the Hilbert

space dimension of the two boson system is given by:

D2B(N
max
E ) =

Nmax

E
∑

k=0

(

3dbNE
+ dfNE

)

, (2.34)

where dbNE
and dfNE

are the spatially symmetric and antisymmetric degenerate two-particle states

in a two-dimensional harmonic trap (see Appendix A), and the factors 3 and 1 account for the

triplet and singlet states of the spin part. The number of modes required in this case is

M =

Nmax

E
∑

k=0

2(k + 1) = (Nmax
E + 1)(Nmax

E + 2), (2.35)

with Emax = Nmax
E + 2.

2.6 Many-boson basis in a one-dimensional hard-wall box

In Chapter 5, we study few-boson localization in one dimension. In this case, we construct the

many-boson basis populating the single-particle eigenstates of the Hamiltonian,

Ĥsp =
1

2m
p̂2x, (2.36)

that has only a kinetic energy term and describes a particle of mass m in a one-dimensional

box of length L with hard-wall boundary conditions centered at x = 0. The eigenstates of this

Hamiltonian are the eigenstates of the momentum operator, p̂x. Due to the boundary conditions,
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the linear momentum is quantized, as well as the energy levels of the system that are given below.

Now, we write the energies in units of ~
2/(mℓ2) and the momentum in units of ~/ℓ. Our unit

length is ℓ, so, for instance, L is written in units of ℓ. Equivalently, we are working with the wave

functions solution of the Schrödinger equation:

−1

2

∂2ψk

∂x2
= ǫkψk (2.37)

imposing the conditions that

ψk

(

−L
2

)

= ψk

(

L

2

)

= 0. (2.38)

The eigenfunctions solution of Eq. (2.37) that satisfy Eq. (2.38) have the following form,

ψk(x) =

√

2

L
sin

[

kπ

L
(x+

L

2
)

]

, (2.39)

and they are an orthonormal basis in the box, i.e.,

∫ L
2

−L
2

ψ∗
k(x)ψj(x) dx = δkj. (2.40)

Their eigenvalues, in the energy units ~
2/(mℓ2), are

ǫk =
k2π2

2L2
, k = 1, 2, 3, ... . (2.41)

In this case, the creation and annihilation operators, â†k and âk, respectively, create and destroy

bosons in the states of Eq. (2.39). The second-quantized Hamiltonian of the noninteracting many-

boson system takes the form,

Ĥ0 =

M
∑

k=1

k2π2

2L2
â†kâk , (2.42)

and the energy of each Fock state, that we use to build the many-body basis following the energy

criterion discussed in Sec. 2.3, is given by:

E|n1, ... ,nM〉 =
M
∑

k=1

k2π2

2L2
nk . (2.43)

For this system, the theorem 2.1 also applies. However, the fact that the energy levels are not

equispaced complicates the calculation of degeneracies and it is not possible to derive analytical

expressions as we did in Sec. 2.5. Replacing the explicit form of the energies of the single-particle

basis states given in Eq. (2.41) to Eq. (2.18), we find the relation between the number of single-

particle modes, M , and the maximum excitation energy, Eexc
max, of the truncation in the many-body

basis:
(

M2 − 1
) π2

2L2
= Eexc

max , (2.44)
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where, in this case, Eexc
max = Emax −Nπ2/(2L2) and, since M is a positive integer number, it can

be obtained as:

M =

⌊
√

2L2

π2
Emax −N + 1

⌋

(2.45)

once Emax is fixed.
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Chapter 3

FEW BOSONS INTERACTING IN A

TWO-DIMENSIONAL HARMONIC TRAP

The system studied in this Chapter is formed by identical spinless bosons trapped inside a two-

dimensional harmonic potential. Part of the contents of this Chapter were published in Ref. [13],

where a different methodology for the diagonalization approach was used. Some of the properties

of this system in the noninteracting case, for instance the degeneracy and its dependence on the

number of particles, were presented in the previous Chapter, in Sec. 2.5, since they were a main

ingredient in the construction of the many-body basis that we use in the present Chapter. Here,

we concentrate on determining how the introduction of a two-body interaction potential affects the

properties of the system when the strength and the range of the interaction vary.

We start, in Sec. 3.1, presenting the first-quantized form of the Hamiltonian, that can be

written decoupling the center of mass from the relative part. After that, in Sec. 3.2, we discuss the

convenience of using a two-body Gaussian potential chosen to model the atom-atom interaction.

Next, we continue analyzing the effects of the interaction going from the noninteracting limit to

the strongly-interacting one. We start, in Sec. 3.3, using first-order perturbation theory to describe

the energy-level splittings for the N -boson system. Second, in Sec. 3.4, we propose two variational

ansatzes for the ground state that capture the main effects induced by the interaction both in the

weakly- and strongly-interacting cases. Then, in Secs. 3.5 and 3.6, we focus on the two-, three-,

and four-boson systems and their low-energy spectra and eigenstates. In particular, in Sec. 3.7, we

characterize the ground state of the system computing quantities as the energy contributions to

the total energy, the condensed fraction, the spatial density profile and the two-body correlation

function.

21
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3.1 The first-quantized Hamiltonian: center-of-mass and relative

parts

The numerical diagonalization method, presented in Chapter 2, is implemented using the second-

quantization formalism. However, it is also useful to write the Hamiltonian of the system of N

interacting bosons of mass m trapped by an isotropic harmonic potential in first-quantized form,

H = H0 +

N
∑

i<j

V (|~xi − ~xj |) , (3.1)

with the noninteracting part,

H0 =
N
∑

i=1

(

− ~
2

2m
∇2

i +
1

2
mω2~x 2

i

)

, (3.2)

where ω is the trap frequency and V (|~xi − ~xj |) is a general two-body interaction potential. The

reason is that, for any number of bosons N , we can split the Hamiltonian in two parts, H =

Hcm +Hr, using Jacobi coordinates,

~R ≡ 1

N

N
∑

i=1

~xi ,

~rk ≡
√

2k

k + 1

(

~xk+1 −
1

k

k
∑

i=1

~xi

)

, k = 1, ... , N − 1 .

(3.3)

The center-of-mass and relative parts of the total Hamiltonian read, respectively,

Hcm = − ~
2

2M∇2
~R
+

1

2
Mω2 ~R 2, (3.4)

Hr =
N−1
∑

k=1

(

− ~
2

2µ
∇2

~rk
+

1

2
µω2~r 2k

)

+ Ṽ (~r1, ... , ~rN−1), (3.5)

with the definitions M ≡ Nm and µ ≡ m/2. The interaction only appears in the relative part and

takes the form

Ṽ (~r1, ... , ~rN−1) ≡
N
∑

i<j

V
(∣

∣

∣~xi(~R,~rk, ... , ~rN−1)− ~xj(~R,~rk, ... , ~rN−1)
∣

∣

∣

)

. (3.6)

Consequently, any change in the energy spectrum caused by the interaction is associated to Hr.

The center of mass decouples and its Hamiltonian (3.4) corresponds to a two-dimensional harmonic

oscillator. Therefore, the center-of-mass excitations present in the spectrum are expected to be

separated by positive integer multiples of ~ω. Moreover, the degeneracy of the center-of-mass part

is (ncm+1), where each manifold is labeled with ncm = 0, 1, ... . These properties are used to check

the convergence of our numerical results obtained by diagonalizing the truncated second-quantized

Hamiltonian, which is not split in center-of-mass and relative parts.

Notice that, in the following sections, we will use harmonic-oscillator units, i.e., energies in

units of ~ω, lengths in units of
√

~/(mω), and momenta in units of
√
~mω.
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3.2 The interaction potential

In usual ultracold atomic gases experiments, the atom-atom interactions are well approximated by a

contact potential [109]. An appropriate way of modeling this potential in a two-dimensional system

is considering a regularized delta potential. In particular, for two particles in a harmonic trap, the

problem of solving the Schrödinger equation with this model potential has an analytic solution [30].

However, for numerical calculations, it is more practical to use a smooth potential [110] with a finite

range. This alternative approach facilitates the convergence of the results and, from a theoretical

point of view, it allows to explore finite-range effects. In our case, we use a two-body Gaussian

potential [31, 111–114],

V (|~xi − ~xj|) = g
1

πs2
e−

|~xi−~xj |
2

s2 , (3.7)

where g and s characterize the strength and range of the interaction, respectively. g is written in

units of ~2/m and s in units of
√

~/(mω), so V (|~xi − ~xj|) is in units of ~ω, in accordance with the

fact that we are using harmonic-oscillator units. Both parameters are considered to be tunable.

For instance, g can be varied by means of a suitable Feshbach resonance [115]. The potential is

normalized as:
∫ ∞

0
V (r) 2πr dr = g. (3.8)

In the limit of s going to zero, we recover a contact interaction with strength g [31]. As long as

g > 0, the interaction between the particles is always purely repulsive. Using harmonic oscillator

eigenstates, ψi(x, y), as single-particle basis states for the second-quantized interaction term,

Ĥint =
g

2

M
∑

i,j,k,l=1

Vijkl â
†
i â

†
j âkâl , (3.9)

the two-body matrix elements,

Vijkl =
1

πs2

∫ ∞

−∞
dx dy dx′ dy′ ψ∗

i (x, y)ψk(x, y)ψ
∗
j (x

′, y′)ψl(x
′, y′) e−

(x−x′)2+(y−y′)2

s2 , (3.10)

can be analytically calculated (see Appendix C). This is an advantage with respect to other ways

of modeling the interaction, since we avoid the numerical evaluation of multidimensional integrals,

which would introduce additional uncertainty.
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3.3 First order perturbation theory for the N -boson system

In the weakly interacting limit, g ≪ 1, the effects of the interaction in the lowest-energy levels

of the N -boson system are well-approximated considering the interaction as a perturbation of the

noninteracting system. We are able to treat explicitly the N -boson case because the degeneracy of

the lowest-energy states is independent of the number of particles, as we explained in the previous

Chapter. Using the analytic expressions for Vijkl, that are given in Appendix C, we compute the

energies of the first three energy manifolds, labeled with NE = 0, 1, and 2 in Table 2.1, in first

order perturbation theory.

For the unperturbed ground state of the system, |N, 0, ... , 0〉, the energy at first order of per-

turbation theory is given by

E0 ≃ N + g
N(N − 1)

2π (s2 + 2)
. (3.11)

The next energy level is two-fold degenerate and the interaction does not break this degeneracy.

The two Fock states that form that subspace, |N − 1, 1, 0, ... , 0〉 and |N − 1, 0, 1, ... , 0〉, remain

degenerated,

E1 ≃ N + 1 + g
N(N − 1)

2π (s2 + 2)
, (3.12)

where we observe that the term proportional to g is the same as in Eq. (3.11), because, with

appropriate linear combinations of |N − 1, 1, 0, ... , 0〉 and |N − 1, 0, 1, ... , 0〉, one could describe

the two possible center-of-mass excitations of the ground state.

The third energy manifold, formed by six states, splits in three sublevels. In the present case

we need to use degenerate perturbation theory, i.e., we diagonalize the matrix of the interaction in

this six-dimensional subspace. There are three states with energy

E21 ≃ N + 2 + g
N(N − 1)

2π (s2 + 2)
, (3.13)

corresponding to center-of-mass excitations of the ground state. As we mentioned in Sec. 3.1 the

perturbative correction affects only the relative motion, so the corrections included in E0, E1 and

E21 are equal and the degeneracy is (ncm + 1), with ncm = 0, 1, and 2, in each case, respectively.

Finally, there are two other states splitting from the third energy manifold in the noninteracting

limit with

E22 ≃ N + 2 + g
N
(

N(2 + s2)2 − s2(8 + s2)− 8
)

2π (s2 + 2)3
, (3.14)

and an additional single state whose energy is given by:

E23 ≃ N + 2 + g
N
(

N(2 + s2)2 − s2(8 + s2)− 4
)

2π (s2 + 2)3
. (3.15)

The similarity in the excitation energy spectrum, E − E0, for systems with different number

of bosons for a small g can be understood using the previous expressions. For instance, in the



3.3. First order perturbation theory for the N -boson system 25

1.75

1.8

1.85

1.9

1.95

2

2.05

0 0.2 0.4 0.6 0.8 1

(a) N = 3

1.75

1.8

1.85

1.9

1.95

2

2.05

0 0.2 0.4 0.6 0.8 1

(b) N = 4

E
−

E
0

g

1.75

1.8

1.85

1.9

1.95

2

2.05

0 0.2 0.4 0.6 0.8 1

E
−

E
0

g

1.75

1.8

1.85

1.9

1.95

2

2.05

0 0.2 0.4 0.6 0.8 1

Figure 3.1: Splitting of the third energy level for (a) N = 3 and (b) N = 4 bosons depending on

the interaction strength g. Solid red, dashed green and dotted blue lines: Numerically computed

energy levels diagonalizing (see the caption of Fig. 3.4 for details). Solid black lines: Energy levels

computed up to first order in perturbation theory corresponding to Eqs. (3.17), (3.18) and (3.19).

Notice that red and black lines coincide.

case of N = 3 and N = 4 plotted in Fig. 3.1. The corresponding excitation energies are, in this

approximation,

E1 − E0 = 1, (3.16)

E21 − E0 = 2, (3.17)

E22 − E0 = 2− g
2N

(

1 + s2
)

π (s2 + 2)3
, (3.18)

E23 − E0 = 2− g
2Ns2

π (s2 + 2)3
. (3.19)

The presence of the factor N in the quantity E22 − E0, in Eq. (3.18), explains why the slope

of the green dashed lines is slightly bigger in absolute value for N = 4, panel (b), than for N = 3,

panel (a), in Fig. 3.1. This effect would be notorious when comparing the spectrum for two very

different numbers of particles. We also see that the second term in E23 − E0 is proportional to

N , but in that case, for small s, the second term becomes negligible. Therefore, the blue dotted

lines are very close to the red solid lines in the spectra for g ≃ 0, as we have used s = 0.5. In the

zero-range limit, this approximation gives E23(s→ 0) = E21(s → 0).



26 Chapter 3. Few bosons interacting in a two-dimensional harmonic trap

3.4 Variational calculations

In order to gain insight in the understanding of the ground-state properties of the system, we

will compare our numerical results obtained by the exact diagonalization of the Hamiltonian in

a truncated Hilbert space with the results provided by two variational ansatzes proposed below.

Notice that both ansatzes provide upper bounds to the ground-state energy of the system.

3.4.1 Mean-field ansatz

The first variational ansatz that we propose is a mean-field wave function,

Ψ(~x1, ... , ~xN ) =
(α

π

)N
2

N
∏

i=1

e−
1
2
α~x2

i , (3.20)

and we find the optimum α∗ that minimizes the energy

E0(α) =

∫ ∞

−∞
d~x1 ... d~xN Ψ∗(~x1, ... , ~xN )HΨ(~x1, ... , ~xN ) = N

(

α

2
+

1

2α

)

+
gN(N − 1)α

2π (αs2 + 2)
. (3.21)

This mean-field ansatz is expected to capture well the behavior of the ground state of the system

for small values of g, as long as in the limit of g → 0 we recover the noninteracting ground state

of the system and α∗ → 1. The parameter α characterizes the width of the Gaussian profile, that

becomes wider when α gets smaller than 1. The variation of α allows the system of repulsively

interacting atoms to be more separated in space. As we will see below, when the system develops

strong beyond-mean-field correlations as g is increased this ansatz fails to describe the system.

3.4.2 Two-body-correlated variational many-body Jastrow-type ansatz

We also consider a two-body-correlated variational many-body ansatz of Jastrow type [116],

Ψ(~x1, ... , ~xN ) =
(α

π

)
N
2

N
∏

i=1

e−
1
2
α~x2

i

N
∏

j<i

(

1− ae−b|~xi−~xj |2
)

, (3.22)

where α, a and b are the variational parameters. Notice that this wave function is not normalized,

so the energy to be minimized in this case is given by:

E0(α, a, b) =

∫∞
−∞ d~x1 ... d~xN Ψ∗(~x1, ... , ~xN )HΨ(~x1, ... , ~xN )
∫∞
−∞ d~x1 ... d~xN Ψ∗(~x1, ... , ~xN )Ψ(~x1, ... , ~xN )

. (3.23)

The α parameter has the same role as in the mean-field ansatz of the previous section, that is

recovered in the limit of a → 0. In the opposite case, when a = 1, the wave function has zeros

at ~xi = ~xj for any pair i, j, with i 6= j, giving a zero probability of finding two particles at the

same position. Consequently, a nonzero a value introduces correlations between the particles. The

parameter b affects the two-body correlation length. In this case, we minimize the energy of this

ansatz using standard Monte Carlo methods.
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Here, we have considered a two-dimensional system. In the one-dimensional case, a variational

ansatz that is able to describe a system of bosons with correlations was presented in Ref. [117].

3.5 Low-energy spectrum for the two-boson system

Below, we analyze the changes in the lowest-energy levels of the spectra of N = 2, 3, and 4 bosons,

caused by interactions between the particles. The two-boson system presents particular properties

and is treated separately, whereas we show that the systems with more particles have common

features.

The two-boson system is a particular one because: i) the Jacobi coordinates, that allow to

decouple the center-of-mass part from the relative part of the Hamiltonian, have a well-defined

symmetry under the exchange of particles; ii) the states that have a relative wave function that is

odd under the exchange of particles are unaffected by a contact interaction. These two features are

used below to study the noninteracting system and, later on, in the understanding of the numerical

results when the interaction is present.

3.5.1 The degeneracy for the noninteracting two-particle system

In the noninteracting case, for the two-boson system, we can write down the Hamiltonian splitting

the center of mass and the relative motion. In polar coordinates,

Ĥ = Ĥcm + Ĥr = n̂cm + n̂r + 2, (3.24)

where Ĥcm = n̂cm+1 and Ĥr = n̂r+1. Therefore, we have a two-dimensional harmonic oscillator for

each part of the Hamiltonian. The corresponding eigenstates can be labeled as |ncm,mcm, nr,mr〉,
namely,

n̂cm |ncm,mcm, nr,mr〉 = ncm |ncm,mcm, nr,mr〉 ,

n̂r |ncm,mcm, nr,mr〉 = nr |ncm,mcm, nr,mr〉 ,

L̂z,cm |ncm,mcm, nr,mr〉 = mcm |ncm,mcm, nr,mr〉 ,

L̂z,r |ncm,mcm, nr,mr〉 = mr |ncm,mcm, nr,mr〉 ,

(3.25)

where L̂z,cm and L̂z,r are the third component of the center-of-mass orbital angular momentum

and the relative orbital angular momentum, respectively, expressed in units of ~. However, those

four quantum numbers have a restriction imposed by the symmetry of the wave function under the

exchange of particles. The full wave function in polar coordinates for ~R and ~r reads

χncmmcmnrmr (R, r, ϕR, ϕr) = χncmmcm

(√
2, R, ϕR

)

χnrmr

(

1√
2
, r, ϕr

)

, (3.26)
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with

χnm (α, r, ϕ) = Nnm (α) eimϕe−
(αr)2

2 (αr)|m| L|m|
n−|m|

2

(

(αr)2
)

. (3.27)

The Lk
n(x) are the associated Laguerre polynomials defined as

Lk
n(x) ≡

n
∑

m=0

(−1)m





n+ k

n−m





xm

m!
(3.28)

and Nnm (α) is a normalization constant,

Nnm (α) = α

√

√

√

√

√

(

n−|m|
2

)

!

π
(

n+|m|
2

)

!
. (3.29)

The wave function corresponding to the center of mass is symmetric under the exchange of particles,

because R and ϕR remain unchanged upon exchanging particles 1 and 2, since ~R = 1
2 (~x1 + ~x2).

However, the relative wave function is symmetric or antisymmetric depending on the quantum

number mr. We have defined the relative coordinate as ~r = ~x1 − ~x2, therefore, exchanging the

particles is equivalent to a change in ϕr to ϕr + π and, due to the form of the wave function,

see Eq. (3.27), a factor (−1)mr appears. For this reason, only the states with an even mr can

describe the two-boson system. This implies that nr must also be an even number. To sum up (see

Table 3.1), the four quantum numbers are






































ncm = 0, 1, 2, 3, 4, . . .

mcm = −ncm,−ncm + 2, . . . , ncm

nr = 0, 2, 4, 6, . . .

mr = −nr,−nr + 2, . . . , nr .

(3.30)

With the previous possible quantum numbers, we can determine the degeneracy for each energy

level labeled with NE = E − E0. The degeneracy for a given value of NE (see Appendix A) is

dbNE
= −1

3

(⌊

NE

2

⌋

+ 1

)

[

4

⌊

NE

2

⌋2

+ (2− 3NE)

⌊

NE

2

⌋

− 3(NE + 1)

]

, (3.31)

where ⌊NE/2⌋ indicates the floor function of NE/2. The previous equation is valid for a system of

two spinless bosons. However, for fermions and bosons with spin, the spatial antisymmetric states

should also be considered. The degeneracy for those states (see Appendix A) is

dfNE
= −1

3

(⌊

NE

2

⌋

+ 1

)

[

4

⌊

NE

2

⌋2

+ (8− 3NE)

⌊

NE

2

⌋

− 6NE

]

. (3.32)

Notice that the total degeneracy is given by [118],

dTNE
= dbNE

+ dfNE
=

(NE + 3)(NE + 2)(NE + 1)

6
. (3.33)
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ncm nr mcm mr E NE dbNE
dUNE

0 0 0 0 2 0 1 0

1 0 -1 0

1 0 1 0 3 1 2 0

2 0 -2 0

2 0 0 0

2 0 2 0

0 2 0 -2 4 2 6 2

0 2 0 0

0 2 0 2

3 0 -3 0

3 0 -1 0

3 0 1 0

3 0 3 0

1 2 -1 -2

1 2 1 -2 5 3 10 4

1 2 -1 0

1 2 1 0

1 2 -1 2

1 2 1 2

Table 3.1: Quantum numbers, energy, excitation energy number, degeneracy, and number of states

with mr 6= 0 for the low-energy levels of a system of two noninteracting identical bosons trapped

in a two-dimensional isotropic harmonic potential. The energies are in units of ~ω.

