
ICCUB & IN2UB

Start: 01/07/2022, End:02/02/2023

Soliton dynamics in the Gross
Pitaevskii equation

Author
Marc Farreras (Physics)

Supervisors
Dr. Carles Calero
& Dr. Bruno Juliá
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1 Introduction

This report contains all my experience and work during my internship with IC-
CUB, carried out between July and September 2022. During the internship I
worked with Eric Vidal Marcos in the project QuantumlabUB, supervised by
Dr. Bruno Juliá Dı́az and Dr. Carles Calero Borrallo.

1.1 The project

The QuantumlabUB is a project build by undergraduate students in Physics
from the University of Barcelona, with the aim to develop applications to popu-
larise aspects of quantum mechanics. In particular, my peer Eric developed an
application to show the Spin Tunneling experiment, while I decided to redo an
old project started by Ivan Morera and Laura Moreno to show soliton dynamics
in the Gross Pitaevskii equation .

Even though the project carried out by Ivan Morera and Laura Moreno was
completed, the code is not functional now due to changes in the python li-
braries used. For this reason and to make my experience more enlightening,
Bruno pointed out that would be better to start from zero the project.

1.2 Goals

During our first reunion, Bruno explained the steps in order to solve the Gross
Pitaevskii equation and study the soliton dynamics. The different goals set up
to scheme the work were:

• Familiarize with the GPE and Split-step method.

• Study of the Fourier Transform and Discrete Fourier Transforms.

• Program the Split-step method and solve numerically the Schrödinger
equation for free particle and harmonic oscillator.

• Solve numerically the GPE and compare with analytical results.

• Program the application

Due to lack of time to finish properly the application, the memorial was written
with the objective to be as useful as possible for the next ones who continue the
project. For this reason all the theoretical information, numerical comparisons
and calculations are written in detail.
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1.3 Methodology

One of the objective of the whole experience was to familiarize the students
with the professional world. For this reason, the scheme work followed during
the project, which mainly last all July and September, was similar to how the
research groups work.

Two or three times a week, online meetings were arranged with our profes-
sors where Eric and myself exposed all the work that was done from the last
meeting. This reunions where essential for us, it allowed us to discuss our re-
sults, problems and thoughts with our tutors. They in return could give us
advise, helped us to build the next objective and lead us to a new paths when-
ever someone got stuck in a specific problem.

Between the weekly meetings, Eric and myself used to meet. This meetings
acted like a rehearsal before our reunion with our professors, which not only let
ourselves learn from the experiences of each other, but also it was essential to
organize our thoughts and be able of present clarifying reports to our professors.

2 Theoretical background

2.1 Gross-Pitaevskii equation

The Gross-Pitaevskii equation, also known as GPE or nonlinear Schrödinger
equation, has a wide variety of applications in nonlinear optics and quantum
physics. In particular is used to describe the wave function of a Bose-Einstein
condensate or BEC.

A BEC is formed when a gas of bosons trapped in and external potential is
cooled to temperatures very close to T → 0K. Due to bosons follow the Bose-
Einstein statistics they can occupy the same state.

If the bosons do not interact with each other, each one of them occupies the
ground state of the trap. The problem shows up when the bosons does interact
between them, then the ground state occupied by the bosons is not the same as
the ground state of the external potential and one is forced to find the ground
state of the many body hamiltonian

H =

N∑
i=1

[
p⃗2i
2m

+ Vext(r⃗i)

]
+

1

2

∑
i̸=j

V (rij). (1)
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Using the variational method and the Hartree-Frock approximation the Hartree
equation for bosons is obtained[

−ℏ2∇2

2m
+ Vext(r⃗) + (N − 1)

∫
dr⃗′|φ(r⃗′)|2V (|r⃗ − r⃗′|)

]
φ(r⃗) = µφ(r⃗). (2)

Where φ is the monoparticular state and µ is the chemical potential of the sys-
tem. Solving this differential equation should give us the ground state of our
N-bosons system.

2.1.1 Time independent Gross-Pitaevskii equation

For the interaction term can be used a pseudopotential V = gδ(r⃗1 − r⃗2). Using
this pseudopotential and the limit of large N in eq. (2), the equation can be
written as

−ℏ2∇2

2m
φ(r⃗) + Vext(r⃗)φ(r⃗) + gN |φ(r⃗)|2φ(r⃗) = µφ(r⃗). (3)

This last equation is the 3D time independent Gross-Pitaevskii equation, which
is equal to the Schrödinger equation with an additional nonlinear term gN |φ|2.

2.1.2 Time dependent Gross-Pitaevskii equation

Moreover, one can obtain the time dependent GPE, which describes the better
monoparticular state in each time.

iℏ∂tφ(r⃗, t) = −ℏ2∇2

2m
φ(r⃗, t) + Vext(r⃗)φ(r⃗, t) + gN |φ(r⃗, t)|2φ(r⃗, t). (4)

2.1.3 1D GPE in harmonic trap

The aim of this project is to solve the GPE with an harmonic potential in 1D.
In this case and using oscillator units the GPE and the time evolution corre-
sponds to

−1

2

∂2

∂x̄2
φ̄(x̄) +

1

2
x̄2φ̄(x̄) + ḡ|φ̄(x̄)|2φ̄(x̄) = µ̄φ̄(x̄),

i∂t̄φ̄(x̄, t̄) = −1

2

∂2

∂x̄2
φ̄(x̄) +

1

2
x̄2φ̄(x̄, t̄) + ḡ|φ̄(x̄, t̄)|2φ̄(x̄, t̄).