3.5.2 Unperturbed energy states

We are also interested in knowing how many states have mr 6= 0 for each energy level manifold,

because these states are the ones that do not feel a zero-range interaction. For a finite but small

range, these states are also expected to remain almost unperturbed for the considered range of

interaction strengths. The number of states in each energy level such that their energy should not

change significantly with a small Gaussian width (see Appendix A) is

dUNE
=

(

−4

3

⌊

NE

2

⌋

+NE +
1

3

)⌊

NE

2

⌋(⌊

NE

2

⌋

+ 1

)

. (3.34)
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3.5.3 Two-boson energy spectrum

In Fig. 3.2, we show the low-energy spectrum for the system of two interacting identical bosons in

the harmonic trap. In the figure, we compare results obtained with three different values of s = 0.1,

0.5 and 1. In all cases, the energy spectrum has a number of common features.

First, there are the states discussed above, that are called unperturbed states, which are essen-

tially insensitive to the interaction. In the zero range limit, these are states with non-zero relative

angular momentum, which do not feel the contact interaction [31]. With finite interactions with

a small range, s = 0.1 and 0.5, they remain mostly flat for g up to 20. For s = 1, their energy

increases slightly with g, deviating from the zero range prediction.

Second, the ground-state energy increases linearly with g for small values of g, according to

first order perturbation theory, Eq. (3.11). However, the ground-state energy seems to saturate as

g is increased. We show in all panels of Fig. 3.2 that with the variational Jastrow ansatz (3.22)

we capture this phenomenon as the ground-state energy computed diagonalizing is very close to

the variational one in the whole range of values of g displayed. This tendency is more apparent

for smaller values of s. This fact is explained because the Gaussian potential extends to the whole

space and building a zero of the wave function when two particles are at the same position is not

sufficient to avoid the particles from interacting. Notice also that for a given value of g, the energy

decreases when decreasing s.

Third, there are the energies coming from the relative part of the Hamiltonian with the center

of mass at the ground state, i.e., ncm = 0. The ground state is one of these states and there is one

state of this type in each energy level manifold with an even NE in the noninteracting limit.

Finally, the spectrum also contains center-of-mass excitations [30], which are easily recognized

as constant energy shifts independent of g with respect to states with ncm = 0.

For comparison, we depict also the approximate values of Ref. [31] in panel (a) of Fig. 3.2. As

reported in Ref. [31], their approximate solution – which is not variational – starts to deviate from

the numerical results, the ones obtained by diagonalizing, at values of g ≃ 4. In any case, the

proposed approximation gives, however, a fairly good overall picture of the low-lying two-particle

spectrum.
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Figure 3.2: (a-c) Low-energy spectrum for N = 2 interacting bosons trapped in a two-dimensional

isotropic harmonic potential depending on the interaction strength g for different values of the

width s of the two-body Gaussian-shaped potential. Solid red lines: Energy of the ground state

and its corresponding center-of-mass excitations. Long-dashed pointed cyan lines: Unperturbed

states. Long-dashed double-pointed green lines: First relative excitation and its corresponding

center-of-mass excitations. (a-c) Dashed blue lines: Energy of the ground state computed with

the variational ansatz of Eq. (3.22). Dotted black lines: Analytic approximate energy levels using

Eq. (17) of Ref. [31] shown only in panel (a). Numerical results with M = 496 single-particle states

corresponding to a Hilbert-space dimension D2B = 23256 and a cutoff in energy Nmax
E = 30 (see

Eq. 2.33).
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3.5.4 The degeneracy for the interacting two-boson system

Considering the states with mr = 0, which is fixed, we can label them with only three quantum

numbers. Two are the ones corresponding to the center of mass, ncm and mcm, and the other is

a new quantum number, νr, that labels the nondegenerate eigenstates of the relative part of the

Hamiltonian. We can write those states as

Ψmr=0
ncmmcmνr(R,ϕR, r) = χncmmcm(

√
2, R, ϕR)fνr(r), (3.35)

where χncmmcm(
√
2, R, ϕR) is given in Eq. (3.27) and fνr(r) is the relative wave function, that

depends on g and s. The other states that are in the spectrum are the unperturbed ones (almost

unaffected by the interaction). Their degeneracy is given by Eq. (3.34). The states of Eq. (3.35),

for a given νr, are degenerate with degeneracy given by the two-dimensional harmonic oscillator of

the center-of-mass part, i.e., their degeneracy is ncm + 1. From each noninteracting energy level

manifold with even NE , a state with a new νr arises, and its center-of-mass excitations appear in

higher energy levels with degeneracy ncm + 1, too.

To sum up, the ground state is nondegenerate. The first excited state is two-degenerate and

these two states are the two possible center-of-mass excitations of the ground state. The third

noninteracting energy manifold (6 states with E(g = 0) = 4) splits in three groups: i) three center-

of-mass excitations of the ground state, ii) two unperturbed states and, iii) a new relative excited

state with quantum numbers ncm = 0, mcm = 0 and νr = 1 with E(g = 2) = 4.21. We give the

degeneracy and the quantum numbers of the low-energy states in Table 3.2.
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ncm nr mcm mr νr E(g = 0) E(g = 2) dint(g = 2)

0 - 0 0 1 2 2.23 1

1 - -1 0 1 3 3.23

1 - 1 0 1 3 3.23 2

2 - -2 0 1 4 4.23

2 - 0 0 1 4 4.23 3

2 - 2 0 1 4 4.23

0 - 0 0 2 4 4.21 1

0 2 0 -2 - 4 4.00

0 2 0 2 - 4 4.00 2

3 - -3 0 1 5 5.23

3 - -1 0 1 5 5.23

3 - 1 0 1 5 5.23 4

3 - 3 0 1 5 5.23

1 - -1 0 2 5 5.21

1 - 1 0 2 5 5.21 2

1 2 -1 -2 - 5 5.00

1 2 1 -2 - 5 5.00

1 2 -1 2 - 5 5.00 4

1 2 1 2 - 5 5.00

Table 3.2: Quantum numbers, energy in the noninteracting limit, energy at g = 2 and degeneracy,

for the low-energy levels of a system of two interacting identical bosons trapped in a two-dimensional

isotropic harmonic potential. The energies are in units of ~ω and the ones with g = 2 correspond

to a vertical cut in Fig. 3.2 panel (b), s = 0.5.
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Figure 3.3: Ground-state energy for (a) N=3 and (b) N=4 interacting bosons trapped in a two-

dimensional isotropic harmonic potential depending on the interaction strength g. Solid red line:

Energy computed numerically, diagonalizing with M = 210 single-particle states that correspond

to a Hilbert-space dimension (a) D3B = 30846 and (b) D4B = 107251, and a cutoff in energy

Nmax
E = 19, in both cases. Dashed blue line: Energy computed with the variational many-body

Jastrow-type wave function of Eq. (3.22). Long-dashed dotted black line: Energy computed with

a Gaussian mean-field variational ansatz, Eq. (3.20). The range of the interaction is s = 0.5.

3.6 Low-energy spectrum for the three- and four-boson systems

The ground-state energy of the systems with N = 3 and N = 4 bosons computed numerically,

either diagonalizing or with the two variational ansatzes, is represented in Fig. 3.3. As expected,

the mean-field ansatz describes properly the changes in the ground-state energy for small values

of g. However, for g ≈ 2 we already observe substantial deviations, with the mean-field prediction

overestimating the ground-state energy considerably. Nevertheless, the energies computed with

the variational many-body ansatz of Jastrow type are very close to the exact-diagonalization ones.

These results are a first indicator of the kind of physics produced by increasing the interaction

strength, dominated by the presence of correlations, that is further analyzed in Sec. 3.7.

The low-energy spectrum for N = 3 and N = 4 at small values of g is fairly similar. This is

not unexpected as the degenerate manifolds are the same irrespective of the number of particles,

as it was explained in Chapter 2. The first excited state is a center-of-mass excitation, the Kohn

mode (see [119] and references therein), as seen clearly in the excitation spectra shown in Fig. 3.4.

Even for g up to 20, the low-energy spectra for N = 3 and N = 4 are quite similar. The overall
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picture is qualitatively the same for both cases, although for N = 4 there are extra levels crossing

in the highest-energy part showed in Fig. 3.4. For instance, in Fig. 3.4 panel (b), there is a level

(short-dashed brown line) that starts crossing the highest energy level depicted (solid red line) at

g ≃ 3. This line in the spectrum comes from the fourth excited level in the noninteracting limit and

is also expected to appear for systems with more particles, e.g. N = 5. It arises from the existence

of a degenerate kind of states that are found only for N > 4, as it was explained in Chapter 2.

The degeneracy for the interacting three and four-boson system

For more than two particles, we do not find states unaffected by the interaction, the ones called

unperturbed in the two-boson case. Moreover, the degeneracy of the eigenfunctions of the relative

part of the Hamiltonian is not 1. Therefore, the states cannot be uniquely characterized by a single

relative quantum number, νr, as before.

However, we can identify the states that correspond to center-of-mass excitations of lower energy

states. In Fig. 3.4, in both panels, for example, for g = 1, we know the degeneracy of all the energy

levels and we can identify them. Namely, the ground state is nondegenerate. As we have said

before, the first excited state is a center-of-mass excitation, with degeneracy 2. The second excited

state decomposes in three states corresponding to the next center-of-mass excitations of the ground

state, two degenerate states corresponding to a relative excitation, and finally a different relative

excitation. The third excited energy level in the noninteracting limit splits when g is increased in the

next center-of-mass excitations of the states of the previous level, i.e., four center-of-mass excitations

of the ground state, four center-of-mass excitations of the previous two-degenerate relative excited

states, and two more degenerate states corresponding to two center-of-mass excitations of the single-

degenerate relative energy level that appeared in the second excited state when g was increased.

Moreover, there are two pairs of different relative excited states that split from the noninteracting

third energy level. This behaviour is the same independently of N for g sufficiently small, for

instance, for N = 4 up to g = 3, where we find the previous discussed crossing of levels.
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Figure 3.4: Low-energy spectrum for (a) N = 3 and (b) N = 4 interacting bosons trapped in a

two-dimensional isotropic harmonic potential depending on the interaction strength g. Solid red

lines: Energy of the ground state; dashed green lines: the first relative excitation; dotted blue

lines: the second relative excitation; dashed-dotted cyan lines: the third relative excitation; triple-

dotted black lines: the fourth relative excitation; and double-dotted black lines: the fifth relative

excitation, and, respectively, their center-of-mass excitations in the same kind of line and color.

The energies were computed numerically, diagonalizing with M = 210 single-particle states that

correspond to a Hilbert-space dimension (a) D3B = 30846 and (b) D4B = 107251, and a cutoff in

energy Nmax
E = 19, in both cases. The range of the interaction is s = 0.5.
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g
N=2 N=3 N=4

α a b α a b α a b

0 1 0 - 1 0 - 1 0 -

1 0.986 0.184 0.838 0.95 0.20 0.98 0.95 0.20 0.98

5 0.952 0.601 0.679 0.90 0.56 0.80 0.87 0.58 0.86

8 0.942 0.744 0.601 0.85 0.72 0.73 0.85 0.75 0.78

16 0.937 0.903 0.470 0.84 0.89 0.66 0.75 0.88 0.68

Table 3.3: Variational parameters obtained by minimizing the energy of the correlated Jastrow-

type wave function (3.22) depending on the interaction strength g for s = 0.5 and N = 2, 3, and 4

bosons.

3.7 Ground-state characterization for the few-boson system

As seen in Secs. 3.5 and 3.6, the ground-state energy of the system for N = 2, 3 and 4 seems to

saturate as we increase the strength of the atom-atom interactions. This starts to occur for values

g for which the mean-field variational ansatz starts to deviate from the exact results. This reminds

one of a similar effect found in one-dimensional systems, where the ground state evolves from a

mean-field regime to a Tonks-Girardeau gas as the interaction strength is increased [17]. In the

Tonks-Girardeau limit, the atoms completely avoid the atom-atom contact interaction by building

strong correlations which in 1D are easily understood from the Bose-Fermi mapping theorem [44].

In two-dimensions, no such mapping exist. However, we expect that the system should build

suitable correlations to avoid interactions [47].

For the ground state, besides the exact diagonalization method, we have also made use of a

correlated variational ansatz, Eq. (3.22), to clarify the discussion. The energies and properties

associated to this variational ansatz are evaluated by means of Monte-Carlo methods (standard

Metropolis algorithm). The physical meaning of the variational parameters is quite transparent. α

directly affects the overall size of the cloud. The two-body Jastrow correlations are parameterized

by a and b. Two limiting cases are illustrative. If the system is fully condensed we have a = 0,

while a = 1 corresponds to building a zero of the wave function whenever two atoms are at the

same position. b affects the two-body correlation length. Thus, we expect the following behavior:

for values of g ≃ 0 we should have a = 0 (b is thus irrelevant) and α close to 1. For increasing g, α

decreases to avoid the interaction by simply putting the atoms apart. As we increase g, two-body

correlations build in, a 6= 0 and α should stop decreasing as the correlation is more efficient to

separate the atoms. The numerical variational parameters obtained by minimizing the energy are

given in Table 3.3 for some values of g.
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3.7.1 Energy contributions and virial theorem relation

The different energy terms that are present in the Hamiltonian in Eq. (3.1) are: the kinetic energy

K = −1

2

N
∑

i=1

∇2
i ; (3.36)

the harmonic potential

Vho =
1

2

N
∑

i=1

~x 2
i ; (3.37)

and the interaction

Vint =
g

πs2

N
∑

i<j

e−
|~xi−~xj |

2

s2 . (3.38)

Once we have the ground state, we compute each energy contribution as the expectation values

〈K〉, 〈Vho〉, and 〈Vint〉, respectively. The ground-state energy, E0, is the total energy, so

E0 = 〈K〉 + 〈Vho〉+ 〈Vint〉. (3.39)

For any eigenstate of the Hamiltonian, and in particular for the ground state, the virial theorem

establishes a relation between the energy contributions. In the present case, it translates into the

following constrain:

2〈Vho〉 − 2〈K〉 + 〈W〉 = 0 , (3.40)

where the last term comes from the interaction part of the Hamiltonian (3.38), with

W = − 2g

πs4

N
∑

i<j

|~xi − ~xj |2e−
|~xi−~xj |

2

s2 . (3.41)

The previous energy terms and the left part of the virial relation, Eq. (3.40), are represented in

Fig. 3.5 for the systems of N = 2, 3, and 4 bosons, depending on the interaction strength g.

First of all, since the bosons are in a two-dimensional system, at g = 0, the virial relation states

that 〈Vho〉 = 〈K〉, so E0 = 2〈Vho〉 = 2〈K〉. This is no longer true when g 6= 0. If the interaction

strength is increased, we observe that the harmonic potential energy and the interaction energy

increase. However, the kinetic energy slightly decreases. This effect is more notorious when we

increase the number of particles of the system. At g ≈ 4, the kinetic energy and the interaction

energy exchange their roles. Increasing the value of g results in a decrease in the interaction energy

and an increase in the kinetic one.

A second remarkable fact is that in the strongly-interacting limit, for large g, in Fig. 3.5, all

energy terms tend to be constant, as well as the total energy shown in Fig. 3.2 panel (b) for N = 2,

and panels (a) and (b) in Fig. 3.3 for N = 3 and 4, respectively. Regarding the virial relation,

we observe that the ground state computed numerically fulfills it with good accuracy in the whole
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range of g depicted; the left part of Eq. (3.40) remains very close to zero in all cases, within an

error of less than 1% of E0 for the two- and three-boson systems, and less than 2% of E0 for the

four-boson system. From a practical point of view, it provides a compelling nontrivial test for our

numerics.
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Figure 3.5: The energy terms contributing to the total energy and the ones involved in the virial

theorem energy relation are depicted depending on the interaction strength g for (a) N = 2, (b)

N = 3 and (c) N = 4 bosons. The energies were computed from the ground state obtained by

diagonalizing with (a) M = 496 single-particle states corresponding to a Hilbert-space dimension

D2B = 23256 and a cutoff in energy Nmax
E = 30; in (b) and (c) M = 210 with (b) D3B = 30846

and (c) D4B = 107251, and a cutoff in energy Nmax
E = 19. The range of the interaction is s = 0.5.
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3.7.2 Spatial density profiles

In this section, we show the effect of the interaction on the density profile of the system. The

density profile is an observable quantity that is directly accessible in the current ultracold-atoms

experiments with many particles. However, it is difficult to have access to it in few-particle sys-

tems because a high resolution is needed. To face this difficulty, new methods have been recently

proposed [120–122].

In our calculations, we use the following definition of the density operator in first quantized

form:

ρ̂(~x) ≡ 1

N

N
∑

i=1

δ(~x− ~xi). (3.42)

We explicitly give the second-quantized form of this operator and we explain the details of the

numerical computations in Appendix B. Additionally, we present there the demonstration that we

only need to consider a dependence on the radial coordinate, X =
√

x2 + y2, for the ground state

of the system. In short, the ground state is a state with zero total angular momentum, so it has

radial symmetry setting the origin of coordinates at the center of the harmonic trap. Accordingly,

the density function, which is the expectation value of the previous operator, is normalized to unity

as
∫ ∞

0
ρ(X) 2πX dX = 1. (3.43)

In Fig. 3.6 we plot various density profiles computed with the ground state resulting from our

diagonalization procedure. In panels (a), (b) and (c) we show results for N = 2, 3, and 4. In all

cases, with the same value of s = 0.5. We compare the density profiles obtained for different values

of g.

Irrespective of N , we observe a number of common features. For g = 0, the system has a

Gaussian density profile which, as g is increased, evolves into a profile with a flat region for X ≤ 1

at g ≃ 16. As N is increased, the size of the inner plateau increases, thus tending towards an

homogeneous density.

The quality of our variational approach is seen in Fig. 3.7, where we compare density profiles

obtained with the exact diagonalization procedure with those obtained variationally by means of

Eq. (3.22). As seen in the figure, the variational correlated wave function provides a fairly accurate

representation of the density profile for N = 2, 3, and 4. In particular, it captures well the

appearance of the plateau.

Recently, the results presented in this section have been confirmed in Ref. [123], where they

reproduce the density profiles by applying the methodology of path integral molecular dynamics.



3.7. Ground-state characterization for the few-boson system 41

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 (a) N = 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 (b) N = 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3

(c) N = 4

g = 0
g = 1
g = 3
g = 6
g = 8
g = 10
g = 16

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ρ
(X

)

g = 0
g = 1
g = 3
g = 6
g = 8
g = 10
g = 16

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X

g = 0
g = 1
g = 3
g = 6
g = 8
g = 10
g = 16

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3

Figure 3.6: Density profile of the ground state for (a) N = 2, (b) N = 3 and (c) N = 4 inter-

acting bosons trapped in a two-dimensional isotropic harmonic potential for different values of the

interaction strength g for a fixed range s = 0.5. The profiles were computed numerically from

the ground state obtained by diagonalizing with (a) M = 496 single-particle states correspond-

ing to a Hilbert-space dimension D2B = 23256 and a cutoff in energy Nmax
E = 30; (b) and (c)

M = 210 single-particle states that correspond to a Hilbert-space dimension (b) D3B = 30846 and

(c) D4B = 107251, and a cutoff in energy Nmax
E = 19, in both cases.
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Figure 3.7: Density profile for N = 2, 3, and 4 interacting bosons trapped in a two-dimensional

isotropic harmonic potential. Solid lines: Profiles computed with the ground state obtained diago-

nalizing (see details in the caption of Fig. 3.6). Crosses, squares and dots: Profiles obtained from

the variational correlated Jastrow-type ansatz, Eq. (3.22). The range is s = 0.5. The variational

parameters obtained are, for N = 2, α = 0.9, a = 0.8 and b = 0.7, for N = 3, α = 0.85, a = 0.8

and b = 0.7, and for N = 4, α = 0.85, a = 0.8 and b = 0.65.

3.7.3 Condensed fraction

The effect of increasing the interaction among the atoms is manifold. The change in the density,

seen before, is accompanied by a change in the correlations present in the system. Actually, it

goes from a fully condensed state to a largely fragmented one as we increase the interaction. The

condensed fraction is obtained from the one-body density matrix, defined as

ρ(1)(~x, ~x′) =
∫

d~x2 ... d~xN Ψ∗(~x, ~x2, ... , ~xN )Ψ(~x′, ~x2, ... , ~xN ), (3.44)

where Ψ(~x1, ~x2, ... , ~xN ) is the ground state wave function. Since we truncate the Hilbert space

using the first M single-particle eigenstates of the two-dimensional harmonic oscillator, the one-

body density matrix is anM×M matrix in our case. The condensed fraction is the largest eigenvalue

of this matrix and the most occupied single-particle state is the corresponding eigenstate. Both are

obtained by diagonalizing ρ(1)(~x, ~x′) (see Appendix B).

In Fig. (3.8), we depict how the condensed fraction forN = 2, 3, and 4 decreases when increasing

the interaction strength. For the same value of g, the fragmentation in the system is larger for
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Figure 3.8: Condensed fractions of the ground state for (solid black line) N = 2, (dashed red line)

N = 3 and (dotted blue line) N = 4 interacting bosons trapped in a two-dimensional isotropic

harmonic potential depending on the interaction strength g for a fixed range s = 0.5. The number

of modes that we have used is M = 496 for N = 2 and M = 210 for N = 3 and N = 4 (more

details on the numerical calculation are given in previous Fig. 3.6). The rest of the eigenvalues of

the one-body density matrix are much more smaller than the largest one.

larger number of particles.

The most populated eigenstate of the one-body density matrix (natural orbit), is found to have

the approximate form, using the |nx, ny〉 basis,

|φ1〉 ≃ C0 |0, 0〉+ C1 (|2, 0〉+ |0, 2〉) , (3.45)

and its wave function reads

φ1(X) ≃ 1√
π
e−

X2

2

(

C0 −
√
2C1

(

1−X2
)

)

. (3.46)

This natural orbit is a superposition of the two first single-particle states of the two-dimensional

harmonic oscillator with zero angular momentum, m = 0, the state |n = 0,m = 0〉 and the state

|n = 2,m = 0〉, thus the wave function has no angular dependence. For the noninteracting case,

C0 = 1 and C1 = 0, since the particles condense in the ground state of the harmonic oscillator.

When the interaction is increased, C0 becomes smaller and C1 starts to increase. In Fig. 3.9, we

plot the wave function of Eq. (3.46) using the corresponding values of C0 and C1, given in Table 3.4,

computed for N = 2, 3, 4 and different values of the interaction strength g.
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Figure 3.9: Single-particle eigenstate of the one-body density matrix in which the particles condense.

We use the approximate form given in Eq. (3.46) and the values of C0 and C1 computed numerically

diagonalizing the one-body density matrix, given in Table 3.4, for different values of g.
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g
N=2 N=3 N=4

C0 C1 C0 C1 C0 C1

0 1 0 1 0 1 0

1 0.9995 0.0209 0.9983 0.0403 0.9965 0.0583

6 0.9915 0.0904 0.9752 0.1560 0.9571 0.2048

10 0.9851 0.1201 0.9592 0.1997 0.9325 0.2548

16 0.9778 0.1466 0.9424 0.2363 0.9077 0.2948

Table 3.4: Values of the coefficients C0 and C1 obtained numerically diagonalizing the one-body

density matrix for s = 0.5 and N = 2, 3, and 4 bosons.

3.7.4 Two-body correlation functions

The advent of correlations beyond the mean-field ones should become more apparent when comput-

ing two-particle observables. In particular, we can evaluate the probability of finding two particles

at given positions. To this end, we use the pair correlation operator, normalized to unity,

η̂(~x, ~x′) ≡ 1

N(N − 1)

N
∑

i=1

N
∑

j 6=i

δ(~x− ~xi)δ(~x
′ − ~xj). (3.47)

The pair correlation function of a state, η(~x, ~x′), the ground state in the present case, is computed

as the expectation value of this operator. From the pair correlation and the density profile, we

compute the probability of finding a particle at a distance X ≡
√

x2 + y2 once we have found

another particle at the origin, that is

P (X; 0) ≡ η(~x,~0)

ρ(~0)
. (3.48)

This probability density is normalized to unity, so that
∫ ∞

0
P (X; 0) 2πX dX = 1. (3.49)

As before, the details of the computations are given in Appendix B and here we concentrate on the

analysis of the results.
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Figure 3.10: Probability density, P (X; 0), of finding a particle at position X once we have found

one particle at the origin for (a) N = 2, (b) N = 3 and (c) N = 4 interacting bosons trapped in a

two-dimensional isotropic harmonic potential for different values of the interaction strength g for

a fixed range s = 0.5. The profiles were computed numerically from the ground state obtained by

diagonalizing with (a) M = 496 single-particle states corresponding to a Hilbert-space dimension

D2B = 23256 and a cutoff in energy Nmax
E = 30; (b) and (c) M = 210 single-particle states that

correspond to a Hilbert-space dimension (b) D3B = 30846 and (c) D4B = 107251, and a cutoff in

energy Nmax
E = 19, in both cases.
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Without interactions, the pair correlation function is proportional to the density, since the

probability density of finding a particle in a particular place is not correlated with the positions

of the others. In Fig. 3.10, we show how P (X; 0) evolves with increasing the interaction for the

systems with N = 2, 3, and 4 bosons. In all cases, the central peak gets lower when increasing the

interaction, being fairly close to zero for g ≃ 16. This is in line with the fact that the atoms build

correlations to avoid the interaction, e.g. as g is increased the probability of finding two atoms at

the same location decreases. In between, next to the center of the trap, the function is uniform.

When the interaction is strong there is a minimum at the position of the first atom, the probability

density P (X; 0) develops a maximum corresponding to the preferred distance between particles.

Increasing the number of bosons, this maximum shifts towards larger distances. The dependence

of P (X; 0) on the particle number gives information about the many-body effects induced by the

two-body correlations. Notice that, in the noninteracting case, P (X; 0) does not depend on the

number of particles.
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Chapter 4

FERMIONIC PROPERTIES OF TWO

BOSONS IN A TWO-DIMENSIONAL

HARMONIC TRAP

In this Chapter, we present a comparison between the ground state of the system of two repul-

sively interacting bosons and two noninteracting fermions trapped in a two-dimensional harmonic

potential. The main motivation for extending the analysis of the previous Chapter comes from the

fact that in one-dimensional systems there is the Bose-Fermi mapping theorem, that establishes a

relation between strongly-interacting bosons and noninteracting fermions. Both systems have the

same energy, and the ground-state wave function of the interacting bosonic system can be obtained

by symmetrizing the noninteracting fermionic one by taking its absolute value [17].

However, the theorem does not apply in two or three dimensions. The particularity of one-

dimensional systems is that if a particle is fixed at a point, the space becomes completely separated

in two pieces. Then, another particle cannot move around the whole space without encountering

the fixed one. Although this is not the case in two dimensions, our goal is to analyze whether

strongly-interacting bosons can resemble noninteracting fermions. In the previous Chapter, we have

showed that interacting bosons avoid feeling the repulsive interactions by building correlations in

such a way that the probability of two particles being at the same position vanishes. Therefore,

this mechanism, described by Girardeau in one dimension [17], remains as a possibility in the

two-dimensional case.

As in the previous Chapter, we calculate numerically the ground state of the interacting two-

boson system by diagonalizing the Hamiltonian in a suitable basis and also by using an appropriate

49
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variational ansatz. Here, we concentrate on studying the dependence of the ground-state properties

on the range and strength of the atom-atom interaction. In particular, we are interested in the

strongly-interacting and the short-range limits.

First, in Sec. 4.1, we introduce the different analytic wave functions, which describe two nonin-

teracting bosons, two noninteracting fermions, and the corresponding symmetrized wave function.

Moreover, we present a modified version of the variational Jastrow ansatz given in the previous

Chapter. Second, in Sec. 4.2, we analyze the behavior of the ground state energy and its differ-

ent contributions. Finally, in Sec. 4.3, we show the interaction effects on the density profile and

pair-correlation functions.

4.1 Analytic wave functions

The main issue is to understand how the two-boson system changes its structure as we increase

the interaction strength or reduce its range. In particular, we want to discern whether any type

of fermionization takes place in the strongly-interacting limit. To enlighten this discussion, we will

compare the properties of the interacting two-boson system, with those of (i) the wave function of

the ground state of two bosons in the noninteracting limit; (ii) the wave function of the ground state

of two fermions in the noninteracting limit; and (iii) the wave function obtained by symmetrizing

the previous one by taking its absolute value.

4.1.1 Noninteracting ground-state wave functions

The ground state of two noninteracting bosons described by the Hamiltonian in Eq. (3.2) is the

nondegenerate state

ΨB(R,ϕR, r, ϕr) =
1

π
e−R2− r2

4 . (4.1)

This wave function has zero total angular momenta. Its energy is computed taking into account

that it is an eigenfunction of the Hamiltonian in the noninteracting case, H0ΨB = 2ΨB. The

expectation value of the interaction term is given by:

〈Vint〉ΨB
=

g

πs2
4π2

∫ ∞

0
RdR

∫ ∞

0
r dr

1

π2
e−2R2− r2

2 e−
r2

s2 =
g

π(2 + s2)
. (4.2)

Then, the expectation value of the Hamiltonian with this wave function reads

EB = 2 +
g

π(s2 + 2)
, (4.3)

which is the first-order perturbation theory prediction for the energy of the system, given in

Eq. (3.11). It is worth mentioning that the center-of-mass wave function contained in Eq. (4.1) is
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the eigenfunction of Hcm with eigenvalue 1 energy unit.

For the noninteracting two-fermion system, the ground state would be two-fold degenerate,

with a zero center-of-mass angular momentum, and the third component of the relative angular

momentum equal to 1 or −1:

Ψ±
F (R,ϕR, r, ϕr) =

1

π
√
2
e−R2− r2

4 re±iϕr . (4.4)

These two states are also eigenstates of H0, H0Ψ
±
F = 3Ψ±

F . The expectation value of the interaction

energy in this case is

〈Vint〉ΨF
=

g

πs2
4π2

∫ ∞

0
RdR

∫ ∞

0
r dr

1

2π2
e−2R2− r2

2 r2e−
r2

s2 = g
s2

π(2 + s2)2
, (4.5)

and the total energy is

EF = 3 +
gs2

π(s2 + 2)2
. (4.6)

Let us note that the contribution from the interaction vanishes, as it should, for the zero-range

case, s = 0.

4.1.2 Bosonized two-fermion wave function

If we symmetrize the previous wave functions by taking their absolute value, Ψ|F | ≡ |Ψ±
F |, we

obtain a bosonic wave function, as in 1D, that does not allow bosons to sit at the same position.

Notice that both fermionic wave functions, (4.4), are transformed into the same symmetric one:

Ψ|F |(R,ϕR, r, ϕr) =
1

π
√
2
re−R2− r2

4 , (4.7)

which has no angular dependence. The main effect of this symmetrization is that Ψ|F | is not

an eigenfunction of H0, and the expectation value of the energy in the noninteracting case is

〈H0〉Ψ|F |
= 5/2. The interaction energy is the same as before, 〈Vint〉Ψ|F |

= (gs2)/(π(s2 + 2)2), and

the expectation value of the total energy in this case is

E|F | =
5

2
+

gs2

π(s2 + 2)2
. (4.8)

The contribution of H0 to the previous expectation value, 5/2, is not equally distributed between

kinetic and harmonic potential energies. Therefore, they do not fulfill the virial theorem. However,

this is not a necessary condition, since Ψ|F | is not an eigenfunction of H0. The expectation values

of the center-of-mass kinetic and harmonic potential energies are 1/2 each one, in agreement with

the fact that the center-of-mass part of Ψ|F | is an eigenfunction of Hcm and, consequently, it verifies
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the virial theorem, 〈Kcm〉Ψ|F |
= 〈Vho

cm〉Ψ|F |
= 1/2. To calculate the kinetic energy of Hr , we use

the operator

Kr = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂ϕ2
r

, (4.9)

which results in

KrΨ|F | = −e
−R2− r2

4 (4− 8r2 + r4)

4π
√
2r

. (4.10)

The expectation value then is

〈Kr〉Ψ|F |
= −4π2

∫ ∞

0
r dr

∫ ∞

0
RdR

e−2R2− r2

2 (4− 8r2 + r4)

8π2
= 1/2, (4.11)

and, for the harmonic potential relative energy,

〈Vr
ho〉Ψ|F |

= 4π2
∫ ∞

0
r dr

∫ ∞

0
RdR

1

2π2
e−2R2− r2

2 r2
r2

4
= 1. (4.12)

Adding the relative and center-of-mass contributions, we have that the total kinetic energy is

〈K〉Ψ|F |
= 1, and the total harmonic potential energy is 〈Vho〉Ψ|F |

= 3/2.

Actually, Ψ|F | can be shown to be the best variational wave function, in the strongly-interacting

limit, of the form

Φa(R,ϕR, r, ϕr) =
1

π
√

2aΓ(1 + a)
e−R2− r2

4 ra. (4.13)

For a = 1, we recover Ψ|F | = Φ1. This set of functions are eigenfunctions of the center-of-mass

Hamiltonian, HcmΦa = 1Φa. The relative kinetic energy results to be independent of the parameter

a, 〈Kr〉Φa = 1/2, Therefore, 〈Kr〉Ψ|F |
= 〈Kr〉Φa . On the other hand, the expectation value of the

relative harmonic oscillator potential energy is 〈Vr
ho〉Φa = (1+a)/2 and the interaction energy reads

〈Vint〉Φa = g

(

1 + 2
s2

)−a

π(2 + s2)
, (4.14)

which tends to zero when s → 0 only if a > 1. The total variational energy depending on a and s

is

E(a, s)Φa = 1 +
1

2
+

1 + a

2
+ g

(

1 + 2
s2

)−a

π(2 + s2)
. (4.15)

The energy minimum, in the short-range limit (s → 0) and for strong interactions (g → ∞), is

reached when a = 1, which is precisely the case Ψ|F | = Φ1 and the energy is E(a = 1, s → 0)Φ1 =

E|F |(s → 0) = 5/2.
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4.1.3 Correlated variational two-boson Jastrow-type wave function

In the previous Chapter, we introduced in Eq. (3.22) a two-body-correlated variational many-body

ansatz of Jastrow type for the N -boson system. With that wave function, we obtained very good

upper bounds to the ground-state energies of the systems of N = 2, 3, and 4 bosons. An improved

version of that ansatz for the two-boson system is the following one:

ΨJ(R,ϕR, r, ϕr) = NJ e
−R2−β r2

4

(

1− ae−br2
)

, (4.16)

which has no angular dependence, being NJ a normalization constant given by:

NJ =
1

√

1
β + a

(

− 2
β+2b +

a
β+4b

)

π

. (4.17)

This last wave function is an eigenstate of the center-of-mass Hamiltonian, i.e. HcmΨJ = ΨJ ,

and the kinetic and harmonic potential energies of this part are equal, 〈Kcm〉ΨJ
= 〈Vho

cm〉ΨJ
= 1/2.

The variational parameters only change the relative part of the wave function. The meaning of a

and b is the same as in the previous Chapter. These two parameters characterize the two-body

correlations in the wave function. β accounts for the interaction-induced mean-field effects in the

relative motion by changing the width of the relative Gaussian profile.

The variational energy is written as:

EJ (β, a, b) = 1 + 〈Vho
r 〉ΨJ

+ 〈Kr〉ΨJ
+ 〈Vint〉ΨJ

(4.18)

where the first term is the center-of-mass energy. The relative harmonic potential and relative

kinetic energies are, respectively,

〈Vho
r 〉ΨJ

= N2
Jπ

2

[

1

2β2
+

a2

2(β + 4b)2
− a

(β + 2b)2

]

, (4.19)

and

〈Kr〉ΨJ
= N2

Jπ
2

[

(a− 1)2(β2 + 4βb) + 4(a2 + 1)b2

2(β + 2b)2

]

; (4.20)

while the interaction energy reads:

〈Vint〉ΨJ
= N2

Jgπ

[

1

2 + βs2
− 2a

2 + (β + 2b)s2
+

a2

2 + (β + 4b)s2

]

. (4.21)

The minimization of EJ is performed numerically with Mathematica, for a given s and g. The

resulting optimal parameters, β∗, a∗, and b∗, are used to calculate the remaining quantities.
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4.2 Ground-state energy analysis

4.2.1 Dependence on the interaction strength for a short-range interaction

In this section we investigate the effects of increasing the interaction strength, g, for a fixed range,

s = 0.01, in the ground-state energy of the two-boson system. To this end, first, we compute

the energy contributions to the ground-state energy, and, afterwards, we discuss the limiting cases

using the analytical wave functions introduced previously. In particular, we are interested in the

case where the range of the interaction is small compared with the harmonic oscillator length. On

the one hand, it is representative of the situation in which the diagonalization method is no longer

competitive because it requires a very large basis. On the other hand, this is the situation in which

we can test if Ψ|F |, that has the appropriate form to avoid a contact interaction, gives a good upper

bound to the ground-state energy.

In Fig. 4.1, we present the ground-state energies provided by the diagonalization of the Hamil-

tonian matrix and by the minimization of the expectation value of H with the Jastrow-type wave
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Figure 4.1: Ground state energy of two interacting bosons in a two-dimensional harmonic trap,

E0, depending on the interaction strength, g, for a fixed and small interaction range, s = 0.01.

We present the harmonic potential, 〈Vho〉, the kinetic, 〈K〉, and the interaction, 〈Vint〉, energies.

Symbols: Energies computed by numerical diagonalization of the Hamiltonian matrix. Lines:

Energies computed with the variational ansatz ΨJ given in Eq. (4.16).
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Figure 4.2: Variational parameters that minimize the energy EJ for a fixed range, s = 0.01, as a

function of g.

function in Eq. (4.16). In the limit of g = 0, this function reduces to the wave function in Eq. (4.1).

Then, the total energy is 2, arising from two equal contributions from the kinetic and potential

energy. The most relevant contribution to the energy increase comes from the harmonic poten-

tial part. The kinetic energy remains close to 1 for g < 1 and then its value increases smoothly.

Therefore, we can say that, at the beginning, the two particles avoid feeling the interaction mostly

by separating one from the other. This reflects in an increase of the harmonic potential energy

because they are further away from the center of the trap.

For small g values, the interaction part of the energy increases linearly with g, reaches a maxi-

mum at g ≈ 1 and afterwards, decreases slowly. Finally, it remains mostly constant, getting close to

zero for larger values of g. Since the interaction term in the Hamiltonian is proportional to g, this

behavior reflects that the particles avoid feeling the interaction by building quantum correlations

in the wave function of the ground state.

In the present situation, the diagonalization of the Hamiltonian and the minimization of the

energy of ΨJ , given in Eq. (4.18), disagree when g is large. We have to remark that both methods

give an upper bound to the exact ground-state energy, since both are variational. The comparison

is depicted in Fig. 4.1. Although we have used a Hilbert space of dimension D2B = 23256, corre-

sponding to M = 496 single-particle modes, this is not sufficient to obtain well-converged results
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for g > 2. The Jastrow wave function, ΨJ , provides a better upper bound to the ground-state

energy. Most of the discrepancy between the two estimations comes from the fact that the har-

monic potential energy obtained by diagonalizing is overestimated. Notice that, the kinetic and

the interaction energies computed with both methods are fairly similar.

One advantage of describing the ground state with ΨJ is that the variational parameters have

a clean physical interpretation. The optimal values, that minimize the energy EJ , are plotted in

Fig. 4.2. In accordance with the previous arguments, at small values of g, β∗ is decreasing in order

to allow the atoms to be further apart, whereas a∗ is close to 0. The presence of correlations is

signaled by the increasing value of a∗ when g is increased, that goes from 0 in the noninteracting

case and approaches 1 at g = 20. The fact that the range is small is reflected in a large value of

b∗. This parameter is inversely related to the two-body correlation length, so 1/b∗ is proportional

to s in a first-order approximation. Consequently, in this case, the correlations between the two

particles are decaying very rapidly as a function of the distance between them.

The comparison with the other analytical wave functions is done considering E0 given by the
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Figure 4.3: Ground state energy of two interacting bosons in a harmonic trap, E0, depending on

the interaction strength, g, and for a fixed range, s, computed by minimizing EJ . This value is

compared with the expectation value of the energy of the wave functions of two noninteracting

bosons, EB , two noninteracting fermions, EF , and the corresponding symmetrized wave function,

E|F |, which are given in Eqs. (4.3), (4.6), and (4.8), respectively.
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minimized value of EJ . In Fig. 4.3, we see how this energy goes from EB for g ≃ 0 to be close to

E|F | when g becomes large. EB, EF and E|F | depend linearly on the interaction strength g (see,

respectively, Eqs. (4.3), (4.6), (4.8)). However, the slope of the lines corresponding to EF and E|F |

in Fig. 4.3 is positive but very small, due to the small value of s.

In the strongly-interacting limit, in Fig. 4.3, we see that the upper-bound provided by Ψ|F | to

the ground-state energy is closer to it than the one provided by ΨF , but it is still far from being

compatible with E0. Regarding the energy contributions of the kinetic and the potential energies

corresponding to Ψ|F |, they are 1 and 3/2, respectively, and do not coincide with the values found

for the ground state for s = 0.01 (see Fig. 4.1). However, in the next section, we will see that,

depending on the range of the interaction, the bosonized wave function, Ψ|F |, can describe properly

some of the features of the interacting two-boson system.