(5)

4



2.1.4 Soliton solution

In mathematics and physics, a soliton or a solitary wave is a wave packet that
maintains its shape while it propagates a constant velocity. This characteris-
tics let them to have particle-like properties, for example interact between them
without suffer interference effects.

The soliton solution is normally related to non-linear equations as the GPE.
Specifically the GPE has two soliton-like solutions, the bright and dark soliton.
Bright solitons are obtained for attractive interparticle interaction, consequently
they are associated to a local maxima of the BEC density. On the contrary, the
dark solitons appear in repulsive interparticle interaction and they correspond
to a localized density suppression.

Regarding the GPE, the term which module the interparticle interaction is the
coupling term g. Bright soliton solutions are obtained when g < 0, while g > 0
are dark soliton solutions. To learn more of GPE and soliton solution check [1]
and [5].

2.2 Split step method

In order to simulate a system, one have to solve the differential equation which
describes its dynamics. In the case of the GPE the numerical method used is
the split-step method.

For pedagogical reasons, first will be showed how to solve the Schrödinger equa-
tion with the split-step method and then it will be applied to the GPE.

2.2.1 Numerical resolution for time dependent Schrödinger equation

Time dependent dependent Schrödinger equation corresponds to

iℏ∂tψ = Hψ = [T + V ]ψ. (6)

From the eq. (6) is directly derived that the wave function time dependent
solution for ψ(t, x) is:

ψ(t, x) = e−
iHt
ℏ ψ(t = 0, x) = e−

i(T+V )t
ℏ ψ(t = 0, x). (7)

So for a time step from t to t+ dt it can be written formally:

ψ(t+ dt, x) = e−
i(T+V )dt

ℏ ψ(t, x). (8)

If the exponential could be separated respectively into one exponential with
only momentum operator arguments and another with only spatial operators
arguments, it would be straightforward to calculate the differential equation
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numerically due to the fact that each operator is an scalar in their own space

Position space (x): momentum space (p):

e−
idt
ℏ V → e−

idt
ℏ V (x) e−

idt
ℏ V → e−

idt
ℏ V (iℏ ∂

∂p )

e−
idt
ℏ T → e

iℏdt
2m

∂2

∂x2 e−
idt
ℏ T → e−

idt
ℏ

p2

2m

(9)

The problem is that the T and V operators do not commute, so we can not cal-
culate it directly. Here is where the split-step methods comes handy. Split-step
methods try to avoid the non-commutative problem by approximating:

eλ(A+B) ≈ eλβnBeλαnA... eλβ1Beλα1A. (10)

The philosophy of split-operator lies on pick the coefficients αi and βi so the
right hand part of the equation approximate the left side to as high order in
λ wanted. In [3] a coefficient table can be found with the error associated to
coefficient combination. For our project an error of O(λ3) is enough, so the
respectively coefficients are α1 = α2 = 1

2 and β1 = 1. Finally the eq. (8) ap-
proximated is:

ψ(t+ dt, x) = [e
−idt
2ℏ V (x)e−

idt
ℏ T e

−idt
2ℏ V (x)]ψ(t, x) +O(λ3). (11)

As mentioned before the exponential operators 1D in their respective spaces
correspond to scalars. Taking advantage from the Fourier properties, the sim-
plest and direct way to compute it would be:

ψ0(x) = ψ(t0, x),

ψ̃1(p) = F [e
−idt
2ℏ V (x)ψ0(x)],

ψ2(x) = F−1[e−
idt
ℏ

p2

2m ψ̃1(p)],

ψ(t0 + dt, x) = e
−idt
2ℏ V (x)ψ2(x).

(12)

2.2.2 Imaginary time propagation method

Another really interesting feature of the split-step method is how it enables us
not only to solve the time evolution of our wave function, but also can solve the
Schrödinger eigenvalue problem.

To demonstrate how, one takes the time dependent Schrödinger equation, which
corresponds to eq. (6), and change real time for an imaginary t = −iτ . Now
the Schrödinger equation becomes a diffusion equation

−ℏ∂τψ(x, τ) = Hψ(x, τ),

ψ(x, 0) = ψ0(x).
(13)

6



Analytical solution to this differential equation corresponds to an exponential

ψ(x, τ) = e−
τH
ℏ ψ0(x). (14)

If one now expand the initial wave function ψ0 in the base of eigenfunctions ϕi
and the apply diffusion operator

ψ0(x) =
∑
i

< ϕi|ψ0 > ϕi =
∑
i

ciϕi,

ψ(x, τ) = e−
τH
ℏ
∑
i

ciϕi,

ψ(x, τ) =
∑
i

cie
− τEi

ℏ ϕi.

(15)

Where Ei are the eigenvalues from each eigenfunction Hi. Assuming 0 < E1 <
E2 < ... , for enough long time (τ → ∞) asymptotically the function becomes

ψ(x, τ) → c0e
− τE0

ℏ ϕ0.

From here, one can obtain the grounded state normalizing the asymptotic func-
tion, then the eigenvalue is computed by energy expected value < ϕ0|H|ϕ0 >.

2.2.3 Numerical resolution for GPE

As result of Schrödinger equation and GPE similarities one would be tempted
to add the nonlinear term g|ψ|2 to the potential and apply directly the split-step
Fourier method. Nonetheless, wave function evolve in time, for this reason a
lineal combination of the different intermediate steps wave functions has to be
taken into account. Specifically in the method developed here

ψ0(x) = ψ(t0, x),

ψ̃1(p) = F [e
−idt
2ℏ (V (x)+g|ψ0(x)|2)ψ0(x)],

ψ2(x) = F−1[e−
idt
ℏ

p2

2m ψ̃1(p)],

ψ(t0 + dt, x) = e
−idt
2ℏ [V (x)+g|c0ψ0(x)+c1ψ1(x)+c2ψ2(x)|2]ψ2(x).

(16)

Accordingly to [3], the method gives an error O(h3) if and only if c1 = −c0 and
c2 = ±1.

The final expression is obtained substituting the calculated coefficients in eq.
(16)

ψ0(x) = ψ(t0, x),

ψ̃1(p) = F [e
−idt
2ℏ (V (x)+g|ψ0(x)|2)ψ0(x)],

ψ2(x) = F−1[e−
idt
ℏ

p2

2m ψ̃1(p)],

ψ(t0 + dt, x) = e
−idt
2ℏ [V (x)+g|ψ0(x)−ψ1(x)+ψ2(x)|2]ψ2(x).

(17)
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2.3 Fourier transform

Split-step methods relies in the Fourier transform to pass from one space to
other. On account of the importance that Fourier transform has in the numeri-
cal method it is essential to achieve a good understanding of Fourier transform
fundamentals and how it is performed numerically.

2.3.1 Continuous Fourier transform (FT)

Continuous Fourier transform, or as it will be refereed here FT, is a mathemati-
cal tool developed by Jean Baptiste Joseph Fourier which decompose a function
in a sum of cosines and sines function. Mathematically the FT of a function
h(x) or H(u) = F [h(x)] and his inverse or h(x) = F−1[H(u)] are described as

H(u) =

∫ ∞

−∞
h(x)e−2πixudx, (18)

h(x) =

∫ ∞

−∞
H(u)e2πixudu. (19)

Where the first equation corresponds to the properly FT, and the second one is
the inverse Fourier transform or IFT.

For many purposes, as will be our case, it is useful to think of h(x) and H(u)
as being two different representations of the same function. One goes back and
forth between the two representations by means of the FT. Another interesting
feature is the dimensional relation between x and u, the units of u are the in-
verse units of x. For our future interest it is better to check one example, if x
are in meters, the units of u will be cycles per meter so the wave number k can
be compute as k = 2πu .

Even thought the last definition of FT is correct, physicist are used to an-
other possible definition

H(k) =
1√
2π

∫ ∞

−∞
h(x)e−ixkdx, (20)

h(x) =
1√
2π

∫ ∞

−∞
H(k)eixkdk. (21)

It is obvious the relationship between k and u comparing both representations,
which is k = 2πu. Hopefully the last example now is more understandable.
Due to less 2π factors and more directly relationship in dimensionality between
variables the first one representation is used for the next chapter development.
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2.3.2 Discrete Fourier transform (DFT)

Fourier transform is not only one of the most useful tools in mathematics but
also in computing. However, in a great range of applications numerically cal-
culations are performed, so continuous functions are replaced by sampled ones.
This situation raised a problem, this is why a discrete version of FT is needed
in these cases. The discrete Fourier transform is named DFT.

In fact the discretization of FT presents two problems that they will be anal-
ysed in this chapter. The first and more obvious one is how it is performed, the
second one and more subtle comes with how can the information be recovered,
which is related with theory information and sample theorem.

Sampling theorem and Aliasing

Function discretization is a delicate operation which should be done carefully. If
the function is not well sampled, it could be indistinguishable from another.Then
when the DFT is applied could give as result a different outcome from the ex-
pected one.

A really clarifying example and really easy to understand will be the follow-
ing case, imagine you want to sample a function f(x) = sin(2π) .

In Fig. 1 it is observable the referred sampling problem, using not enough points
the functions seems to be a sinusoidal one, but now the frequency of this sinu-
soidal is totally different than the real one. As more complex is the function
sampled, for example more change in its curvature, more points are needed to
encode in a proper way the information of the function. Now, the question is,
how many N points needs the sample in order to be properly reconstructed?
Sampling theorem gives us an answer to this particular problem. But instead
of speaking of points N, it answers in terms of frequency f which according to
our definitions of FT would correspond to u variable.

Suppose you are using a sample with N points, the sample range is the length
(L) of our data. Denoting ∆ the space between samples. Then the sample rate
is the reciprocal of ∆, which corresponds to number of samples recorded per
second.

The Nyquisit-Shannon sampling theorem describes how to sample a signal in
such a way no information is lost. It states that to sample the function correctly,
the sample frequency has to be equal or grater than the double of the maximum
function frequency. Alternatively it is possible to define a critical frequency fc
given by
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Figure 1: Sinus function plotted. It shows the effect of sampling with not enough
points. The sinusoidal form is kept, however the frequency of the function is
changed.

fc =
1

2fsample
=

1

2∆
. (22)

In the case fc ≥ fmax the function is well sampled, so the original signal can
be completely recovered or reconstructed by these samples alone. On the other
hand, if fc < fmax then the function is poor sampled. Consequently frequency
information outside the −fc and fc suddenly move into this range. This effect
is called aliasing, an example of aliasing can be seen in Fig. 2

Sometimes the fmax of a function is unknown, so a priory the minium N needed
to sample can not be estimated. Despite this, what it is possible to do is
calculate the Fourier transform to tell whether the continuous function has been
competently sampled and try to minimize the aliasing effect. This is done by
looking to see whether the Fourier transform is already approaching zero as the
frequency approaches fc from below or from above. If, on the contrary, the
transform is going toward some finite value, then chances are that components
outside of the range have been folded back over onto the critical range.
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Figure 2: Example of aliasing effect extract from the book Numerical recipes.