4.2.2 Dependence on the interaction range for a large interaction strength

In this section, we fix the interaction strength and we explore the dependence of the energy on the

range, s, of the interaction. The main goal is to see if tuning s, the interacting two-boson system

can be described by the bosonized wave function Ψ|F |. In other words, we want to discern if there

exists a regime where the ground-state energy is well-approximated by E|F |, paying attention not

only to the total energy but also to the partial energy contributions.

In Fig. 4.4, we compare the ground state energy of the interacting two-boson system computed

numerically, both diagonalizing and minimizing EJ , with the expectation values given by the an-

alytic wave functions. For a fixed and large interaction strength, g = 20, reducing the range of

the interaction results in a decrease of the ground state energy of the system. The same kind of

behavior is observed for ΨF and its symmetrized wave function, Ψ|F |. Since their dependence on

the interaction is the same, the shift in energy between them is due to the noninteracting part of

the Hamiltonian. Differently, the energy for ΨB increases for decreasing s.

When using ΨJ , the effect of changing the interaction range with g = 20 is reflected in the

optimal variational parameters, that are shown in Fig. 4.5. The most sensitive one is β∗. In the

short-range limit, when s → 0, 1/b∗ goes also to 0 as the interaction is only important at short

distances. When the interaction range increases, the correlations between the particles extend to

larger distances, which is reflected in a rapid increase of 1/b∗ with increasing s. β∗ also becomes

larger at larger values of the range of the interaction. The value of a∗ is not notably changing with

s and is always close to 1, as we are in the large g limit, g = 20.

We observe, in Fig. 4.4, that in the whole interval of values of s, E|F | is a good upper-bound

to the ground-state energy. In particular, when s ∈ [0.3, 0.5] the energy given by the bosonized

wave function is very close to E0. Moreover, in Fig. 4.6, we observe that the way the energy is
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Figure 4.4: Ground state energy of two interacting bosons in a harmonic trap, E0, depending on

the interaction range, s, and for a fixed interaction strength, g. Black dots: Energies computed

by numerical diagonalization of the Hamiltonian matrix. Solid black line: Energies computed

with the variational ansatz ΨJ given in Eq. (4.16). The numerical results are compared with

the expectation value of the energy of the wave functions of two noninteracting bosons, EB , two

noninteracting fermions, EF , and its symmetrized wave function, E|F |, which are given, respectively,

in Eqs. (4.3), (4.6), and (4.8).

distributed is comparable to the different energy contributions to E|F |. For instance, at s = 0.5,

we find that 〈Vho〉 ≈ 1.50, 〈K〉 ≈ 1.07, and 〈V int〉 ≈ 0.22, and the corresponding values of Ψ|F | are

very similar: 3/2 for the harmonic potential energy and 1 for the kinetic energy. Regarding the

interaction energy, we get 0.31 for the bosonized wave function. That value is larger than the one

corresponding to the ground state and it is the main responsible for the difference between E|F |

and E0.
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Figure 4.5: Variational parameters that minimize the energy EJ for a fixed interaction strength,

g = 20, as a function of s.
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Figure 4.6: Ground state energy of two interacting bosons in a harmonic trap, E0, depending on the

interaction range, s, for a fixed interaction strength, g. We also show the different contributions,

〈Vho〉, 〈K〉, and 〈V int〉. Symbols: Energies computed by diagonalization. Lines: Energies computed

with the variational ansatz ΨJ given in Eq. (4.16).
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4.3 Spatial density profiles and two-body correlation functions

In this section, we compare the density profile and the pair correlation function of the ground

state of the trapped two-boson system, with and without interactions, with the ones provided by

ΨF and Ψ|F |. The density operator and the pair correlation operator were defined in Eq. (3.42)

and in Eq. (3.47) of the previous Chapter, respectively. Since we consider the case of two identical

particles, we compute the density profile and the pair correlation function for a given state Ψ(~x1, ~x2),

respectively, as follows: ρ(~x) =
∫

d~x2 |Ψ(~x, ~x2)|2, and η (~x, ~x′) = |Ψ(~x, ~x′)|2 .

Using Cartesian coordinates, the wave functions of Section 4.1 read

ΨB(~x1, ~x2) =
1

π
e−

1
2
(x2

1+y21+x2
2+y22) , (4.22)

Ψ±
F (~x1, ~x2) =

1

π
√
2
e−

1
2
(x2

1+y21+x2
2+y22) ((x1 − x2)± i(y1 − y2)) , (4.23)

Ψ|F |(~x1, ~x2) =
1

π
√
2
e−

1
2
(x2

1+y21+x2
2+y22)

√

(x1 − x2)2 + (y1 − y2)2, (4.24)

ΨJ(~x1, ~x2) = NJe
− 1+β

4
(x2

1+y21+x2
2+y22)e−

1−β
2

(x1x2+y1y2)
(

1− ae−b((x1−x2)2+(y1−y2)2)
)

.(4.25)

The corresponding density profiles and pair correlation functions read

ρB(~x) =
1

π
e−(x2+y2), (4.26)

ηB
(

~x, ~x′
)

=
1

π2
e−(x2+y2+x′2+y′2), (4.27)

ρF (~x) = ρ|F |(~x) =
1

2π
e−(x2+y2)(1 + x2 + y2), (4.28)

ηF (~x, ~x
′) = η|F |(~x, ~x

′) =
1

2π2
e−(x2+y2+x′2+y′2)

(

(x− x′)2 + (y − y′)2
)

, (4.29)

ρJ(~x) = N2
J2πe

−2(x2+y2)





e
2(x2+y2)

1+β

1 + β
− 2ae

2(x2+y2)
1+β+2b

1 + β + 2b
+
a2e

2(x2+y2)
1+β+4b

1 + β + 4b



 , (4.30)

ηJ(~x, ~x
′) = N2

Je
− 1+β

2
(x2+y2+x′2+y′2)e(β−1)(xx′+yy′)

(

1− ae−b((x−x′)2+(y−y′)2)
)2

. (4.31)

Note that both the fermionic and bosonized wave functions give the same density and pair corre-

lation as |Ψ|F |(~x1, ~x2)|2 = |Ψ±
F (~x1, ~x2)|2.

From the pair correlation function and the density profile, we compute the probability of finding

a particle at a distance X ≡
√

x2 + y2 once we have located the other at the origin, defined in

Eq. (3.48). We get the following distributions:

PB(X; 0) =
1

π
e−X2

, (4.32)

PF (X; 0) = P|F |(X; 0) =
1

π
e−X2

X2, (4.33)

PJ(X; 0) =
e−

1+β
2

X2
(

1− ae−bX2
)2

2π
(

1
1+β − 2a

1+β+2b +
a2

1+β+4b

) . (4.34)



4.3. Spatial density profiles and two-body correlation functions 61

In Fig. 4.7, panels (a) and (c), we compare the density profiles obtained numerically for the

ground state of the interacting two-boson system with the density profile corresponding to the

noninteracting case and to the noninteracting two-fermion system. We show that, for a given

range, there is an interaction strength such that the density profile of the interacting two-boson

system is very well approximated by the noninteracting two-fermion density profile. The smaller the

interaction range is, the greater the interaction strength is for which the density profiles coincide.

Therefore, in the short-range limit a very strong interaction strength would be required to reproduce

the density profile of two interacting bosons by using the density profile of two noninteracting

fermions.

In the case of the probability of finding a particle in space once we have found the other at the

origin, we observe, in Fig. 4.7, panels (b) and (d), that the numerically computed probabilities for

the interacting two-boson system resemble the corresponding ones for two noninteracting fermions.

However, the maximum peak does not coincide, and it is closer to the center of the trap for two

noninteracting fermions.

The effect of decreasing the interaction range for a fixed interaction strength is shown in Fig. 4.8.

The opposite situation, having a fixed range and a varying interaction strength, was studied in the

previous Chapter. Regarding the density profile, in panels (a) and (c), we see that when the range

decreases the profile approaches the one corresponding to noninteracting bosons. That is explained

because the interaction strength, g = 20, is not sufficiently strong for the cases with the smallest

ranges depicted. For instance, comparing with previous Fig. 4.7, in the case of s = 0.3 the profile

ρF is approached at very large values of g, i.e., g = 50.

Looking at the probabilities P (X; 0), for the larger values of s depicted in panels (b) and (d) of

Fig. 4.8, the fermionic PF is qualitatively reproduced, as there is a maximum peak at X ≈ 1 and

the probability of finding the two bosons together, at X = 0, vanishes. However, when the range is

further reduced, in panel (d) we see that P (X; 0) becomes closer to the one of the noninteracting

two-boson system, PB . The value of the interaction strength, g = 20, is sufficiently large in order to

avoid finding the atoms at the same position but a stronger interaction strength would be necessary

to find them more separately.
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Figure 4.7: (a) Density profiles of two noninteracting bosons, ρB , two noninteracting fermions,

ρF , and three profiles computed by numerical diagonalization for different ranges and interaction

strengths for the interacting two-boson system. (b) Probability of finding a particle at a distance

X from the origin once a particle is found at X = 0 under the same conditions. In (c) and (d)

the same cases as in (a) and (b), respectively, but computed with the variational parameters that

minimize EJ replaced in Eq. (4.30) and Eq. (4.34), respectively.
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Figure 4.8: (a) Density profiles of two noninteracting bosons, ρB , two noninteracting fermions,

ρF , and profiles computed by numerical diagonalization for different ranges fixing the interaction

strength. (b) Probability of finding a particle at a distance X from the origin once a particle

is found at X = 0 under the same conditions. In (c) and (d) the same cases as in (a) and (b),

respectively, but computed with the variational parameters that minimize EJ replaced in Eq. (4.30)

and Eq. (4.34), respectively. In (c) and (d), more cases are shown.
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Chapter 5

FEW-BOSON LOCALIZATION IN A

CONTINUUM WITH SPECKLE DISORDER

In the previous Chapters, we have studied the effect of interactions in few-boson systems in two

dimensions. The main result was the appearance of correlations in the system. In this Chapter we

explore the effect of interactions in a fairly different setup. We apply the diagonalization method

described in Chapter 2 to study the phenomenon of localization in a one-dimensional system of

interacting bosons. The localization is present at the single-particle level and occurs due to the

presence of disorder, which is introduced by a correlated random potential in space. We discern if

the system is localized or not through the statistical analysis of the spacings between the energy

levels of the system over several different speckle potentials. Our goal is to determine if the few-

boson system remains localized in the presence of a repulsive contact potential or the interactions

delocalize it. The model we consider is tailored to describe a setup that can be implemented in

cold-atom experiments [124,125].

The analysis of the energy-level spacing statistics is familiar from quantum chaos and random

matrix theories [126,127]. In this framework, one discerns delocalized ergodic states from localized

states by identifying the Wigner-Dyson statistical distribution and the Poisson distribution of the

level spacings, respectively. This approach has been commonly adopted in studies on single-particle

Anderson localization in discrete lattice models [128–131], and more recently also in continuous-

space (single-particle) models relevant for cold-atoms experiments [132,133]. Chiefly, this approach

has been established as one of the most sound criteria to identify many-body localized phases [134],

since it allows one to identify the breakdown of ergodicity independently of the specific mechanism

causing localization, including, e.g, localization in Fock space. In this context, it has been applied

65
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to one-dimensional discrete systems, including spin models [135–138], spinless fermion models [134,

139], and recently also to bosonic models [140,141].

In Sec. 5.1 we describe the continuous-space model with speckle disorder and the computational

approach we adopt, analyzing in particular the convergence of the energy levels as a function of the

basis size. In Sec. 5.2, we focus on a single particle in the speckle disorder. First, we analyze the

spatial structure of the eigenstates of a single speckle potential. In second place, we present the

statistical level-spacing analysis and apply it to the single-particle case in order to identify a proper

localization phenomenon by tuning the speckle parameters. In this section, we also consider the

noninteracting system of many-bosons. We show that the localization criterion has to be applied

with care and that a possible strategy is to use a randomness filter. The results for two-boson and

three-boson systems are presented in Sec. 5.3. Our analysis consists in determining if the system

remains localized when the strength of the interaction is increased.

5.1 The Hamiltonian of interacting bosons in a speckle potential

In the general case, the model we consider consists in N identical bosons of mass m in a one-

dimensional box of size L, with a random external field V (x) that describes a blue-detuned optical

speckle field [142]. The Hamiltonian reads,

H =
N
∑

i=1

(

− ~
2

2m

∂2

∂x2i
+ V (xi)

)

+
N
∑

i<j

v(|xi − xj |). (5.1)

The variables xi, with i = 1, ... N , indicate the particle coordinates. Hard-wall boundary conditions

are considered, meaning that the wave functions vanish at the system boundaries. v(|xi − xj |)
indicates a zero-range two-body interaction potential between particles i and j, defined as,

v(|xi − xj |) = gδ(|xi − xj|) . (5.2)

The coupling parameter g, which fixes the interaction strength, is related to the one-dimensional

scattering length, a0, as g = −~
2/(ma0). In this work, we consider a repulsive interaction, g > 0.

The one-dimensional Hamiltonian (5.1) accurately describes ultracold gases in one-dimensional

waveguides with a tight radial confinement, and the interaction parameter g can be tuned either

by varying the radial confining strength and/or tuning the three-dimensional scattering length via

Feshbach resonances [143].

The external field V (x) describes the potential experienced by alkali atoms exposed to optical

speckle fields. Such fields are generated when coherent light passes through a rough (semitrans-

parent) surface. An efficient numerical algorithm to create speckle fields in computer simulations

has been described in Refs. [144–147], and we refer the readers interested in more details about the

algorithm to those references.
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Fully developed speckle fields in large systems are characterized by an exponential probability

distribution of the local intensities V , which reads P (V ) = exp(−V/V0)/V0 for V > 0, and P (V ) = 0

for V < 0 [142]. Here, V0 > 0 is the average intensity of the field, and coincides with its standard

deviation. V0 is therefore the unique parameter that characterizes the disorder strength.

The two-point spatial correlation function of local intensities of a speckle field depends on the

distance d between two given points and reads [145],

Γ(d) =
〈V (x+ d)V (x)〉

V 2
0

− 1 = [sin(dπ/ℓ)/(dπ/ℓ)]2 . (5.3)

Here, the brackets 〈· · · 〉 indicate spatial averages. Notice that in a large enough system, the speckle

field is self-averaging, meaning that spatial averages can be replaced by averages of local values

over many realizations of the speckle field. The length scale ℓ is related to the inverse of the

aperture width of the optical apparatus employed to create the optical speckle field and to focus

it onto the atomic cloud. It characterizes the typical distance over which the local intensities loose

statistical correlations, or, in other words, the typical size of the speckle grains. In the following,

we will use this spatial correlation length as unit of lengths, setting ℓ = 1. This length scale also

allows one to define a characteristic energy scale, often referred to as correlation energy, which

reads Ec = ~
2/(mℓ2). This quantity will be used in the following as the unit for energies, unless

explicitly stated. The interaction parameter g will be expressed in units of ~2/(ℓm).

5.1.1 The second-quantized Hamiltonian

The few-body problem is solved by direct diagonalization of the second-quantized many-body

Hamiltonian in the truncated many-body basis introduced in Sec. 2.6. The Hamiltonian (5.1)

is written in second-quantization as the sum of three terms:

Ĥ = K̂ + V̂ + v̂ . (5.4)

Each term is written using the creation and annihilation operators introduced in Chapter 2, â†i and

âj , that create or annihilate bosons in the single-particle states written in Eq. (2.39), which are the

eigenstates of the free particle moving in a one dimensional box with hard walls. The box size is

chosen large enough compared to the spatial correlation length ℓ. In this basis, the kinetic energy,

K̂, has diagonal form,

K̂ =
∑

k

k2π2

2L2
â†kâk . (5.5)

The speckle potential reads

V̂ =
∑

kj

Vkj â
†
kâj , (5.6)

with

Vkj =

∫ L
2

−L
2

dx ψ∗
k(x)V (x)ψj(x) , (5.7)
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Emax M DMB EGS(g = 0) EGS(g = 1) Eh.o.
GS (g = 1)

20 142 7941 7.0266 7.7813 1.3249

40 201 15889 6.8818 7.5954 1.3191

60 246 23836 6.8328 7.5403 1.3167

100 318 39747 6.8309 7.5338 1.3143

120 348 47697 6.8308 7.5319 1.3136

Table 5.1: Convergence of the ground state energy for N = 2: for a given speckle and in the

noninteracting case (forth column) and for g = 1 (fifth column); for an harmonic potential and

g = 1 (sixth column) that should tend to the exact value Eh.o.
GS

∼= 1.30675 [30]. Emax was used to

truncate the many-body Hilbert space using an energy criterion which required M single-particle

states and it corresponds to a many-body Hilbert space dimension DMB . The system size is

L = 100ℓ/
√
2 and in the cases with a harmonic trap we have set

√

~/(mω) = ℓ, i.e., ~ω = Ec. For

the speckle potential V0 = 50Ec.

where ψk(x) was given in Eq. (2.39). These integrals are determined via numerical quadrature

based on the composite five-point Bode’s rule, using a sufficiently fine grid so that the residual

numerical error due to the discretization is negligible.

The interaction term reads

v̂ =
g

2

∑

i,j,k,l

vijklâ
†
i â

†
j âkâl, (5.8)

with

vijkl =
1

2L
(−δi,j+k+l + δi,−j+k+l + δi,j−k+l − δi,−j−k+l

+δi,j+k−l − δi,−j+k−l − δi,j−k−l + δi,−j−k−l) .

(5.9)

Using the many-body basis of Sec. 2.6 translates here into including all states with a kinetic

energy equal or smaller than a given threshold Emax. The energy threshold, Emax, represents an

algorithmic parameter whose role has to be analyzed. In fact, while the computation is exact in

the Emax → ∞ limit, a residual truncation error might occur for a finite Emax value.

Table 5.1 reports the analysis of the convergence with the energy truncation parameter Emax

for a few representative setups. DMB in this table indicates the number of states in the many-body

basis set. Specifically, we consider the ground-state energy of two bosons in the noninteracting

case (g = 0) and with a relatively strong interaction (g = 1). Here the disorder strength is set

to V0 = 50Ec. One notices that with the largest basis set the residual truncation error is much

smaller than 0.1%. While the truncation effect becomes somewhat larger at higher energies, we

consider in this work an energy range where this effect is negligible. An estimate of the accuracy of

our numerical procedure can be obtained by considering the case of two interacting bosons trapped
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Figure 5.1: In panels (a-c), we present some eigenfunctions of the speckle potential, V (x), from

bottom to top, in order of increasing energy in the energy ranges written in the panels. A realization

of the speckle potential with V0 = 50Ec is shown in panel (d). The system size is L = 100ℓ/
√
2.

in a harmonic potential, which was exactly solved in Ref. [30]. We choose a harmonic oscillator

of length ℓ, which is the typical size of the minima in the speckle potential, within our finite box

of size L = 100ℓ/
√
2. For an interaction strength g = 1 we reproduce the exact results up to the

second decimal. This provides a reasonable estimate of the accuracy of our method. Furthermore,

we mention here that the results of the analysis of the (ensemble averaged) level-spacing statistics

are less sensitive to the truncation error than the individual energy levels of a single realization of

the speckle field.
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5.2 Localization in the single-particle case

5.2.1 Eigenstates of a speckle potential

First of all, we start studying the properties of the eigenstates of a single speckle potential that has

been chosen arbitrarily. Fig. 5.1 displays the single-particle wave-functions at low, intermediate,

and relatively high energies, for a given realization of a speckle field of intensity V0 = 50Ec. For

low-energy states, localization typically occurs in rare regions where the disorder creates a deep well

confined by tall barriers. In fact, we observe that the spatial extent where these low-energy states

have large amplitude is typically of the order of the disorder correlation length ℓ, meaning that

they are indeed localized in a single well of the speckle field. However, this spatial extent rapidly

increases as a function of the energy, becoming significantly larger than ℓ. On a qualitative level,

this effect can be observed in Fig. 5.1, noticing that the states at intermediate and at relatively

high energies have large amplitude in several wells of the speckle potential. To quantify this

spatial extent, we compute the participation ratio, which is defined as Pk = 1/
∫

dx |ϕk(x)|4.
For the low-energy states in the Lifshitz tail, we find, again for V0 = 50Ec, 〈Pk〉 ≃ ℓ, indeed

corresponding to trapping in a single deep well. Here the brackets 〈·〉 indicate the average over

many realizations of the speckle field. Instead, for states with energies above the average speckle-

field intensity, e.g., with energy E ≃ 2V0, the spatial extent is 〈Pk〉 ≃ 5ℓ, and it reaches 〈Pk〉 ≃ 11ℓ

at E ≃ 3V0. At even higher energies the participation ratio is of the order of the system size

(here L = 100ℓ/
√
2) and finite-size effects due to the box become dominant. At these energies the

single-particle states are weakly affected by the disorder, since in the finite system the speckle field

typically develops only moderately high peaks, as opposed to an infinite system where a sufficiently

high peak would always occur given that the speckle potential has no upper bound. Clearly, these

finite-size effects have to be avoided (see also the discussion on the analysis of the level-spacing

statistics reported below). The choice of inspecting that localization occurs in a sufficiently small

length scale and in a reasonably broad portion of the energy spectrum, here taken of the order

of the average speckle field intensity V0, is motivated by the aim to address, in the second step,

the effects of interparticle interactions. These will indeed induce population of relatively high-

energy states even when noninteracting bosons would occupy only deeply localized low-lying modes.