DFT computation

The function wanted to transform is h(x),which is sampled in N points.These
are denoted as

hk = h(xk), xk = k∆, k = 0, 1, 2, 3, ..., N − 1. (23)

With the aim of doing everything simpler and without losing efficiency in our
objective, consider that N is even.

With N number of input, it is not possible achieve more than N number of
output, so obviously the outputs H(fk) are associated with discrete frequencies
in the range −fc to fc. There is freedom to choose in which frequencies the
outputs correspond so let us define this frequencies in the following way

fn =
n

N∆
, n = −N

2
, ...,

N

2
. (24)

When n = ±N
2 then we recover the critical frequency.In addition, here are N+1

frequencies, but only N of this are independent.
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The next step is to approximate the integral by a discrete sum

H(fn) =

∫ ∞

−∞
h(x)e−2πixfndx ≈

N−1∑
k=0

hke
−2πixkfn∆ = ∆

N−1∑
k=0

hke
−2πik n

N . (25)

In the last step, the eq. (23) and (24) have been used. The final summation in
eq. (25) is the DFT.

Hn =

N−1∑
k=0

hke
−2πik n

N . (26)

Now is easy to check that eq. (26) is periodic in n index, with period N .
Therefore, an standard method is to modify the index n, which now goes from
0 to N − 1 , this way k and n vary exactly over the same range. When this
convention is followed, zero frequency is associated with n = 0, positive fre-
quencies 0 < f < fc correspond to index 1 ≤ n ≤ N

2 − 1, negative frequencies

−fc < f < 0 correspond to N
2 − 1 ≤ n ≤ N − 1. The value n = N

2 is associated
with both, f = −fc ans f = fc.

The same process can be done with the IFT, mathematically the IDFT is de-
scribed

hk =
1

N

N−1∑
k=0

Hne
2πik n

N . (27)

2.3.3 Fast Fourier transform (FFT)

One really important question in computational algorithms is how the compu-
tational time needed escalates with N . For the DFT until the mid-1960s, the
standard answer was:

W = e
2πi
N , (28)

then the DFT can be written as

N−1∑
k=0

Wnkhk, (29)

eq. (29) corresponds to a matrix multiplication, where the matrix (n, k)th el-
ement is the constant W up to the power n × k and hk samples form a vector
of N -dimensions. The result of the matrix multiplication is a vector of also
N -dimensions whose components are Hn. If one wants to carry out the ma-
trix product, an order of N2 multiplications is needed,consequently the DFT
appears that the computational time is O(N2).

However, during the mid mid-1960s a new algorithm to calculate the DFT
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became generally known. This algorithm was called fast Fourier transform or
FFT due to its computation time, which is O(N log2(N)).

The demonstration of the FFT is tedious and do not bring up anything new
relevant for the purposes of this project. For those who want to learn more
about the topic, there is a detailed explanation in [2] . Despite this fact, it
is important to remark that FFT is more efficient when it is use a number of
points N = 2k. For our purpose, this condition can always be satisfied.

To sum up, the philosophy of the FFT is the same as DFT. The only remarkable
change is the way it is compute, making it more efficient than DFT. For this
reason in our algorithm FFT will be used instead the DFT Even thought the
method applied is different the inputs an outputs obtained are exactly the same.

3 Numerical tests

Currently, all the theoretical background for a numerical method to resolve the
GPE and Schrodinger equation has been explained. Now it is time to check
that the numerical method code works correctly.

3.1 Before coding

The language chosen to develop the code is python and there are several reasons
why it was chosen. One of the main reasons is due to the extended use of python
in different professional so it is beneficial for our professional formation to get
more experience using it. Another reason is the familiarity and experience our
tutors Dr. Bruno Juliá and Dr. Carles Calero have with this particular program
language, so if anyone of us get stuck with one problem it will be easier for them
to help us.

3.2 Familiarazing with FFT

One of the most used functions in the algorithm is FFT, so before starting the
real numerical method, it was necessary to get familiarize with FFT functions
and try to understand how them worked.

The FFT is performed by an scipy package named Scipy.fft. Nevertheless,
the output corresponding to frequency domain follows the standard convection
where first the positive frequencies are returned and then the negative ones. In
order to recover a better distribution of points, where the first ones to appear
corresponds to negative frequencies and the last ones to positive, the function
from numpy fft.fftshift is used.
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The first test done was sample a sinusoidal function and then the FFT and
the shift function were applied. The result is observed in Fig. 3, the only two
frequencies that appear in transformed domain are the negative and positive
frequency of the sinus. In addition this two frequencies appear at the same
distance from the zero frequency, that means the shift function has correctly
sort all them.

Figure 3: In the left image a sinusoidal function is sampled withN = 28 points,in
the right image FFT is implemented on sinusoidal function.

,

To recover the original function IFFT function was applied. The results are
shown in Fig.4, initial function and recovered one are identical.

Another important feature to check was the similarity between the FFT and
the FT. For the numerical method what really is necessary is the FT. It is im-
portant that the values used in the FFT not differ from the FT. In eq. (25), it
is calculated the relationship between FT and FFT (FT = ∆FFT ).

For the test, the Gaussian function was used because the FT of a Gaussian
it is also a Gaussian, then the analytical solution was compared with the FFT
solution. The Gaussian function used was

f(x) = e−5x2

. (30)

Analytically the FT of the Gaussian is

F (k) =

∫ ∞

−∞
e−5x2

e−2πixkdx =

√
π

5
e

−π2k2

5 . (31)
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Figure 4: The IFFT applied to FFT[f(x)].
,

The results obtained applying the FFT to f(x) are shown in Fig. 5.

Figure 5: In the left image FFT of a Gaussian function multiplied by ∆x and
the analytical FT.In the right image the absolute value FFT multiplied by ∆x
of a Gaussian and the analytical FT.

,

When the FFt is applied the outcome was a Gaussian with values oscillating be-
tween negative and positive instead of a Gaussian with only positive real values.

To discard that the result was not caused by the way scipy FFT is programmed,
a own-DFT was programmed and both results were compared. It is shown in
Fig. 6 that the results were exactly the same in the two cases, so it was not a
problem of how works the scipy function but something more deep related to
how DFT works.

The next step was to check the definition of the DFT and how was calculated.
If one search the most uses of DFT, it can be seen that generally is operated
with time and frequency domain. Time in general starts at t = 0, so it seemed
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Figure 6: My own programmed DFT and FFT from scipy applied to Gaussian
function.

,

a good idea to calculate the analytical FT of a Gaussian not centered in x = 0,
but in x > 0. The new initial function was

f(x) = e−5(x−x0)
2

. (32)

If a change of variable u = x−x0 is done, then the exponential in the FT change
to e−2πixk → e−2πik(u+x0). In fact, as x0 is a constant, a new exponential term
can go outside of the integral and the exact same result as eq. (31) is obtaned
but with an additional complex phase

F (k) =

√
π

5
e

−π2k2

5 e−2πikx0 . (33)

The apparition of the complex phase gives a hint of what is really happening.
Another test that helped to clarify the problem was defining two Gaussian, one
centered in x0 = 0 and in the interval x [−10, 10] as f(x). The second Gaussian
centered in x0 = 10 and in the interval x [0, 20] as f ′(x− x0).

From the results shown in Fig. 7 , one can conclude that somehow FFT in-
terprets that our function is sampled in the interval [0,20] and the Gaussian is
centered in the middle of the interval.

In eq. (23), it was forced that x starts at x = 0. In other words, DFT does
not know which points corresponds to each x, it assumes that the first point
is equivalent to x = 0 and the other points are equivalent to x = ∆xi where
i = 1, 2, ..., N − 1.

Even thought this seems that we are restricting the DFT formula, there is
not any lost of generality, but it is necessary to be more carefully with our
sampled function and how they are sorted. Particularly, what was happening is
that FFT see the Gaussian centered in N

2 + 1. Consequently, it interprets that
the sampled function corresponds to a Gaussian with the center not in x = 0,
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Figure 7: In blue the analytical FT of a Gaussian centered in x0 = 10 and
sampled in x [0,20]. In yellow the FFT of a Gaussian centered in x0 = 0 and
sampled in x [-10,10].

,

which would be the maximum in the first point, but a Gaussian with center in
x = (N2 + 1)∆x, which corresponds to a Gaussian centered in x0 = 10.

To try avoid this effect, the Gaussian function f(x) was split in two parts,
one that samples in the interval x [−10, 0] with N points and another with N
points which samples the interval left. This way the maximum of f(x) would
correspond to the initial and final points where due to periodicity of DFT is the
same that saying our f(x) is centered in x0 = 0. Results can be appreciated in
Fig. 8, where now the FFT do not oscillate between negative ans positive real
values. However, the sum it is not exactly the same so this was not an optimal
solution, but it leads to confirm the hypothesis that there was a problem with
how FFT interprets the sampled f(x).

Finally a way to avoid this effect was find. One must sort the sampled f(x) in
a way that the first point contains the maximum value x = 0, then all points
with x > 0 and finally all points with x < 0 from maximum to minimum
|x|. This order is exactly the same used in the DFT outputs, performed for
numpy.fft.fftshift. In Fig. 9 it is shown the result of applying the DFT into the
sampled f(x) sorted by fft.fftshift.

Despite having developed a method to avoid the shift created in the FFT, it was
not used. Even thought a shift is created in the k domain, this only adds a rel-
ative phase to our wave function. At the end, for calculations the only relevant
physics magnitudes are probabilities, which are calculated with the modulus
of our complex function. As it can be seen in Fig. 5, the module and it is
not affected by the shift. Consequently the final results extract from Split-step
method should not depend on shifting or not the sample of f(x).

Once the FFT of the Gaussian is calculated, one has to be able of recover-
ing the initial Gauss function applying the IFFT. Two ways of recovering the
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Figure 8: Left image shows the analytical FT and FFT of Gaussian centered in
x0 = 0 (f(x)). FFT split in two samples, the blue one in interval x [−10, 0] and
the orange one in interval x [0, 10]. Right image shows the sum of the two FTT
and the analytical solution of F [f(x)].