In fact, previous lattice calculations predicted that in one dimension the localization length of

two interacting particles can be significantly larger than the spatial extent of the single-particle

states [148]. In three-dimensional (lattice) systems two-particle repulsive interactions could even

induce complete delocalization [149]. One should also consider that in cold-atom experiments the

atomic energy distribution is inevitably broadened by thermal excitations, by interactions, and by

the finite spatial spread of the atomic cloud, meaning that localization effects cannot be observed

if only very few low-energy states are spatially localized. In this regard, it is worth mentioning
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that if one aims at experimentally visualizing the exponentially decaying tails of the single-particle

states, a feature that characterizes Anderson localized systems, it is convenient to consider rather

weak disorder V0 ≈ Ec, since in this regime the spatial extent is much larger than the typical well

size. For example, for a speckle-field intensity V0 = Ec we find Pk ≃ 20ℓ at E = 3V0. In this case,

in order to avoid finite-size effects in the participation-ratio calculation (and also in the analysis of

the level spacing statistics discussed below), a system size larger than L = 1000ℓ/
√
2 is required.

Such system sizes cannot be addressed with the computational technique we employ for interacting

systems, therefore in the following we consider larger disorder strengths where finite size effects can

be more easily suppressed. Anderson localization in strong speckle disorder has been investigated

also in Ref. [150].

It is also worth emphasizing that in an infinite one-dimensional system where the disorder has

no upper bound (like the blue-detuned speckle potential), a classical particle is localized at any

energy E, just like a quantum particle in the same setup [151]. Indeed, a position in space where

V (x) > E always occurs, prohibiting the particle from exploring the whole configuration space,

resulting in a nonergodic behavior. This scenario is different from the one that occurs in two-

dimensional [152] and in three-dimensional systems, where classical particles in a speckle potential

are trapped only if their energy is lower than a finite threshold; above this energy threshold a

(classical) percolation transition takes place. In particular, in three dimensional speckle potentials

the classical percolation threshold turns out to be a tiny fraction of the average speckle-potential

intensity V0 [147, 153]. The mobility edge, i.e. the energy threshold that in three dimensional

quantum systems separates localized states from extended states, is typically much larger than

this classical percolation threshold, meaning that in a broad energy range particles are trapped

purely by quantum mechanical effects. In the one-dimensional setup considered here, instead, both

quantum and classical particles are localized at any energy in the infinite-size limit, meaning that

classical and quantum trapping mechanisms cannot be rigorously separated.

5.2.2 Statistical analysis of the energy-level spacings

The analysis of the statistical distribution of the spacings between consecutive energy levels allows

one to discern localized (i.e., nonergodic) states from delocalized ergodic states. Specifically, local-

ized states are associated to the Poisson distribution of the level spacings, while delocalized states

are associated to the Wigner-Dyson distribution typical of random matrices. An efficient proce-

dure to identify these two distributions consists in determining the average over a large ensemble

of speckle fields of the following ratio of consecutive level spacings [134]:

ri = min

{

Ei+1 − Ei

Ei − Ei−1
,
Ei − Ei−1

Ei+1 − Ei

}

. (5.10)
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Figure 5.2: The value of 〈r〉 averaged over 2000 different speckle instances is shown. In (a) we

compare two cases with different speckle intensity, V0, and in (b) with different system sizes. In

panel (a) L = 100ℓ/
√
2 and in panel (b) V0 = 50Ec. The distribution in energy is computed using

energy windows ∆E = 5Ec. The diagonalization was performed using Hilbert spaces of dimension

1000.

Notice that the ensemble averaging we perform, indicated as 〈r〉, is energy resolved, meaning that

only states within a narrow energy window are considered. This allows us to address possible

scenarios where both localized states and delocalized states occur, but in different sectors of the

energy spectrum. The Poisson distribution translates to the ensemble average 〈r〉 ∼= 0.38629, while

the Wigner-Dyson distribution translates to 〈r〉 ∼= 0.53070 [154].

As discussed above, the scaling theory of Anderson localization [151] predicts that in infinite

one-dimensional disordered systems the localization occurs for any amount of disorder, even if

this amount is vanishingly small. However, in finite-size systems the localization length might be

comparable to the system size, hindering the observation of the Poisson distribution corresponding

to localized systems. This effect is particularly relevant if the disorder is weak or if the energy

window under consideration is high, since the localization length is large in these regimes, as

previously discussed. It is, therefore, pivotal for our purposes to identify a disorder strength and
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Figure 5.3: The lowest single-particle eigenenergies for a given speckle potential determine the

lowest energy levels for the noninteracting many-body system. There are two possible situations:

(a) a small gap between the single-particle ground state (G.S.) and the first excited state (1st); and

(b) a small gap between the first excited state and the second excited state (2nd).

an energy range where the Poisson statistics can be observed in a system size that is feasible for our

computational approach for interacting systems. Fig. 5.2 displays the energy-resolved analysis of

the level-spacings statistics for a few representative setups of the optical speckle field. Specifically,

panel (a) shows 〈r〉 versus E/Ec for a fixed system size and different disorder strengths, while panel

(b) shows data corresponding to different system sizes at a fixed disorder strength. One observes

that, at low energy, the 〈r〉 values precisely agree with the prediction for the Poisson distribution,

indicating that the low-energy states are localized on a sufficiently small length scale. However,

significant deviations occur at higher energies. We attribute them to the finite-size effect discussed

above. In fact, one observes that for larger system sizes the Poisson-distribution result extends to

higher energies. This finding is consistent with the expectation that in an infinite system the whole

energy spectrum would be localized. In the following, we will consider the system size L = 100ℓ/
√
2

and the disorder strength V0 = 50Ec, where the 〈r〉 values precisely correspond to the statistics of

localized systems in a reasonably broad energy range 0 < E . 100Ec. Notice that the upper limit

is twice as large as the average speckle-field intensity V0.

It is worth pointing out that the linear system size of typical cold-atom experiments performed

with optical speckle field is comparable to the system size considered here; it ranges from a few
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tens to around thousand times the speckle correlation length ℓ. Therefore, this analysis also serves

as a guide for experiments on localization phenomena in atomic gases.

5.2.3 Randomness in the noninteracting many-boson system

While the next section is devoted to systems with N = 2 or N = 3 interacting bosons, we address

here the special case of N > 1 noninteracting particles. Clearly, the system properties in this case

can be traced back to the single-particle problem. However, as we discuss here, special care has to

be taken in order to properly extract the correct level spacing statistics.

In fact, in certain circumstances, the N -boson energy-level spacings in the noninteracting limit

take specific, nonrandom values. For instance, for a given realization of the speckle potential,

we can distinguish two possible scenarios, depicted in the two panels of Fig. 5.3, depending on

the relative distances of the first and of the second single-particle levels from the single-particle

ground-state; they are indicated below as ∆1 and ∆2, respectively. For the scenario displayed in

panel (a) of Fig. 5.3, where 2∆1 < ∆2, the three lowest-energy eigenstates of the noninteracting

N-boson system are

|E0〉 = |N, 0, ..., 0〉 ,

|E1〉 = |N − 1, 1, 0, ..., 0〉 ,

|E2〉 = |N − 2, 2, 0, ..., 0〉 ,

(5.11)

and their associated energies are (see Fig. 5.3)

E0 = NEGS ,

E1 = NEGS +∆1,

E2 = NEGS + 2∆1,

(5.12)

where EGS is the single-particle ground state energy. In this situation, the value of r1 associated

to the lowest energy of the system is

r1 =
E1 − E0

E2 − E1
=

∆1

∆1
= 1. (5.13)

One notices that this ratio does not randomly fluctuate for different speckle-field realizations.

In the second scenario (see panel (b) of Fig. 5.3), where 2∆1 > ∆2, the three lowest-energy

eigenstates of the system are

|E0〉 = |N, 0, ..., 0〉 ,

|E1〉 = |N − 1, 1, 0, ..., 0〉 ,

|E2〉 = |N − 1, 0, 1, 0..., 0〉 ,

(5.14)
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Figure 5.4: Mean value of r as a function of E/V0 distributed in energy computed with and

without a randomness filter for the noninteracting two-boson system. The filter removes the values

ri > 0.999.

and their associated energies are

E0 = NEGS,

E1 = NEGS +∆1,

E2 = NEGS +∆2.

(5.15)

Therefore, we have

r1 =
E2 − E1

E1 − E0
=

∆2 −∆1

∆1
. (5.16)

This is a random variable which depends on the level spacings, and one expects it to follow the

Poisson (or eventually the Wigner-Dyson) distribution.

If the data emerging from both scenarios are included in the ensemble average, one obtains,

in the low-energy regime, 〈r〉 values with an upward bias, therefore deviating from the Poisson

statistics even in setups where the single-particle modes are localized on a short length-scale. This

effect, displayed in Fig. 5.4, for the representative setup with N = 2, L = 100ℓ/
√
2 and V0 = 50Ec,

should not be associated to a delocalization phenomenon. For this reason, in our calculations with

N > 1 noninteracting particles we introduce a filter that removes the ri values which are numerically

indistinguishable from ri = 1, i.e. the data corresponding to the first scenario described above.

With this filter, the ensemble-averaged 〈r〉 values agree with the Poisson distribution result within

statistical uncertainties (see Fig. 5.4). As expected, the filter has no effect at moderate to high

energies. It is worth emphasizing that this effect occurs only for noninteracting particles. As soon as
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g > 0, the many-body state is a superposition of many basis states; so, the two scenarios described

above do not apply, and the ri values randomly fluctuate for different speckle field realizations.

5.3 Localization in the repulsively interacting two- and three-boson

systems

We start the discussion on the interacting few-boson setup with a qualitative analysis of the inter-

action effect on the ground-state energy. Specifically, we consider N = 2 bosons in a speckle field

of intensity V0 = 50Ec, in a L = 100ℓ/
√
2 box. As discussed in the previous section, in this setup

the single-particle modes are spatially localized in a broad energy-range 0 < E . 2V0.

In the noninteracting limit, the ground state is the Fock-basis state |2, 0, ... , 0〉, and the corre-

sponding energy equals two times the single-particle ground-state energy. In the first excited state,

one boson is promoted to the first single-particle excited state, obtaining the Fock-basis state

|1, 1, ... , 0〉. The energy levels corresponding to the ground state and to the first excited state

of a speckle field instance are displayed in Fig. 5.5, as a function of the interaction parameter g.

One notices that, while the ground-state energy increases with g, the first excited-state energy is

essentially unaltered. This is due to the fact that in the excited state the two bosons are local-

ized in far apart wells; therefore, the zero-range interaction has an almost negligible effect. In the

strongly interacting limit, g → ∞, the lowest-energy state is |1, 1, ... , 0〉. This scenario is similar

to the Tonks-Girardeau gas, where bosons with infinitely-strong zero-range repulsive interaction

can be mapped to a system of noninteracting indistinguishable fermions, which occupy different

single-particle modes due to the Pauli exclusion principle. Remarkably, the transition between the

noninteracting and the strongly-interacting regimes is extremely sharp. This effect is due to the

long separation between the two lowest-energy minima for this realization of the speckle potential.

For the speckle field instance analyzed in Fig. 5.5, this sharp crossover occurs at g ≈ 2.8. Be-

yond this pseudo-critical point the two-boson system is effectively fermionized, meaning that their

ground-state energy essentially coincides with the one of two identical fermions in the same setup.

Remarkably, this fermionization occurs at strong but finite values of the interaction parameter

g, as opposed to homogeneous systems where bosons fermionize only in the g → ∞ limit, which

corresponds to the standard Tonks-Girardeau gas. Note that in the speckle instances in which the

ground and first excited single particle states are localized in the same minima, the fermionization

would be smoother, in line with, e.g. fermionization in a harmonic potential [155].

For different speckle field instances, this fermionization transition occurs at different values of

the coupling parameter g. Also the energy levels in the noninteracting limit and in the strongly-

interacting limit, as well as in the crossover region, randomly fluctuate. In Fig. 5.6, the average

over many realizations of the speckle field of the two-boson ground-state energy is plotted as a
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Figure 5.5: Energies of the ground state (red solid line) and first excited state (blue short-dashed

line) of the system of N = 2 bosons in the speckle potential of Fig. 5.1, panel (b), as a function of

the interaction strength g. This figure is obtained with M = 636, which results in a DMB = 159069

for an Emax = 400.
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Figure 5.6: Mean value of the ground state energy averaged over Ns = 985 different speckle

potentials as a function of the interaction strength g for the two-boson system. The error bars are

computed as the standard deviation, σE0 =

√

〈E2
0 〉−〈E0〉2
Ns

. The speckle realisations used to produce

this plot are the same as those used in Fig. 5.8.

function of the interaction parameter g. Here, we consider interaction strengths ranging from the

noninteracting limit to the moderately large interaction parameter g = 1. One notices that this

interaction strength is sufficient to shift the ground-state energy away from the noninteracting-
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Figure 5.7: Mean value of the ground state energy averaged over Ns = 250 different speckle

potentials depending on the interaction strength g for the three-boson system. The error bars are

computed as the standard deviation, σE0 =

√

〈E2
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. The speckle realisations used to produce

this plot are the same as those used in Fig. 5.9.

limit result, reaching values in fact closer to the strongly-interacting limit — where the energy of

a noninteracting identical fermions is reached — than to the noninteracting limit.

The same scenario occurs for the N = 3 boson system, which is analyzed in Fig 5.7. In the

following, we focus on the interaction regime 0 6 g 6 1, where any interesting interaction effect

would take place. Stronger interactions require extremely large basis-set sizes, so that it is not

computationally feasible for us to perform averages of many realizations of the speckle field. This

regime of intermediate interaction strength g ≈ 1 is, in fact, the one where one expects to have more

pronounced delocalization effects. Indeed, in the strongly-interacting limit the system properties

are again determined by the single-particle modes. Since the latter are localized for the disorder

strength considered here, one expects the many-body system to be localized, too. This type of re-

entrant behavior has been observed in the cold-atom experiments on many-body localization [60].

The experimentalists indeed found that in the strongly-interacting limit the system is many-body

localized if the corresponding noninteracting system is localized. The experiment was performed

with fermions with two spin states. In this case, in the strongly-interacting limit the system

properties can be mapped to those of a fully polarized (noninteracting) Fermi gas, in analogy with

the Tonks-Girardeau physics in Bose gases.

The analysis of the level-spacings statistics for the interacting two-boson system is displayed in

Fig. 5.8. Specifically, we plot the disorder-averaged 〈r〉 values as a function of E/V0, for different

values of the interaction parameter g. The disorder strength V0 and the linear system size L are

the ones discussed above and in the previous section. We focus on the low-energy regime E . V0.
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The accurate computation of more energy levels for many speckle-field instances, in particular, at

high energies, exceeds our computational resources, due to the large basis sets required.

For the computations of Fig. 5.8 the basis sets includes 23836 states, namely the ones with a

kinetic energy less or equal to Emax = 60Ec; this corresponds to employing M = 246 single-particle

modes. The disorder ensemble includes 985 realizations of the speckle field.

It is clear that the 〈r〉 values are always consistent with the prediction corresponding to the Poisson

distribution of the level spacings, which is associated to nonergodic systems. The statistical uncer-

tainty is larger in the E → 0 limit due to the low density of states in the low energy regime, which

reduces the available statistics. The agreement with the Poisson distribution implies that, for the

range of coupling constant considered here, the zero-range interaction does not induce delocaliza-

tion of the two-boson system. It is possible that a two-body mobility edge, separating low-energy

localized states from high-energy extended states, would occur at higher energies. However, ad-

dressing higher energies requires larger computational resources and it is beyond the scope of the

present Chapter.

The results for the N = 3 bosons systems are shown in Fig. 5.9. Here, the basis-set size is

117977, corresponding to the Fock basis states with a kinetic energy less or equal to Emax = 12Ec,

in turn implying the use of M = 110 single-particle modes. The disorder-ensemble includes 250

realizations of the speckle field. We observe that also in the three-boson system localization is, in

the low energy regime and for the coupling parameters considered here, stable against the effect of

zero-range interactions.
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Figure 5.8: Distribution in energy of 〈r〉 for N = 2 bosons in a 1D box with a speckle potential.

The numerical results with different interaction strengths g, of a contact potential, are compared

with the theoretical value that correspond to a Poisson distribution of the energy gaps.
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Figure 5.9: Distribution in energy of 〈r〉 for N = 3 bosons in a 1D box with a speckle potential for

different interaction strengths. The numerical results are compared with the theoretical predictions

corresponding to a Poisson distribution of the energy gaps.
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Chapter 6

SPIN-ORBIT COUPLING EFFECTS IN A

TWO-DIMENSIONAL HARMONIC TRAP

In this Chapter, as in Chapters 3 and 4, we study a two-dimensional system of bosons in a harmonic

trap. Additionally, in this case, the bosons have an extra degree of freedom, they can be in two

different pseudospin states. Moreover, we include a Rashba-type spin-orbit coupling which acts on

this extra degree of freedom at the single-particle level. The objective is to explore the combined

effects of the interaction and the spin-orbit coupling in the system. The first step is to understand

how the eigenstates of the single-particle system change with the spin-orbit coupling strength and

after to study the two-boson system in several physical situations.

The Chapter is organized as follows. In Sec. 6.1, the ground state of the single-particle system

and the first low-energy states are computed and analyzed. We relate the different energy contribu-

tions and also the expectation values of different kind of spin-orbit coupling terms by applying the

virial theorem. In Sec. 6.2, we study the interacting two-boson system. First, we give the general

second-quantized N -boson Hamiltonian and after we diagonalize it for the N = 2 case. In second

place, we discuss the degeneracy breaking of the ground state. In Sec. 6.3, we analyze the combined

effects of the spin-orbit coupling and a spin-independent repulsive interaction in the spectrum. In

particular, when we vary the spin-orbit coupling strength, we find a crossover in the ground state

characterized by a discontinuity in the energy contributions and a change in the density profiles of

the system.

83
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6.1 The single-particle system

The physics of a particle of mass m in a two-dimensional isotropic harmonic potential of frequency

ω with Rashba type spin-orbit coupling is described by the Hamiltonian

Ĥsp =
1

2
mω2

(

x̂2 + ŷ2
)

+
p̂2x + p̂2y
2m

+
κ2

2m
+
κ

m
(σ̂xp̂x + σ̂y p̂y) , (6.1)

where κ is the spin-orbit coupling constant and σ̂x and σ̂y are Pauli matrices. As we consider a

bosonic system of ultracold spin-0 atoms, the spin part does not refer to the intrinsic spin but

to an internal degree of freedom or pseudospin, for instance, two hyperfine atomic states as in

Ref. [73]. The Hamiltonian is composed by the kinetic energy, K̂ = (p̂2x + p̂2y)/(2m), the harmonic

potential, V̂ho = (m/2)ω2
(

x̂2 + ŷ2
)

, the spin-orbit coupling, V̂so = (κ/m) (σ̂xp̂x + σ̂yp̂y), and the

constant term κ2/(2m). As mentioned in Ref. [99], up to a pseudospin rotation, an alternative and

equivalent form of the Rashba term would be ∝ (σ̂xp̂y − σ̂yp̂x).

From now on, we use harmonic oscillator units, i.e., the energy is measured in units of ~ω and

the length in units of
√

~/(mω). The Hamiltonian in Eq. (6.1) is written in terms of annihilation

operators, âx = (x̂+ ip̂x)/
√
2 and ây = (ŷ+ ip̂y)/

√
2, and the corresponding creation operators, â†x

and â†y, as

Ĥsp = n̂x + n̂y + 1 +
iκ√
2

[

σ̂x

(

â†x − âx

)

+ σ̂y

(

â†y − ây

)]

+
κ2

2
. (6.2)

These operators fulfill the commutation relations [âi, â
†
j ] = δij and [âi, âj ] = [â†i , â

†
j ] = 0, with

i, j = x, y. We have used the operators n̂x = â†xâx and n̂y = â†yây, which account for the number of

quantum excitations. Notice that κ is not a dimensionless parameter in the original Hamiltonian,

Eq. (6.1), and it is written in units of
√
~mω in Eq. (6.2).