,

Figure 9: First image shows Gaussian centered in x0 = 0 (f(x)). Second image
shows the result of apply shift function into f(x). Third image shows the FFT
of shift(f(x) and the analytical FT of f(x).

,

initial wave function were tried. One was multiplying the IFFT by ∆k, the
other one was multiplying by 1

∆x .
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In Fig. 10 the results obtained in both cases are shown. From the results
it is directly to see that the correct way to recover the original function is mul-
tiplying by 1

∆x . The factor 1
∆x is needed instead of ∆k because in eq. 27 the

IFFT is defined with the fraction 1
N , which multiplied by 1

∆x returns ∆k .

Figure 10: In the left image IFFT multiplied by ∆k of a Gaussian function and
the initial Gaussian function.In the right image IFFT multiplied by 1

∆x of a
Gaussian function and the initial Gaussian function.

3.3 Split-step method

In this section will be explained how the Split-step program was schemed and
all the tests made to prove its reliability.

3.3.1 Program scheme

The Split-step method is applied by a function named split step. The inputs
must be variables that did not change during the program. The inputs chosen
for the split-step function were:

• Number of points N used in position and momentum space.

• Space vector x, where our wave function and external potential is defined.

• Distance between position points ∆x

• Vector with the initial values of the wave function ψ(t0, x)

• Distance between time points ∆t

• Vector with the values of the external potential V (x)

• Coupling constant g
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• Momentum vector k.

• Distance between momentum points ∆k

The split-step function take the initial wave function given in the argument,
and calculates the final wave function following eq. (17). Each step described
in eq. (17) is done separately by internal functions.

The functions named psi onex and psi twop calculate the intermediate wave
functions, while psi fx calculate the final wave function in t+ dt. The functions
fourier trans and inv fourier trans converts FFT and IFFT to FT and IFT.

To calculate the exponential with the momentum p term one has to be carefully
because the relation between k domain and p is subtle. From quantum mechan-
ics the relationship between momentum and wave number Kw is

p = ℏKw. (34)

Intuitively, one would think that Kw is the transformed domain, which indeed it
is when you use the eq. (20). However the equation used is eq. (18), so appears
a 2π factor and Kw is related with k by the relationship

Kw = 2πk. (35)

At the end the relation between k domain and momentum p is

p = 2πℏk. (36)

3.3.2 Split-step method study

To test the reliability of the Split-step method programmed, it was applied to
solve two well-known problems in quantum mechanics:

• Temporally evolution of free Gaussian packet wave

• Temporally evolution of Harmonic oscillator fundamental estate

In each case the analytical solution is known, so the numerical solutions obtained
numerically with the Split-step method can be compared with the theoretical
ones.
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Free Gaussian packet wave

From quantum mechanics theory one can obtain the expression for a Gaus-
sian wave packet, which saturate the position-moment uncertainty relationship
(σxσp = ℏ

2 ) at t0 = 0 and centred on x0 = 0. This particular function corre-
sponds to

ϕ(x, 0) =
1

(2πσ2
x)

1
4

e
− 1

4
x2

σ2
x
+ i

ℏp0x, (37)

ϕ̃(p, 0) =
1

(2πσ2
p)

1
4

e
− 1

4
(p−p0)2

σ2
p , (38)

where σp =
ℏ

2σx
.

Even thought this result is correct, it was obtained using eq. (20). In order
to be consequent with the IFT definitions used for the program, the eq. (38)
has to be multiplied by a factor

√
2π. Then the result become

ϕ̃(p, 0) =

(
2π

σ2
p

) 1
4

e
− 1

4
(p−p0)2

σ2
p . (39)

For free force systems, the hamiltonian H only has the kinetic energy term

H =
P 2

2m
. (40)

Because the hamiltonian only have P operator terms, the momentum wave func-
tion is an eigenfunction. Therefore the evolution operator is only a phase and
the probability density do not change.

ϕ̃(p, t) = e−
i
ℏ

p2t
2m ϕ̃(p, 0) → |ϕ̃(p, t)|2 = |ϕ̃(p, 0)|2. (41)

On the other hand, in the position space ϕ(x, 0) is not an eigenfunction. There-
fore, the probability density change over time. Even so, one can obtain analyt-
ically ϕ(x, t) applying the IFT to ϕ̃(p, t)

ϕ(x, t) =
1√
2πℏ

∫
dpe

i
ℏpxϕ̃(p, t) =

1√
2πℏ

∫
dpe

i
ℏ (px− p2t

2m )ϕ̃(p, 0). (42)

If one does the proper calculations in eq. (42) , the final expression for ϕ(x, t)
correspond to
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ϕ(x, t) = π− 1
4

( √
2
σp

ℏ

1 +
i2σ2

pt

mℏ

) 1
2

e

ip0
x
ℏ−(

σp
ℏ )2x2−

ip20t

2mℏ

1+
i2σ2

pt

mℏ , (43)

once ϕ(x, t) is obtained, the probability density |ϕ(x, t)|2 is

|ϕ(x, t)|2 = π− 1
2

√
2
σp

ℏ

(1 +
4σ4

pt
2

m2ℏ2 )
1
2

e

−
2(

σp
ℏ )2(x−vgt)2

1+
4σ4

pt2

m2ℏ2 , (44)

where vg is named velocity group. It is the velocity with which the mean posi-
tion moves during the time evolution, it can be calculated by

vg =
p0
m
. (45)

From eq. (44) it is possible to get an expression that relates σx and σp

σ2
x(t) =

1

4

ℏ2

σ2
p

(
1 +

4σ4
pt

2

m2ℏ2

)
= σ2

x(0) +
σ2
p

m2
t2. (46)

One can notice that σ2
x(t) is a parabolic function. Moreover, if σ2

x(t) is plotted
in front of σ2

pt
2, the result is a straight line with an slope value of 1

m .

Another option to obtain this exact same result, could be with the Ehrenfest
theorem. Ehrenfest theorem enunciates that expected values of position and
momentum operators, respectively X and P , evolves with the classical physics
laws, but with mean forces.

In a free force system, where our initial expected values are < X > (t0) = 0 and
< P > (t0) = p0 it is easy to apply the Ehrenfest theorem.

d < P >

dt
(t) =< F >= 0 →< P > (t) = p0,

d < X >

dt
(t) =

< P >

m
=
p0
m
.

(47)

In a reference system where < X > (t0) =< P > (t0) = 0, it is possible to
calculate in a straight forward manner the momentum and position dispersion
of our system.
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The momentum dispersion evolution σ2
p(t) would be

σ2
p =< P 2 > − < P >2=< P 2 >,

dσ2
p

dt
=
d < P 2 >

dt
=

1

iℏ
< [P 2, H] >= 0.

(48)

Position dispersion evolution σ2
x(t) is a bit more tedious. First it is calculated

the commutator of X2 and P 2

[X2, P 2] = [X2, P 2] = P [X2, P ] + [X2, P ]P = 2iℏ (PX +XP ) , (49)

then it is calculated the commutator between the solution obtained in eq. (49)
and P 2

[(PX +XP ) , P 2] = XP 3 − P 2XP + PXP 2 − P 3X =

= [X,P 3] + P [XP − PX]P = [X,P 3] + P [X,P ]P.
(50)

Other important expression is the commutator property

[A[A,B]] = 0 → [An, B] = [A,B]nAn−1. (51)

Now using eq. (51) in eq. (50)

[X,P 3] + P [X,P ]P =

= −[P 3, X] + P [X,P ]P =

= −[P,X]3P 2 + P [X,P ]P =

iℏ(3P 2 + P 2) = 4iℏP 2.

(52)

Finally Position dispersion evolution σ2
x(t) can be calculated

σ2
x =< X2 > − < X >2=< X2 >,

d2σ2
x

dt2
=

d2

dt2
< X2 >=

d

dt

(
1

iℏ
< [X2, H] >

)
=

=
d

dt

(
1

2iℏm
< [X2, P 2] >

)
.

(53)

Applying eq. (49)
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d

dt

(
1

2iℏm
< [X2, P 2] >

)
=

1

m

d

dt
< PX +XP >=

=
1

miℏ
< [PX +XP,H] >=

1

2iℏm2
< [PX +XP,P 2] > .

(54)

Using eq. (50) and eq. (52)

d2σ2
x

dt2
=

1

2iℏm2
< [PX +XP,P 2] >=

=
2

m2
< P 2 >=

2

m2
σ2
p,

(55)

as it can be seen in eq. (48), σ2
p is constant. Differential equation in eq. (55)

can be solved directly, and give as a result a parabolic function

σ2
x(t) = σ2

x(0) +
2

m2
σ2
pt

2. (56)

In addition, taking into account that at t0 position-moment uncertainty is sat-
urate, eq. (56) can be rewritten as

σ2
x(t) = σ2

x(0) +
ℏ

4m2σ2
x(0)

t2. (57)

The units used in the simulation are atomic units. Where ℏ = 1, mass is mea-
sured by electron mass (me), position in Bohr radius (a0), energy by Hartree
energy (Eh) and time in ( ℏ

Eh
).

The parameters used in the simulation for the Gaussian functions are

p0 = 0
mea0Eh

ℏ
,

σ2
x(0) = 1

1

a0
,

σ2
p(0) =

1

2

ℏ
meEh

,

m = 1me.

(58)

Using the specified parameters, all the relevant expressions calculated became
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ϕ(x, 0) =
1

(2π)
1
4

e−
1
4x

2

,

ϕ̃(p, 0) =
1

(π2 )
1
4

e−p
2

,

< P >= 0
meEh

ℏ
,

< X >= 0 a0,

σ2
x(t) =

(
1 +

1

4
t2
)

1

a20
.

(59)

For the numerical simulation N = 215 points were used to sample ϕ(x, 0) in
the x interval [−50, 50] a0. For time evolution, Nt = 31 points were used with
dt = 1 ℏ

Eh
.

As result of none force is exerted to the particle, probability density should
became shorter and wide over time. In the numerical simulation this effect is
appreciated in Fig. 11.

Figure 11: Time evolution numerical simulation of probability density |ϕ(x, t)|2.

The comparison between analytical mean values and the obtained in the numer-
ical simulation are shown in Fig. 12. As it can be seen, not only momentum
and position values are constant in time as were predict, but also the deviation
between numerical and analytical results are smaller than approximately 10−12.
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Figure 12: Left image is shown position mean value time evolution calculated
analytically and numerical in scale of 10−11a0. Right image is shown momentum
mean value time evolution calculated analytically and numerical in scale of
10−12 mea0Eh

ℏ .

Additionally, comparison between analytical and numerical σ2
p and σ

2
x was made.

The results are shown in Fig. 13 and Fig. 14. In the three cases, the numerical
simulation fits perfectly the analytical solutions from eq. (59).