The single-particle basis can be labeled as, {|nx, ny,ms〉}, with nx, ny = 0, 1, 2, ... , and ms =

−1, 1, where nx, ny and ms are eigenvalues of n̂x, n̂y and σ̂z, respectively. The matrix elements of

the single-particle Hamiltonian using this basis read

〈i| Ĥsp |j〉 = ǫij +
κ2

2
δi,j , (6.3)

with

ǫij = (nx(i) + ny(i) + 1) δi,j

+
ıκ√
2
δms(i),−ms(j)

(

√

nx(j) + 1 δnx(i),nx(j)+1 δny(i),ny(j) −
√

nx(j) δnx(i),nx(j)−1 δny(i),ny(j)

+ ıms(j)
√

ny(j) + 1 δnx(i),nx(j) δny(i),ny(j)+1 − ıms(j)
√

ny(j) δnx(i),nx(j) δny(i),ny(j)−1

)

(6.4)

and |i〉 ≡ |nx(i), ny(i),ms(i)〉. The index i labels each state of the single-particle basis. The

Hamiltonian matrix is fully diagonalized using the first 5112 states in order of increasing energy ǫii,



6.1. The single-particle system 85

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

E
sp 0

κ

Esp

0,d=6

Esp

0,d=12

Esp
0,pert

Esp
0,κ≫1

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Figure 6.1: Solid black line: Single-particle ground state energy, Esp
0 , of the single-particle Hamilto-

nian in (6.2) computed by numerical diagonalization. Medium-dashed purple line: Esp
0,d=6 given in

Eq. (6.5). Short-dashed green line: Esp
0,d=12 given in Eq. (6.6). Long-dashed red line: Perturbative

energy from Ref. [97], Esp
0,pert, given in Eq. (6.7). Dashed-dotted orange line: Limit value for κ≫ 1,

Esp
0,κ≫1, from Ref. [87], given in Eq. (6.8).

which corresponds to (nx+ny) 6 70 and ms = −1, 1. In this truncated Hilbert space, the energies

obtained are upper bounds to the exact ones. The method is variational, since we diagonalize in a

subspace of the full Hilbert space.

6.1.1 The single-particle ground state

In this section, we explore the transition from the weak spin-orbit coupling regime, κ < 1, to the

strong spin-orbit coupling one, κ ≫ 1, at the single-particle level. Our diagonalization results are

compared with previously derived analytical expressions valid for the k ≫ 1 limit in Ref. [87], with

perturbation theory expressions, k ≪ 1, derived in Ref. [97], and with our own truncated analytic

predictions valid in the k . 1 regime.

In Fig. 6.1 we report the single-particle ground-state energy as a function of κ. The ground

state is in all cases two-fold degenerated. For κ = 0, we recover the harmonic oscillator result,

Esp
0 = 1. As κ is increased, the ground-state energy decreases towards an almost constant value of

Esp
0 ≃ 0.5, which is already reached for κ ≃ 3.

For κ < 1, we derive analytical approximate expressions for the ground state of the single-

particle Hamiltonian and its energy. The variational method consists in truncating the Hilbert

space to a small number of modes (see Appendix D.1 for details). Analytic expressions can be
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obtained truncating to six or twelve modes,

Esp
0,d=6 =

1

2

(

3−
√

4κ2 + 1
)

+
κ2

2
, (6.5)

Esp
0,d=12 = 2−

√

2κ2 + 1 +
κ2

2
. (6.6)

The goodness of these expressions is shown in Fig. 6.1, comparing them with the direct diago-

nalization and also with the perturbative calculations performed in Ref. [97], that we write in our

units as:

Esp
0,pert = 1− 1

2
κ2 +

1

2
κ4 − 2

3
κ6 +

79

72
κ8 − 274

135
κ10 +

130577

32400
κ12. (6.7)

Eq. (6.6) is the best approximation to the full diagonalization results, providing an accurate de-

scription up to κ = 1. The perturbative expression of Ref. [97], Eq. (6.7), reproduces well the

results up to κ ≃ 0.7 while the approximation with six modes already fails for κ ≃ 0.5.

The large κ domain has been studied previously in Refs. [87–91]. In this regime, approximate

expressions for the two-degenerate states that define the ground-state subspace are given in Ref. [87],

together with an expression for the ground-state energy,

Esp
0,κ≫1 =

1

2
+

1

8κ2
. (6.8)

This approximation is in very good agreement with our numerical results for κ > 2 (see Fig. 6.1). In

particular, they correctly capture the limiting value in the spin-orbit dominated regime, Esp
0 → 1/2.

6.1.2 The single-particle energy spectrum

One of the important advantages of direct diagonalization methods is that they also provide, besides

the ground state properties, the low-energy part of the spectrum. The low-energy spectrum of the

single-particle Hamiltonian, Eq. (6.2), is depicted in Fig. 6.2.

In the limiting case of κ = 0, the eigenstates of the Hamiltonian are the eigenstates of two

independent two-dimensional harmonic oscillators, one for each spin component. Therefore, the

energies are Esp
n = n+1 with degeneracy 2(n+1) and n = nx + ny. The case of κ < 1 is analyzed

in Ref. [97], where the exact numerical values are compared with perturbation theory calculations

in κ.

For any value of κ, all energy levels are two-fold Kramers-degenerate because the Hamiltonian is

time-reversal symmetric [88,89,91,92,95]. This degeneracy can be broken by introducing a Zeeman

term [92]. The effect of deforming the trap was considered in Ref. [93], that results in a breaking of

the cylindrical symmetry of the system. In our case, the time-reversal symmetry is preserved and, in

order to distinguish between the pair of degenerate states, we label them with A and B, respectively,

for a given energy Esp. The action of the time reversal operator, T̂ = iσ̂yC [88, 89, 92, 95], with C
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Figure 6.2: Energy spectrum of the single-particle Hamiltonian in Eq. (6.2) depending on the spin-

orbit coupling constant κ. Notice that each energy is doubly degenerate so each line in the plot

represents two equal energies that can be associated to two orthogonal eigenstates. This energy

spectrum is also shown in the left panel of Fig. 1 of Ref. [92] up to κ ≈ 1 and energies up to 20, and

in Fig. 3 of Ref. [97] for the lowest-energy eigenstates. The three-dimensional analogous spectrum

is presented in Fig. 1 of Ref. [90].

the complex conjugation operator, on the two-fold degenerate eigenstates reads

|ψsp
E,B〉 = ı σ̂yC |ψsp

E,A〉 ,

|ψsp
E,A〉 = ı σ̂yC |ψsp

E,B〉 . (6.9)

The eigenstates of the single-particle Hamiltonian can be written in a basis with a well defined

total angular momentum,

Ĵ = Ŝ + L̂, (6.10)

where Ŝ = (σ̂x, σ̂y, σ̂z)/2, and L̂ ≡ r̂ × p̂ = (0, 0, L̂z). The single-particle Hamiltonian commutes

with Ĵ2 and Ĵz. Therefore, the eigenstates of the system can be labeled with the corresponding

quantum numbers, j and jz, respectively, regardless of the value of κ. In particular, in the limiting

case κ≫ 1, an additional radial quantum number, nr, is introduced to describe the eigenstates of

the system (see Ref. [87]) and also the eigenenergies, approximately,

Esp
κ≫1 = nr +

1

2
+

j2z
2κ2

, (6.11)
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Figure 6.3: Solid black lines: Lowest eigenenergies of the single-particle Hamiltonian in Eq. (6.2)

computed by diagonalization. Short-dashed red lines: Approximate energy levels computed with

Eq. (6.11) and nr = 0. Long-dashed blue lines: Approximate energy levels computed with Eq. (6.11)

and nr = 1. Notice that each energy level is doubly degenerate and within each kind of lines the

energy increases by increasing j2z .

with nr = 0, 1, ... , and jz = ml +1/2, with ml = 0,±1, ... . The two-fold degeneracy is reflected in

the fact that the energy depends on j2z , so it is independent of its sign. The eigenstates with the

same radial quantum number, nr, tend to become degenerate with increasing κ, forming an energy

manifold. This kind of physics has been studied in two and three dimensions, where the same type

of Landau-level-like spectrum is found and described in terms of dimensional reduction [87–91].

The approximate expression, Eq. (6.11), works very well for κ ≫ 1, as seen in Fig. 6.3. For

a given value of κ, the lowest eigenenergies are well-described and, as expected, the larger is the

value of κ the better is the approximation for a larger number of energy levels.

6.1.3 Energy contributions

As it has been shown previously, by increasing κ, the system goes from a harmonic oscillator

behavior to a spin-orbit dominated one. The spectral properties are very different in both limits

and feature a particularly involved structure in the intermediate region. To better understand the

spin-orbit effects, we consider now the different energy contributions to the total energy of the

different eigenstates as we vary the value of κ.
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In Fig. 6.4, we show, for the first eigenstates of the single-particle system, how the total energy

is distributed between the different energy contributions. As can be seen, the degeneracy due to

the time-reversal symmetry of the system, that makes all eigenstates two-fold degenerate, is also

reflected in the energy contributions. Each pair of degenerate states has also the same kinetic,

harmonic potential, and spin-orbit coupling energies.

In the κ = 0 limit, the eigenstates obey the equipartition relation valid for the harmonic

oscillator, 〈K〉 = 〈Vho〉 [see Fig. 6.4 panel (a)]. For a sufficiently small value of the spin-orbit

coupling constant, those two contributions are not equal but of the same order of magnitude [see

panels (b) and (c) of Fig. 6.4 for the cases κ = 0.5 and κ = 1, respectively]. Further increasing

the value of κ, the situation changes, and the largest contributions, in absolute value, to the total

energy are clearly the spin-orbit and kinetic parts [see Fig. 6.4 panel (d)]. There are, however,

large cancellations between these two contributions which result in a total energy comparable to

the harmonic oscillator part. Further insights into this energy decomposition and a nontrivial test

to our numerical method is provided by the virial theorem (see Appendix E),

2 〈ψsp
E | V̂ho |ψsp

E 〉 − 2 〈ψsp
E | K̂ |ψsp

E 〉 − 〈ψsp
E | V̂so |ψsp

E 〉 = 0 . (6.12)

For all the states considered, we have checked that the virial theorem energy relation is fulfilled,

i.e., the left part of Eq. (6.12) represents less than 1% of Esp. Actually, the cancellation needed

comes from 〈K〉 and 〈Vho〉 for κ = 0 and from 〈K〉 and 〈Vso〉 in the large κ domain.

6.1.4 Expectation value of the spin-orbit potential

The term that commonly appears in atomic and nuclear physics as spin-orbit coupling is propor-

tional to L̂zσ̂z. The main difference between that kind of term and the Rashba spin-orbit is that in

one case the spin is coupled to the angular momentum and in the other to the linear momentum.

However, we can relate the expectation values of both types of spin-orbit coupling terms,

〈ψsp
E | V̂so |ψsp

E 〉 = −2κ2
(

1 + 〈ψsp
E | L̂zσ̂z |ψsp

E 〉
)

. (6.13)

The eigenstates of the single-particle system obtained by exact diagonalization, whose energies are

shown in Fig. 6.4, fulfill the previous relation, within a numerical error of less than a 1% in the

difference between both sides of Eq. (6.13).

The relation between the expectation values of the two kinds of spin-orbit terms is not a

particularity of the pure Rashba case, it also works in a more general case, i.e. a mixture of Rashba

and Dresselhaus spin-orbit couplings. Moreover, this property does not depend on the external

trapping potential. The derivation of the relation in Eq. (6.13) is presented in Appendix E, where

we also generalize it and demonstrate its independence of the external trap.
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Figure 6.4: Energy contributions to the eigenenergies, Esp = 〈K̂〉 + 〈V̂so〉 + 〈V̂ho〉 + κ2

2 , for the

first 100 eigenstates of the Hamiltonian in Eq. (6.2), labeled with q = 1, ... , 100. The spin-orbit

coupling constant, κ, increases going from panel (a) to panel (d). Notice that each panel of this

figure corresponds to a vertical cut in Fig. 6.2. In panel (a), 〈K̂〉 and 〈V̂ho〉 coincide.
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6.2 The two-boson system

In this section, we turn to the interacting few-body system. We first present our formalism which

is developed for the general case of N interacting bosons. Afterwards, we concentrate on the

two-boson case.

Let us thus start with a system of N interacting identical bosons trapped by an isotropic

harmonic potential with Rashba spin-orbit coupling. The N -boson Hamiltonian reads

Ĥ = Ĥ0 + Ĥint +
Nκ2

2
. (6.14)

The first part contains the total harmonic potential energy, V̂ T
ho, kinetic energy, K̂T , and spin-orbit

energy, V̂ T
so ,

Ĥ0 = V̂ T
ho + K̂T + V̂ T

so , (6.15)

with V̂ T
ho = (1/2)

∑N
i=1 x̂

2
i , K̂

T = (1/2)
∑N

i=1 p̂
2
i , and V̂ T

so = κ
∑N

i=1 (σ̂xi
p̂xi

+ σ̂yi p̂yi).

We model the atom-atom interaction with the Gaussian potential introduced in Sec. 3.2 char-

acterized by a finite range s independent of the spin state and, in the present case, an interaction

strength that can vary depending on the spin [97]. In this way, the interaction part is separated in

three contributions,

Ĥint = Ĥ↑↑ + Ĥ↓↓ + Ĥ↑↓, (6.16)

where,

Ĥ↑↑ =

N
∑

i<j

g↑↑
πs2

e−
(x̂i−x̂j )

2

s2 |↑〉i |↑〉j 〈↑|i 〈↑|j ,

Ĥ↓↓ =

N
∑

i<j

g↓↓
πs2

e−
(x̂i−x̂j )

2

s2 |↓〉i |↓〉j 〈↓|i 〈↓|j ,

Ĥ↑↓ =
N
∑

i<j

g↑↓
πs2

e−
(x̂i−x̂j )

2

s2

(

|↑〉i |↓〉j 〈↑|i 〈↓|j + |↓〉i |↑〉j 〈↓|i 〈↑|j
)

. (6.17)

For simplicity, we have introduced the following notation for the spin variable: |↑〉 ≡ |ms = 1〉, and

|↓〉 ≡ |ms = −1〉.

6.2.1 Second-quantized two-boson Hamiltonian

Despite the fact that our approach is in principle valid for a few number of bosons, we concentrate

from now on in the two-boson case. The two-boson system provides a nontrivial example where

the interplay of interactions and spin-orbit coupling can be studied in detail.

The particles can populate the first M eigenstates of the harmonic trap, including the spin

degree of freedom. Consequently, the creation and annihilation operators, â†i and âi, create or

annihilate bosons, respectively, in the single-particle state |i〉, with i = 1, ... ,M , where the index i
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labels the trio of quantum numbers nx, ny and ms, and increases with increasing the energy of the

harmonic oscillator eigenstate i, which is ǫii = nx(i) + ny(i) + 1. The dimension of the truncated

two-boson Hilbert space and the number of single-particle modes required where given in Sec. 2.5.2.

The second-quantized version of the single-particle part of Eq. (6.14) is

Ĥ0 =

M
∑

i,j=1

ǫij â
†
i âj , (6.18)

where the explicit form of ǫij is given in Eq. (6.4). The interaction term is written as:

Ĥint =
1

2

M
∑

i,j,k,l=1

â†i â
†
j âkâl Vijkl

×
{

g↑↑δms(i),1δms(j),1δms(k),1δms(l),1 + g↓↓δms(i),−1δms(j),−1δms(k),−1δms(l),−1

+ g↑↓
(

δms(i),1δms(j),−1δms(k),1δms(l),−1 + δms(i),−1δms(j),1δms(k),−1δms(l),1

)}

, (6.19)

where Vijkl are computed analytically from the expressions given in Appendix C, being aware

that in the present case the indices i, j, k, and l label the single-particle states in a different way

and that the integrals depend on the quantum numbers nx and ny corresponding to the previous

indices.

In the following section, we use a Hilbert space of dimension D = 17765 corresponding to

M = 420 single-particle basis states. In Sec. 6.3, we need a larger Hilbert space, with M = 812

and D = 63035.

6.2.2 Ground-state energy and degeneracy

In this section, we compute the ground-state energy and concentrate on understanding the way the

interaction lifts the degeneracy of the ground-state manifold. To this aim, we compare our direct

diagonalization results with approximate expressions for the energy of the ground state manifold.

In all cases discussed below, we set the spin-orbit coupling to a non-zero but small value, κ = 0.3.

Larger values of κ are discussed in Sec. 6.3.

In absence of interactions, the ground state is three-fold degenerated. We obtain approximate

analytic expressions for the energies of the three states using the six-mode truncation presented

in Sec. 6.1.1. The energies of the three states are denoted, EAA
0 , EAB

0 and EBB
0 . Their explicit

expressions are provided in Appendix D.2.

The simplest interacting case we consider is when g↑↑ = g↓↓ = g↑↓ = g. In this case, the three

orthogonal states that define the ground-state subspace remain quasidegenerate (see Fig. 6.5). As

we consider a small finite range, s = 0.5, the AB state, approximated by Eq. (D.14) at g ≈ 0, has

a slightly different energy within our approximation, and would be truly degenerate with the other

two in the limit of s→ 0.
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Figure 6.5: The first three energy levels of the two-boson system as a function of g = g↑↑ = g↓↓ = g↑↓

obtained by direct diagonalization (solid black lines). The approximate perturbative calculations

are also plotted [see main text for details]. Notice that the three solid black lines overlap and also

the dashed and dotted lines. We have used a range s = 0.5 and the spin-orbit coupling constant

κ = 0.3.

The three-fold degeneracy of the ground state manifold is lifted whenever the interaction

strengths are not equal. For instance, fixing g↓↓ = g↑↓ = 0, and increasing g↑↑ we completely

break the degeneracy, since the spin-orbit part of the Hamiltonian induces a nonzero, but different,

spin-up spin-up component in all three orthogonal two-boson states. Our perturbative calculations

are used to identify which energy level corresponds to each kind of state, as we show in Fig. 6.6.

For the case of the state of kind AA, the one with a larger spin-up spin-up component, we observe

that the prediction of perturbation theory fails for g↑↑ > 1. In contrast, for the BB state, with a

small spin-up spin-up component, its energy is well-approximated perturbatively up to g↑↑ = 20.

The ground state remains degenerate, although only two-fold, if we set to zero the intraspin

interactions, g↓↓ = g↑↑ = 0, and vary the inter-spin one, g↑↓. Since the effect on the states of

kind AA and BB is the same, they remain degenerate and define the ground-state subspace (see

Fig. 6.7). However, the state AB is very sensitive to changes in g↑↓, compared to the two previous

ones, and its energy increases more rapidly.

The last case we consider is to fix at finite values two of the interaction strengths, e.g. g↓↓ and

g↑↓, and to vary the other one, g↑↑ (see Fig. 6.8). In this case, we find crossings between the energy

levels. The perturbative calculations are useful to predict the value of g↑↑ where the crossing occurs,

by equating Eqs. (D.15), (D.16) and (D.17), properly, once g↓↓ and g↑↓ are fixed. In particular, in

Fig. 6.8 we see that it happens when g↑↑ = g↓↓, and also when g↑↑ = g↑↓.

Finally, we observe that when we further increase the interaction strength, regardless of the spin
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Figure 6.6: The first three energy levels of the two-boson system as a function of g↑↑, with g↓↓ =

g↑↓ = 0 obtained by direct diagonalization (solid black lines). The approximate perturbative

calculations are also plotted [see main text for details]. We have used a range s = 0.5 and the

spin-orbit coupling constant κ = 0.3.
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Figure 6.7: The first three energy levels of the two-boson system as a function of g↑↓, with g↑↑ =

g↓↓ = 0 obtained with direct diagonalization (solid black lines). The approximate perturbative

calculations are also plotted [see main text for details]. Notice that two solid black lines and two

dashed lines overlap on the bottom part of the figure. We have used a range s = 0.5 and the

spin-orbit coupling constant κ = 0.3.

components, the energy levels tend to saturate. This behavior is not captured by the perturbative

expressions discussed. This is an indicator that the system becomes correlated in such a way to

reduce the total energy by avoiding the atom-atom interaction. This kind of behavior was also



6.3. Interaction induced crossover in the g↑↑ = g↓↓ = g↑↓ case 95

2

2.2

2.4

2.6

2.8

0 5 10 15 20

g↓↓ = 3
g↑↓ = 1

E

g↑↑

EAA
0

EBB
0

EAB
0

2

2.2

2.4

2.6

2.8

0 5 10 15 20

Figure 6.8: The first three energy levels of the two-boson system as a function of g↑↑, with g↓↓ = 3

and g↑↓ = 1, obtained by direct diagonalization (solid black lines). The approximate perturbative

calculations are also plotted [see main text for details]. We have used a range s = 0.5 and the

spin-orbit coupling constant κ = 0.3.

observed in a harmonically trapped system of interacting bosons in two dimensions as discussed in

Chapters 3 and 4.

6.3 Interaction induced crossover in the g↑↑ = g↓↓ = g↑↓ case

Now, let us broaden our scope and study not only the ground-state manifold but also the lower

part of the energy spectrum. The goal is to discuss the combined effects of the spin-orbit term and

the atom-atom interaction. For simplicity, we consider the case g = g↑↑ = g↓↓ = g↑↓, with g > 0.

The interaction has three main effects, as seen in Fig. 6.9 and Fig. 6.10, where we compare

the low energy spectrum for g = 0, panel (a), with the corresponding one for g = 3, panel (b).

In Fig. 6.9 we vary κ ∈ [0, 1], while in Fig. 6.10 we consider a larger region of κ ∈ [0, 3]. Due to

the repulsive character of the interaction, the energies are shifted to higher values, see for instance

the case of the three-fold degenerate ground-state energy level. A second effect, is the breaking

of degeneracies. For instance, already at κ = 0, the first excited state, with degeneracy 8, breaks

in two levels with degeneracy 2 for the lowest level and 6 for the highest one. These degeneracies

are further broken when increasing κ (see Fig. 6.9). This is the case in the first-excited manifold,

corresponding to E = 3 at κ = 0 in panel (a) of Fig. 6.9, where a gap opens and the manifold

appears separated in panel (b). Finally, the breaking of degeneracies is accompanied by the presence

of more energy-level crossings.

As seen in Fig. 6.10 panel (b), we find a crossing at the ground state level which appears at
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Figure 6.9: Low-energy spectrum of the two-boson system for κ < 1 with (a) g = 0 and (b) g = 3.

The energies were computed by diagonalization, using M = 812 single-particle basis states that

corresponds to a Hilbert-space dimension D = 63035. We have used a range s = 0.5.

κ ≈ 2.65 for g = 3. In the following paragraphs, we concentrate in characterizing this level crossing

which corresponds to a change in structure of the ground state induced by the spin-orbit term in

the presence of interactions.

Starting from κ = 0 and g = 0, panel (a) of Fig. 6.10, the ground state is three-fold degenerate.

In this case, one could use as a basis of that subspace the two-boson states formed by taking the

two bosons in the ground state of the two-dimensional harmonic trap with parallel spins, both

pointing up or both pointing down, and with anti-parallel spins.

For κ > 0 the previous three states are no longer eigenstates, since the spin-orbit imposes a

different structure for the eigenstates at the single-particle level, that was discussed in Sec. 6.1.1.

However, the ground-state degeneracy remains unchanged with increasing κ in the noninteracting
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Figure 6.10: The ground-state energy and the first excited states are shown for (a) g = 0 and (b)

g = 3, depending on κ. The energies were computed by diagonalization, using M = 812 single-

particle basis states that corresponds to a Hilbert-space dimension D = 63035. We have used a

range s = 0.5.

case. The three states that define the ground-state subspace are

|Ψ0,AA〉 = |ψsp
0,A〉 |ψ

sp
0,A〉 , (6.20)

|Ψ0,BB〉 = |ψsp
0,B〉 |ψ

sp
0,B〉 , (6.21)

and

|Ψ0,AB〉 =
1√
2

(

|ψsp
0,A〉 |ψ

sp
0,B〉+ |ψsp

0,B〉 |ψ
sp
0,A〉

)

, (6.22)

constructed with the two-degenerate single-particle eigenstates, |ψsp
0,A〉 and |ψsp

0,B〉, of the Hamilto-

nian in Eq. (6.1).

In the interacting case the three-fold degenerate ground-state subspace splits in two energy lev-

els: the ground state becomes nondegenerate and the first excitation becomes two-fold degenerate.
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Figure 6.11: The different energy contributions to the two-boson ground-state energy and the terms

involved in the virial theorem are depicted depending on the spin-orbit coupling parameter κ. In

panel (a) g = 0 and in panel (b) g = 3. Virial = 2〈V̂ T
ho〉 − 2〈K̂T 〉 − 〈V̂ T

so 〉+ 〈Ŵ T 〉.

This effect is more notorious for larger κ, for instance for κ = 1.5 in Fig. 6.10 panel (b), where

we observe the gap opening. For larger κ we observe the previously mentioned crossing. Then,

from κ ≈ 2.65 up to 3, the ground state becomes two-fold degenerate. The level which crosses at

κ ≈ 2.65 corresponds to the evolution with κ of a very excited level at κ = 0. Let us emphasize

that this transition is a joint effect of the spin-orbit coupling and the interaction, since it is only

observed when both effects are present.

To characterize the crossing in the ground-state energy we have computed its energy contribu-

tions in the cases of Fig. 6.10 panels (a) and (b). These results are shown in Fig. 6.11, where we

have also tested the fulfillment of the virial theorem energy relation (see Appendix E).

Before the crossing, the dependence on κ of the kinetic, the harmonic potential and the spin-

orbit energies is qualitatively similar to the noninteracting case (see Fig. 6.11). In the interacting

case, the atoms are farther from the center of the trap resulting in a shift in the harmonic potential
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Figure 6.12: Density profiles of each spin-component and the total one for κ = 2 and κ = 3. The

upper and lower panels correspond to the noninteracting, g = 0, and interacting, g = 3, cases,

respectively.

energy between the g = 0 and g = 3 cases depicted in Fig. 6.11. The kinetic energy is reduced

in the interacting case. The interaction energy and the term coming from the interaction present

in the virial relation, 〈Ŵ T 〉, are mostly independent of κ. At the crossing, except from the total

energy that remains continuous, all other energy terms feature a discontinuity. After the crossing,

the ground state has a different structure. In particular, the state is less sensitive to the presence

of the repulsive interaction, since the interaction energy is smaller and closer to zero compared to

the other energy terms. The harmonic potential and the kinetic energies are larger than before the

crossing. Again, this positive terms are compensated by the negative spin-orbit term that is larger

in absolute value.

The effects of the crossover become also apparent in the density of the cloud (see Appendix B.1.1

for the explicit expressions). To illustrate this phenomenology we compare the densities for the
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g = 0 and g = 3 cases, for two values before and after the level crossing, κ = 2 and κ = 3,

respectively. For κ = 2 we observe that the total density of the cloud is similar in both cases (see

Fig. 6.12). The main difference is that the interacting cloud is already larger than the noninteracting

one, as expected from the repulsive nature of the atom-atom interactions considered. The densities

of the two spin components are different for g = 0 and g = 3. In the interacting case, both densities

are very similar, while in the noninteracting one ρ↓ is much smaller and more peaked at the center

of the trap. An important effect of the crossing is that the cloud becomes larger after the level

crossing, i.e. going from κ = 2 to κ = 3 for g = 3 (see the total density in Fig. 6.12). This is in

contrast with the behavior observed in absence of interactions, where the cloud size gets reduced

when going from κ = 2 to κ = 3, as seen in Fig. 6.12. This effect is observed also for the densities

of each component separately. Another relevant feature is that, after the crossing, the total density

has a dip in the center of the trap, while in the noninteracting case it has a maximum.



Chapter 7

SUMMARY AND CONCLUSIONS

In this Chapter, we summarize the contents of the thesis and the main conclusions.

Chapter 2. Methodology and formalism

In this Chapter, we have established the main numerical method used in the thesis: exact diag-

onalization. We have proposed several strategies to minimizie the size of the Hilbert space while

keeping a good quality of the results. We have checked the stability of the method and construct

the technology that should allow to consider systems with a larger number of particles, or vary the

interparticle interaction and the geometry of the trap.

Chapter 3. Few bosons interacting in a two-dimensional harmonic trap

We have studied systems of few bosons trapped in an isotropic 2D harmonic trap interacting by a

finite-range Gaussian potential.

First, we have explored in detail the noninteracting case, paying particular attention to the

degeneracies of the excitation spectrum of the system. In particular, for the N -boson case, we

have explained how to compute the degeneracy of the low-energy states and show its independence

respect to the number of particles if it is large enough.

By means of a direct diagonalization of the Hamiltonian in a truncated space, we have studied

the interacting system and we have computed the low-energy spectra of the two-, three-, and four-

body systems. We have also proposed a variational ansatz containing two-body correlations which

provides an accurate description of both the energy and the structure of the ground state in the

full range of the interaction and helps to understand the physical behavior of these systems.

The analysis of the spectra reveals the existence of center-of-mass excitations which are clearly

101
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identified. As the interaction is increased, we have shown how the energy of the ground state

and of all low-lying states seems to saturate as the interaction strength is increased. The effect of

increasing the interaction on the ground state is twofold. On one side, the density at the center of

the trap decreases becoming almost flat in the bulk of the gas, with the cloud thus becoming wider.

On the other side, the atoms develop strong two-body correlations to avoid the interaction. This is

achieved by building holes in the many-body wave function whenever two atoms are at the same po-

sition, as is clearly seen in the computed pair correlations or in the explicitly constructed correlated

variational wave functions. This mechanism is similar to the one present in the Tonks-Girardeau

gas in 1D and is also responsible for the observed saturation of the energies of the system as we

increase the interaction strength and reduce the range. Finally, the onset of correlations produces

fragmentation on the one-body density matrix, which has been shown to increase with the number

of particles. This is an evidence of the existence of correlations beyond the mean-field description

Chapter 4. Fermionic properties of two bosons in a two-dimensional harmonic trap

Contrary to the one-dimensional case, the ground-state energy of two strongly interacting bosons in

a harmonic trap is not equal to the one of two noninteracting fermions in the same potential. How-

ever, the wave function resulting from symmetrizing the corresponding noninteracting fermionic

ground state is found to be a very good variational trial wave function if the range of the inter-

action is properly chosen for a certain value of the interaction strength. This simple variational

wave function provides an upper-bound very close to the ground-state energy obtained by exact

diagonalization and to the energy provided by a Jastrow-type variational ansatz. Even more, the

distribution of the energy between the kinetic and harmonic potential parts is very similar to the

one provided by exact diagonalization when the total energy is a good estimation of the ground-

state energy. We have shown that the increase of the energy with the interaction strength comes,

mostly, from the harmonic potential contribution to the energy since the kinetic energy remains

almost constant and the interaction energy is close to zero. In fact, the bosons avoid feeling the

interaction by being more separate and, therefore, further from the center of the trap, which is also

reflected in the density profiles obtained. The correlations induced by the interaction cause the

density profile of the strongly-interacting bosons to tend toward the noninteracting two-fermion

profile. For the pair correlation function, we have found the same kind of qualitative behavior.

Chapter 5. Few-boson localization in a continuum with speckle disorder

One of the open questions associated to the localization of particles in one dimension in the pres-

ence of disorder is to elucidate if repulsive interactions can induce delocalization in these systems,

which otherwise are localized, according to Anderson’s ideas in the absence of interactions. In

this Chapter, we have performed a computational investigation to answer this question. While
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previous computational investigations on this critical issue addressed discrete-lattice models, we

have focused here on a model defined in continuous space. Specifically, we have considered a one-

dimensional model which describes ultracold atoms exposed to random optical speckle patterns,

taking into account the structure of the spatial correlations of the disorder field. This is the setup

that has been implemented in early cold-atom experiments on the Anderson localization.

The computational procedure we have employed is based on exact-diagonalization calculations,

combined with the statistical analysis of the levels-spacings statistics familiar from random matrix

theory. This is, in fact, one of the most sound criteria commonly employed to identify localized

(i.e., nonergodic) phases in noninteracting as well as in interacting disordered systems, where it

allows to identify many-body localized phases.

As a preliminary step, we have identified the speckle-field intensity required to observe the (Pois-

son) statistics of localized systems in a finite-size one-dimensional system that is feasible for our

computational approach and for cold-atom experiments.

Our main finding is that, if two or three interacting bosons move in such a speckle field, the

localization is stable against zero-range interparticle interactions in a broad range of interaction

strengths, ranging from the noninteracting limit, up to moderately strong interactions half way to

the strongly-interacting limit. Addressing even stronger interactions is beyond the scope of this

study since, on the one hand, it would require larger computational resources and, on the other

hand, delocalization effects due to interactions are not expected in this regime since in the strongly-

interacting limit the system properties are determined by the single-particle modes. Our results

are limited to a low-energy regime, of the order of the speckle-field intensity, where the accuracy

of the diagonalization results is under control. It is possible that at higher energies two-body or

three-body mobility edges would occur.

Previous studies on the possible occurrence of many-body localization in continuous-space sys-

tems have provided contradictory results. Our calculations establish that, in a few-body system,

localization can be stable against zero-range interactions in a continuous-space models relevant for

cold-atom experiments.

Chapter 6. Spin-orbit coupling effects in a two-dimensional harmonic trap

The interpretation of recent experimental developments on the study of spin-orbit effects demands

for microscopic calculations of the interplay between spin-orbit and interaction effects in bosonic

systems. In particular, we have considered one and two bosons with an artificial spin-orbit coupling

trapped in a harmonic potential. For the single-particle case, the diagonalization of the Hamiltonian

matrix has allowed us to study the properties of the low-energy eigenstates of the system, going

from the weak spin-orbit coupling regime to the strong one. We have computed the expectation

values of each energy term in the Hamiltonian for the eigenstates, separately, and have derived and
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tested the virial energy relation between them. In particular, we have found a relation between

the expectation value of different kind of spin-orbit coupling terms, which is independent of the

trapping potential. For the ground state of the single-particle system, we have derived approximate

analytical expressions that are able to reproduce the ground-state energy in the weak spin-orbit

coupling regime. For the interacting two-boson system, they are used to obtain perturbative ex-

pressions that explain the breaking of the degeneracy of the ground-state subspace when changing

the values of the spin-dependent interaction strengths. In all cases, we have found that the ground-

state energy tends to saturate with increasing interaction, departing from the perturbation-theory

prediction. This signals the formation of repulsive correlations in the system. In addition, in the

spin-independent interaction case, for the repulsively interacting two-boson system, we have found

an abrupt change in the ground-state properties when the spin-orbit coupling parameter is suffi-

ciently large. This transition has been characterized computing the energy contributions to the

ground state, that present a discontinuity at the point where an energy-level crossing occurs. More-

over, this phenomenon has been observed to be apparent in the density profile of the system, which

could be experimentally measured. To perform this analysis, and also to test the accuracy of the

calculations has been very useful the derivation of the virial theorem in the presence of spin-orbit

coupling and finite-range interactions. The numerical calculations fulfill the virial theorem very

satisfactory in all the range of spin-orbit coupling and interactions strength explored.



APPENDIX A: COMPUTATION OF

DEGENERACIES IN THE

NONINTERACTING LIMIT

A.1 The two-boson system in a two-dimensional harmonic trap

We compute the degeneracy of each energy level depending on the excitation energy number,

NE = E − E0, for the two-boson system with the possible states labeled using the quantum

numbers of Eq. (3.30). First, we fix the excitation energy number, NE , and consider it to be even.

Then, the values that nr can take are nr = 0, 2, ... , NE , so nr = 2k with k = 0, 1, ... , NE/2. Since

we have ncm + nr = NE , for each value of nr there is the corresponding ncm. Now, we count

the number of states with a given nr with excitation energy number NE taking into account the

degeneracy due to the quantum numbers mcm and mr, that is,

dNE ,k = (ncm + 1)(nr + 1) = (NE − 2k + 1)(2k + 1). (A.1)

Therefore, we have to sum over k to find the degeneracy. The sum goes from k = 0 to k = NE/2 if

NE is even and to k = (NE − 1)/2 if NE is odd, which can be generalized using the floor function,

summing from k = 0 to k = ⌊NE/2⌋. The degeneracy is

dbNE
=

⌊NE/2⌋
∑

k=0

(NE − 2k + 1)(2k + 1)

= −1

3

(⌊

NE

2

⌋

+ 1

)

[

4

⌊

NE

2

⌋2

+ (2− 3NE)

⌊

NE

2

⌋

− 3(NE + 1)

]

.

(A.2)

The previous equation, Eq. (A.2), for NE even is

dbNE
=

1

12
(NE + 2) (NE(NE + 4) + 6) , (A.3)

and for NE odd is

dbNE
=

1

12
(NE + 1) (NE(NE + 5) + 6) . (A.4)
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For the spatial fermionic states, which are the ones with mr = odd and antisymmetric upon

exchanging particles 1 and 2, we compute the degeneracy analogously, using that nr = odd,

dfNE
=

⌊NE/2⌋
∑

k=0

(NE − 2k)(2k + 2)

= −1

3

(⌊

NE

2

⌋

+ 1

)

[

4

⌊

NE

2

⌋2

+ (8− 3NE)

⌊

NE

2

⌋

− 6NE

]

.

(A.5)

A.1.1 Unperturbed energy states

We are also interested in knowing the number of states in each energy level with mr 6= 0. We

compute this number of states subtracting from the total number of degenerate states, dbNE
, the

ones with mr = 0, that is,

dUNE
= dbNE

−
⌊NE/2⌋
∑

k=0

(NE − 2k + 1)

=

(

−4

3

⌊

NE

2

⌋

+NE +
1

3

)⌊

NE

2

⌋(⌊

NE

2

⌋

+ 1

)

,

(A.6)

where we have used Eq. (A.2). As before, we can separate the case with NE even,

dUNE
=

1

12
(NE + 2)(NE + 1)NE , (A.7)

and the case with NE odd,

dUNE
=

1

12
(NE + 3)(NE + 1)(NE − 1). (A.8)



APPENDIX B: COMPUTATION OF

GROUND-STATE PROPERTIES

B.1 The density profile

B.1.1 First-quantized density operator

For a system of N particles, the density operator in first quantization, normalized to unity, is

defined as

ρ̂(~x) ≡ 1

N

N
∑

i=1

δ(~x− ~xi). (B.1)

The total density is computed as the expectation value of the previous operator. If the atoms have

two possible spin components the total density is decomposed as

ρ̂(~x) = ρ̂↑(~x) + ρ̂↓(~x), (B.2)

with

ρ̂↑(~x) ≡ 1

N

N
∑

i=1

δ(~x − ~xi) |↑〉i 〈↑|i (B.3)

and

ρ̂↓(~x) ≡ 1

N

N
∑

i=1

δ(~x − ~xi) |↓〉i 〈↓|i . (B.4)

B.1.2 Density of identical spinless bosons

The density profile for a given state of a system of N identical spinless bosons, Ψ(~x1, ... , ~xN ), would

be

ρ(~x) =
1

N

N
∑

i=1

∫

d~x1 ... d~xN δ(~x− ~xi) |Ψ(~x1, ... , ~xN )|2 =
∫

d~x2 ... d~xN |Ψ(~x, ~x2..., ~xN )|2 . (B.5)

In particular, for a two-boson system in two dimensions, the previous equation reduces to

ρ(x, y) =

∫ ∞

−∞
dx2

∫ ∞

−∞
dy2 |Ψ(x, y, x2, y2)|2 . (B.6)
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We compute the density profile for the general interacting case, in the harmonic trap, for the ground

state of the system as

ρ(x, y) =

∫ ∞

−∞
dx2

∫ ∞

−∞
dy2

2

π
e−

1
2
(~x+~x2)

2 |f (|~x− ~x2|)|2 , (B.7)

where we have made use of the explicit form of the many-body wave function of the ground state,

Ψ(~x1, ~x2) =

√

2

π
e−

1
4
(~x1+~x2)

2

f (|~x1 − ~x2|) . (B.8)

This way of writing the wave function of the ground state is equivalent to separate the center-of-

mass part from the relative part. Using the change of variables ~r = ~x − ~x2 and polar coordinates

in Eq. (B.7), we express the density as

ρ(x, y) =
2

π
e−2(x2+y2)

∫ ∞

0
r dr e−

r2

2 |f (r)|2
∫ 2π

0
dϕ e−2r(x cosϕ+y sinϕ)

= 4e−2(x2+y2)

∫ ∞

0
r dr e−

r2

2 |f (r)|2 I0
(

2r
√

x2 + y2
)

.

(B.9)

We have used that
∫ 2π

0
dϕ eA cosϕ+B sinϕ = 2π I0

(
√

A2 +B2
)

, (B.10)

where I0 is a modified Bessel function. Notice that, as we would expect, in Eq. (B.9) we have

demonstrated that the density only depends on the radial coordinate X ≡
√

x2 + y2, and we can

rewrite that equation as

ρ(X) = 4e−2X2

∫ ∞

0
rdr e−

r2

2 |f (r)|2 I0 (2rX) . (B.11)

This result is valid not only for the Gaussian-shaped potential but also for any potential dependent

only on the modulus of the relative coordinate. In these other cases, the explicit form of the

interaction defines the relative wave function f(r). In the noninteracting case, we can compute the

integral analytically, by substituting the explicit form of f0(r),

f0(r) =
1√
2π
e−

r2

4 , (B.12)

and we recover the known result,

ρ0(X) =
2

π
e−2X2

∫ ∞

0
rdr e−r2I0 (2rX) =

1

π
e−X2

= |ϕ0(X)|2 , (B.13)

where ϕ0(X) is the wave function of the single-particle ground state of the two-dimensional har-

monic oscillator. The previous result, ρ0(X) = |ϕ0(X)|2, is also valid for the case of N nonin-

teracting bosons in the two-dimensional harmonic potential, since the many-body wave function

factorizes, Ψ0(~x1, ~x2..., ~xN ) = ϕ0(~x1) ... ϕ0(~xN ). We recover the previous result replacing the fac-

torized wave function into Eq. (B.5).
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B.1.3 Second-quantized density operator

For our numerical computations, we make use of the second-quantized form of the density operator,

ρ̂ =
1

N

M
∑

i,j=1

â†i âjψ
∗
i (~x)ψj(~x). (B.14)

For a state written as a sum of Fock states,

|Ψ〉 =
D
∑

k=1

αk |k〉 , (B.15)

where the index k labels each state of the basis, |k〉 = |n1, ... , nM 〉, and D is the dimension of the

Hilbert space, the density profile is computed as

ρ(~x) =
1

N

D
∑

k′=1

D
∑

k=1

M
∑

i,j=1

ψ∗
i (~x)ψj(~x)α

∗
k′αk 〈k′| â†i âj |k〉

=
1

N

D
∑

k′=1

D
∑

k=1

M
∑

i,j=1

ψ∗
i (~x)ψj(~x)α

∗
k′αk 〈k′|Aij(k) |p(k)〉

=
1

N

D
∑

k=1

M
∑

i,j=1

ψ∗
i (~x)ψj(~x)α

∗
p(k)αkAij(k),

(B.16)

where ψi(~x) are the single-particle basis states and we have used that â†i âj |k〉 = Aij(k) |p(k)〉, and

〈k′|p(k)〉 = δk′,p(k).

B.2 The pair correlation function

The pair correlation operator, normalized to unity, for a system of N particles reads

η̂(~x, ~x′) ≡ 1

N(N − 1)

N
∑

i=1

N
∑

j 6=i

δ(~x− ~xi)δ(~x
′ − ~xj), (B.17)

from which we obtain the pair correlation function for a state of the N -boson system, Ψ(~x1, ... , ~xN ),

as

η(~x, ~x′) =
1

N(N − 1)

N
∑

i=1

N
∑

j 6=i

∫

d~x1 ... d~xNδ(~x− ~xi)δ(~x
′ − ~xj) |Ψ(~x1, ... , ~xN )|2

=

∫

d~x3 ... d~xN
∣

∣Ψ(~x, ~x′, ~x3 ... , ~xN )
∣

∣

2
.

(B.18)

For the particular case of the ground state of two bosons in two dimensions, we have

η
(

~x, ~x′
)

=
∣

∣Ψ
(

~x, ~x′
)∣

∣

2
, (B.19)

where Ψ(~x, ~x′) is the corresponding wave function, Eq. (B.8). For the noninteracting case, in

the harmonic trap, we know the function of the relative part, Eq. (B.12). In that case, the pair
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correlation function is

η0
(

~x, ~x′
)

=
1

π2
e−~x2

e−~x′2
= |ϕ0(~x)|2

∣

∣ϕ0(~x
′)
∣

∣

2
. (B.20)

The last result is also valid for the system ofN bosons, because then we can factorize, Ψ0(~x1, ~x2..., ~xN ) =

ϕ0(~x1) ... ϕ0(~xN ), and replace the wave function into Eq. (B.18) in order to find the same result.

Now, we fix one particle at the origin, and compute the function

η (x, y) ≡ η(~x,~0) =
2

π
e−

1
2(x

2+y2)
∣

∣

∣
f(
√

x2 + y2)
∣

∣

∣

2
. (B.21)

Notice that the previous function depends only on the radial coordinate X ≡
√

x2 + y2, so we can

write

η(X) =
2

π
e−

1
2
X2 |f(X)|2 . (B.22)

Again, for the noninteracting case we have an analytical expression for the previous function, that

reads

η0(X) =
1

π2
e−X2

, (B.23)

and is proportional to the density, Eq. (B.13).

The probability density of finding a particle in the space once we have found a particle at the

origin is given by the quantity η(X)/ρ(0). We verify its normalization to unity in the general case,

∫

d~x
η(~x,~0)

ρ(~0)
=

∫

d~x d~x3 ... d~xN

∣

∣

∣
Ψ(~x,~0, ~x3 ... , ~xN )

∣

∣

∣

2

∫

d~x2 ... d~xN

∣

∣

∣Ψ(~0, ~x2, ~x3 ... , ~xN )
∣

∣

∣

2 = 1, (B.24)

where we have used that all the particles are identical, Eq. (B.5) and Eq. (B.18).

B.2.1 Second-quantized pair correlation operator

The second-quantized form of the pair correlation operator is

η̂ =
1

N(N − 1)

M
∑

i,j,p,q=1

â†i â
†
pâj âqψ

∗
i (~x)ψ

∗
p(~x

′)ψj(~x)ψq(~x
′). (B.25)

For a state written as a sum of Fock states,

|Ψ〉 =
D
∑

k=1

αk |k〉 , (B.26)
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where the index k labels each state of the basis, |k〉 = |n1, ... , nM 〉, and D is the dimension of the

Hilbert space, the density profile is computed as

η(~x, ~x′) =
1

N(N − 1)

D
∑

k′=1

D
∑

k=1

M
∑

i,j,p,q=1

ψ∗
i (~x)ψ

∗
p(~x

′)ψj(~x)ψq(~x
′)α∗

k′αk 〈k′| â†i â†pâj âq |k〉

=
1

N(N − 1)

D
∑

k′=1

D
∑

k=1

M
∑

i,j,p,q=1

ψ∗
i (~x)ψ

∗
p(~x

′)ψj(~x)ψq(~x
′)α∗

k′αk 〈k′|Aipjq(k) |l(k)〉

=
1

N(N − 1)

D
∑

k=1

M
∑

i,j,p,q=1

ψ∗
i (~x)ψ

∗
p(~x

′)ψj(~x)ψq(~x
′)α∗

l(k)αkAipjq(k),

(B.27)

where ψi(~x) are the single-particle basis states and we have used that â†i â
†
pâj âq |k〉 = Aipjq(k) |l(k)〉,

and 〈k′|l(k)〉 = δk′,l(k).

B.3 The condensed fraction

The degree of condensation is characterized using the one-body density matrix,

ρ
|Ψ〉
i,j ≡ 1

N
〈Ψ| â†i âj |Ψ〉 , (B.28)

where, i, j = 1, ... ,M . Diagonalizing this matrix, its eigenvalues λi are computed, which are the

occupations of the corresponding singe-particle eigenstates |φi〉. The state |Ψ〉 is fully condensed

when |Ψ〉 = |φ1〉⊗N and then, the one-body density matrix has only a single nonzero eigenvalue,

λ1 = 1. If there is fragmentation in the system, the highest eigenvalue λ1 < 1, due to the

normalization,
∑M

i=1 λi = 1.
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APPENDIX C: COMPUTATION OF THE

INTEGRALS OF THE INTERACTION

We make an effort to find an analytic expression for the integrals of the interaction part because,

in this way, we avoid computing a lot of 4-dimensional integrals numerically, which would mean

needing more computational time in order to achieve a good precision before any other calculation.

With our method, we have a fast and accurate subroutine that computes Vijkl.

In order to compute the integrals, we write explicitly the single-particle wave functions corre-

sponding to the ith eigenstate of the single-particle Hamiltonian,

ψi(nx,ny)(x, y) = NnxNnyHnx(x)Hny(y)e
−x2+y2

2 , (C.1)

with Hn(x) the Hermite polynomials and the normalization constant

Nn =

(

1√
π2nn!

)1/2

. (C.2)

The Hermite polynomials are written in series representation as

Hn(x) =

⌊n/2⌋
∑

m=0

n!(−1)m2n−2m

m!(n− 2m)!
xn−2m, (C.3)

where ⌊n/2⌋ indicates the floor function of n/2. We replace Eq. (C.1) into Eq. (3.10) in order to

obtain

Vijkl =
1

πs2

4
∏

i=1

Nnxi
Nnyi

Ixx′Iyy′ , (C.4)

with

Ixx′ =

∫ ∞

−∞
dx′Hnx2(x

′)Hnx3(x
′)e−Ax′2

∫ ∞

−∞
dxHnx1(x)Hnx4(x)e

−Ax2+Bx

=

∫ ∞

−∞
dx′Hnx2(x

′)Hnx3(x
′)e−Ax′2

Ix(x
′),

(C.5)

with the definitions

A ≡ 1 +
1

s2
, (C.6)

B ≡ 2x′

s2
, (C.7)
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and analogously for Iyy′ . Now, we use the series representation of the Hermite polynomials,

Eq. (C.3), to compute the integral Ix(x′),

Ix(x
′) =

⌊nx1/2⌋
∑

k1=0

⌊nx4/2⌋
∑

k4=0

nx1!nx4!(−1)k1+k42Q

k1!k4!(nx1 − 2k1)!(nx4 − 2k4)!

∫ ∞

−∞
xQe−Ax2+Bxdx

=

⌊nx1/2⌋
∑

k1=0

⌊nx4/2⌋
∑

k4=0

nx1!nx4!(−1)k1+k42Q

k1!k4!(nx1 − 2k1)!(nx4 − 2k4)!
i−QA−Q+1

2
√
πe

B2

4AU

(

−Q
2
;
1

2
;
−B2

4A

)

=

√

π

A
e

B2

4A

⌊nx1/2⌋
∑

k1=0

⌊nx4/2⌋
∑

k4=0

⌊Q/2⌋
∑

m=0

nx1!nx4!

k1!k4!(nx1 − 2k1)!

(−1)k1+k4Q!

(nx4 − 2k4)!m!(Q− 2m)!AQ−m
BQ−2m,

(C.8)

where U
(

−Q
2 ;

1
2 ;

−B2

4A

)

is a confluent hypergeometric function of the second kind that we have

expressed in series and Q ∈ N is defined as

Q ≡ nx1 + nx4 − 2k1 − 2k4. (C.9)

The next step is computing the integral in Eq. (C.5) by replacing the explicit form of Ix(x′),

Eq. (C.8). First, we notice that depending on the parity of the integrand, the integral will be zero

since we integrate in a symmetric interval. The possible situations are











Ixx′ = 0 nx1 + nx2 + nx3 + nx4 odd

Ixx′ 6= 0 nx1 + nx2 + nx3 + nx4 even.
(C.10)

In the second case, we compute the integral replacing again the Hermite polynomials by their series

representation and substituting (C.8) into (C.5),

Ixx′ =

∫ ∞

−∞
dx′Hnx2(x

′)Hnx3(x
′)e−Ax′2

Ix(x
′)

=

⌊nx1/2⌋
∑

k1=0

⌊nx2/2⌋
∑

k2=0

⌊nx3/2⌋
∑

k3=0

⌊nx4/2⌋
∑

k4=0

⌊Q/2⌋
∑

m=0

4
∏

i=1

nxi!

ki!(nxi − 2ki)!

√
πQ!(−1)

∑4
j=1 kj2Q

′ ∫∞
−∞ x′Q

′

e−A′x′2

dx′

m!(Q− 2m)!AQ−m+1/2s2Q−4m

=

⌊nx1/2⌋
∑

k1=0

⌊nx2/2⌋
∑

k2=0

⌊nx3/2⌋
∑

k3=0

⌊nx4/2⌋
∑

k4=0

⌊Q/2⌋
∑

m=0

4
∏

i=1

nxi!

ki!(nxi − 2ki)!

√
πQ!(−1)

∑4
j=1 kj2Q

′
A′−Q′+1

2 Γ
(

Q′+1
2

)

m!(Q− 2m)!AQ−m+1/2s2Q−4m
,

(C.11)

with the definitions

A′ ≡ A− 1

As4
, (C.12)

Q′ ≡
4
∑

i=1

(nxi − 2ki)− 2m. (C.13)
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The expression is analogous for Iyy′ and all the sums that appear are finite and have few terms

when nxi are small. Now, knowing the form of Ixx′ and Iyy′ we have Vijkl. Moreover, many of the

integrals are zero










Vijkl = 0
∑4

i=1 nxi odd or
∑4

i=1 nyi odd

Vijkl 6= 0
∑4

i=1 nxi even and
∑4

i=1 nyi even,
(C.14)

and we also take profit from the symmetries of Ixx′(nx1, nx2, nx3, nx4), which verifies

Ixx′(nx1, nx2, nx3, nx4) = Ixx′(nx4, nx2, nx3, nx1)

= Ixx′(nx1, nx3, nx2, nx4) = Ixx′(nx4, nx3, nx2, nx1).
(C.15)

Therefore, we are computing four integrals at the same time.
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APPENDIX D: ANALYTICAL

APPROXIMATIONS IN THE WEAK

SPIN-ORBIT COUPLING REGIME

D.1 Single-particle case

In a first approximation, we consider a Hilbert space of dimension 6, where the particle can

populate the ground state of the harmonic oscillator or one of the two first-excited states of

the trap, considering also the two possible spin orientations. Therefore, we consider the basis

{|nx, ny,ms〉} = {|0, 0, 1〉 , |0, 0,−1〉 , |1, 0, 1〉 , |1, 0,−1〉 , |0, 1, 1〉 , |0, 1,−1〉}. In this Hilbert space,

we construct the Hamiltonian matrix and diagonalize it analytically with Mathematica. In this way,

we find approximate expressions for the ground state and its energy depending on the spin-orbit

coupling constant κ. The single-particle ground-state energy is approximately given by,

Esp
0,d=6 =

1

2

(

3−
√

4κ2 + 1
)

+
κ2

2
. (D.1)

The ground state is two-fold degenerate, and we label with A and B the orthogonal states,

|ψsp
0,A〉d=6

= −C0 |0, 0, 1〉+ C1 (i |1, 0,−1〉 − |0, 1,−1〉) , (D.2)

and

|ψsp
0,B〉d=6

= C0 |0, 0,−1〉+ C1 (−i |1, 0, 1〉 − |0, 1, 1〉) , (D.3)

where C0 and C1 are given by

C0(κ) =
κ

√

4 + 1+
√
1+4κ2

κ2√
2 + 8κ2

, (D.4)

and

C1(κ) =
1

√

4 + 1+
√
1+4κ2

κ2

. (D.5)

Repeating the previous procedure with a Hilbert space of dimension 12, we obtain more accurate

expressions for the ground-state energy, given by,

Esp
0,d=12 = 2−

√

2κ2 + 1 +
κ2

2
. (D.6)
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and also for the coefficients of the two degenerate states

|ψsp
0,A〉d=12

= −D0 |0, 0, 1〉+D1 (i |1, 0,−1〉 − |0, 1,−1〉) +D2 (|0, 2, 1〉+ |2, 0, 1〉) , (D.7)

and

|ψsp
0,B〉d=12

= D0 |0, 0,−1〉+D1 (−i |1, 0, 1〉 − |0, 1, 1〉)−D2 (|0, 2,−1〉+ |2, 0,−1〉) , (D.8)

where D0, D1 and D2 are given by

D0(κ) =

√

κ2 + 1 +
√
2κ2 + 1

4κ2 + 2
, (D.9)

D1(κ) =
κ
(

1 +
√
2κ2 + 1

)

2

√

(2κ2 + 1)
(

κ2 + 1 +
√
2κ2 + 1

)

, (D.10)

and

D2(κ) =
κ2

2

√

(2κ2 + 1)
(

κ2 + 1 +
√
2κ2 + 1

)

. (D.11)

D.2 Two-boson case

Within the first single-particle approximation for small κ, discussed in Sec. 6.1.1, we compute the

energy of the following two-boson states:

|Φ0,AA〉 = |ψsp
0,A〉d=6

|ψsp
0,A〉d=6

, (D.12)

|Φ0,BB〉 = |ψsp
0,B〉d=6

|ψsp
0,B〉d=6

, (D.13)

and

|Φ0,AB〉 =
1√
2

(

|ψsp
0,A〉d=6

|ψsp
0,B〉d=6

+ |ψsp
0,B〉d=6

|ψsp
0,A〉d=6

)

, (D.14)

up to first order in perturbation theory for the interaction strength parameters g↑↑, g↓↓, and g↑↓. The

previous three states describe, approximately, the degenerate two-boson ground-state subspace in

the noninteracting limit. The approximation becomes exact in the limit of κ→ 0. The first part of

the energy for all of them is computed multiplying the single-particle energy given in Eq. (6.5) by the

number of particles, that is 2. The interaction part arises from computing the expectation values

〈Φ0,AA| Ĥint |Φ0,AA〉, 〈Φ0,BB | Ĥint |Φ0,BB〉, and 〈Φ0,AB| Ĥint |Φ0,AB〉, since 〈Φ0,AA| Ĥint |Φ0,BB〉 =

〈Φ0,AA| Ĥint |Φ0,AB〉 = 〈Φ0,BB | Ĥint |Φ0,AB〉 = 0. Therefore, the energies are

EAA
0 = 3−

√

4κ2 + 1 + κ2 +
g↑↑C4

0

π(2 + s2)
+
g↓↓4C4

1 (2 + 2s2 + s4)

π(2 + s2)3
+
g↑↓4C2

0C
2
1

π(2 + s2)2
, (D.15)
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EBB
0 = 3−

√

4κ2 + 1 + κ2 +
g↓↓C4

0

π(2 + s2)
+
g↑↑4C4

1 (2 + 2s2 + s4)

π(2 + s2)3
+
g↑↓4C2

0C
2
1

π(2 + s2)2
, (D.16)

and

EAB
0 = 3−

√

4κ2 + 1 + κ2 +
(g↑↑ + g↓↓) 2C2

0C
2
1

π(2 + s2)
+ g↑↓

(

C4
0

π(2 + s2)
− 4C2

0C
2
1

π(2 + s2)2
+

8C4
1

π(2 + s2)3

)

,

(D.17)

where C0 and C1 depend on κ and are given in Eq. (D.4) and Eq. (D.5) of Appendix D.1, respec-

tively.

A particular limit case of interest is the short-range limit, s → 0. In that case, the previous

expressions reduce to

EAA
0,s→0 = 3−

√

4κ2 + 1 + κ2 +
g↑↑C4

0 + g↑↓2C2
0C

2
1 + g↓↓2C4

1

2π
, (D.18)

EBB
0,s→0 = 3−

√

4κ2 + 1 + κ2 +
g↓↓C4

0 + g↑↓2C2
0C

2
1 + g↑↑2C4

1

2π
, (D.19)

and

EAB
0,s→0 = 3−

√

4κ2 + 1 + κ2 +
g↑↓
(

C4
0 + 2C4

1

)

+ (g↑↑ + g↓↓ − g↑↓) 2C2
0C

2
1

2π
. (D.20)
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APPENDIX E: VIRIAL RELATIONS

E.1 Virial theorem energy relation

For the eigenstates, |ΨE〉, of the Hamiltonian in (6.14), i.e., Ĥ |ΨE〉 = E |ΨE〉, the virial theorem

establishes that

〈ΨE | [Ĥ, ÔT ] |ΨE〉 = 〈ψE |
(

ĤÔT − ÔT Ĥ
)

|ψE〉 = 〈ψE |
(

EÔT − ÔTE
)

|ψE〉 = 0, (E.1)

with ÔT =
∑N

i=1 (x̂ip̂xi
+ ŷip̂yi). The explicit computation of the expectation value of the commu-

tator on the left part of the previous equation results in:

2 〈ΨE | V̂ T
ho |ΨE〉 − 2 〈ΨE | K̂T |ΨE〉 − 〈ΨE | V̂ T

so |ΨE〉

+ 〈ΨE | Ŵ ↑↑ |ΨE〉+ 〈ΨE| Ŵ ↑↓ |ΨE〉+ 〈ΨE | Ŵ ↓↓ |ΨE〉 = 0,
(E.2)

where the last three terms come from the interaction part of the Hamiltonian (6.16). The operators

involved read:

Ŵ ↑↑ = −
N
∑

i<j

2g↑↑

πs4
(x̂i − x̂j)

2e−
(x̂i−x̂j )

2

s2 |↑〉i |↑〉j 〈↑|i 〈↑|j , (E.3)

Ŵ ↓↓ = −
N
∑

i<j

2g↓↓

πs4
(x̂i − x̂j)

2e−
(x̂i−x̂j )

2

s2 |↓〉i |↓〉j 〈↓|i 〈↓|j , (E.4)

and

Ŵ ↑↓ = −
N
∑

i<j

2g↑↓

πs4
(x̂i − x̂j)

2e−
(x̂i−x̂j )

2

s2

(

|↑〉i |↓〉j 〈↑|i 〈↓|j + |↓〉i |↑〉j 〈↓|i 〈↑|j
)

. (E.5)

We also define the operator:

Ŵ T ≡ Ŵ ↑↑ + Ŵ ↓↓ + Ŵ ↑↓. (E.6)

In the noninteracting case, with the relation in Eq. (E.2) we can write the eigenenergies of the

Hamiltonian in Eq. (6.14) as:

E = 3 〈ΨE | V̂ T
ho |ΨE〉 − 〈ΨE | K̂T |ΨE〉+

Nκ2

2
. (E.7)

In the single-particle case, the virial theorem energy relation, Eq. (E.2), reduces to Eq. (6.12).
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E.2 Angular momenta and spin-orbit virial relation

Following the same procedure of previous Sec. E.1, we compute the expectation value of the fol-

lowing commutator:

〈ΨE| [ĤRD, ÔT ] |ΨE〉 = 0, (E.8)

with ÔT =
∑N

i=1 κ (x̂iσ̂xi
+ ηŷiσ̂yi). In this case, we have used the general many-body Hamiltonian,

that describes a noninteracting system,

ĤRD = V̂ T + K̂T + V̂ RD,T
so , (E.9)

where the external trap is an arbitrary potential of the form

V̂ T =

N
∑

i=1

V̂ (x̂i, ŷi), (E.10)

and the spin-orbit term is a mixture of Rashba and Dresselhaus of the form:

V̂ RD,T
so = κ

N
∑

i=1

(σ̂xi
p̂xi

+ ησ̂yi p̂yi) . (E.11)

As a result, we find that

〈ΨE | V̂ RD,T
so |ΨE〉 = −κ2

(

N
(

1 + η2
)

+ 2η 〈ΨE |
N
∑

i=1

L̂zi σ̂zi |ΨE〉
)

, (E.12)

where now, |ΨE〉 are the eigenstates of ĤRD. The independence of the external trapping potential

arises from the fact that

[V̂ T , ÔT ] = 0. (E.13)

In the single-particle case and with a pure Rashba-type spin-orbit coupling the relation of Eq. (E.12)

is equivalent to Eq. (6.13).
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