The first time the comparison was made, N = 28 were used for the simulation.
In this case the momentum dispersion numerically give an error of approximately
0.4%. With the objective to discern if the error was caused due to discretization
or due to a bad performance of my Split step program, it was done a study of
error convergence with the number of points used.

For error convergence with spatial number of points N , it was used σ2
p. The

σ2
p was chosen because showed the biggest relative error. Only the initial wave

function (t = 0) was used to avoid error caused by time discretization. Results
of parameter N study are in Table 1. From Fig 15 can be seen that the error
fall exponentially with N .

To study parameter Nt, σ
2
x(tfinal) was used. The reason why σ2

x(tfinal) was
chosen is because it showed the biggest change in time, so it should have the
biggest error due to time evolution at the end of the simulation. Results are
found in Fig. 16, it shows that error decay exponentially also with Nt.
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Figure 13: Left image is shown position dispersion value over time calculated
analytically and numerical. Right image is shown momentum dispersion value
over time calculated analytically and numerical.

Figure 14: Relation between position dispersion, momentum dispersion and
time analytically and numerically.
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Study N parameter
Number of points
(N)

Time needed to run
the program (t)

Difference
|σ2
p analy. − σ2

p num.|
Error σ2

p in %

28 t ≈ 3s 10−3 0.4%
212 t ≈ 3s 10−4.18 0.025%
215 t ≈ 3s 10−5 0.004%
217 t ≈ 10s 10−5.64 0.0009%
219 t ≈ 20s 10−6.3 0.0002%

Table 1: Study of the parameter number of sampled points N . The study focus
on the error in momentum dispersion σ2

p.

Figure 15: Logarithmic representation of difference between analytical momen-
tum dispersion σ2

p anally and numerical momentum dispersion σ2
p num in front of

the number of sampled points N .

Harmonic oscillator

The harmonic oscillator is a system that, when displaced from its equilibrium
position, experiences a restoring force F proportional to the displacement x. It
is one of the most studied systems in physics and have analytical solutions.

The hamiltonian of the particle H is

H =
P 2

2m
+

1

2
mω2X2. (60)

The time independent Schrödinger equation for the harmonic oscillator is

− ℏ2

2m

d2

dx2
ψ(x) +

1

2
mω2x2ψ(x) = Eψ(x). (61)
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Figure 16: Representation of difference between analytical momentum disper-
sion σ2

x anally(tf ) and numerical momentum dispersion σ2
x num(tf ) in front of

the number of time points Nt used in time evolution in a fixed time interval t
[0,30] ℏ

Eh
.

For the numerical simulation, it is useful to reduce the numerical constants and
work with a special units named oscillator units. To obtain the equation in the
oscillator units, one divide by ℏω

− ℏ
2mω

d2

dx2
ψ(x) +

1

2

mω

ℏ
x2ψ(x) =

E

ℏω
ψ(x). (62)

Now if the variable are renamed as x̄ =
√

mω
ℏ x and Ē = E

ℏω , then eq. (62)
became dimensionless

−1

2

d2ψ̄

dx̄2
+

1

2
x̄2ψ̄ = Ēψ̄, (63)

the stationary dimensionless solutions of harmonic oscillator are

ψ̄n(x̄) = CnHn(x̄)e
− 1

2 x̄
2

, (64)

where Hn are the Hermite polynomials.

For the numerical study, the ground state n = 0 will be used. In this case
H0 = 1. Substituting in eq. (64), the ground state is described as
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ψ̄0(x̄) =
1

π
1
4

e−
1
2 x̄

2

. (65)

Time evolution is determinate by time dependent Schrödinger equation, if now
is divided by ℏω

i

ω

∂

∂t
ψ̄ =

[
P 2

2mℏω
+

1

2
X̄

]
ψ̄. (66)

From eq. (66) it is possible to define new adimensional variables as t̄ = ωt and
P̄ = P√

mℏω = dx̄
dt̄ . Finally, time evolution equation, energy kinetic operator and

potential energy operator in oscillator units are

i
∂

∂t̄
ψ̄ = H̄ψ̄ = [T + V ]ψ̄,

T̄ =
1

2
P̄ 2,

V̄ =
1

2
X̄2.

(67)

From Ehrenfest theorem, one is able to calculate analytically the expected po-
sition and momentum value over time

< F >= − < X̄ >,

d < P̄ >

dt̄
= − < X̄ >,

d < X̄ >

dt̄
=< P̄ > .

(68)

If one derive the X̄ term again, the differential equation can be decoupled

d2 < X̄ >

dt̄2
=
d < P̄ >

dt̄
= − < X̄ > . (69)

The solutions of this differential equation are sinusoidal functions. With a lin-
eal combination of sin and cos functions.Taking in count the initial conditions
< X̄ >= x0 and < P̄ > (0) = p0 the mean values evolution over time are

< X̄ >= x0cos(t̄) + p0sin(t̄),

< P̄ >= p0cos(t̄)− x0sin(t̄).
(70)

For the numerical simulation N = 215 spatial points were used to sample the ini-
tial wave function ψ̄0(x̄) in x̄ ad. interval [−10, 10] with dx̄ = 0.006ad.. The ini-
tial wave function was initially centered in x̄0 = 5. For time evolution Nt = 100
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points were used in t̄ ad. interval [0, 6] with dt̄ = 0.06 ad.

The fundamental state of the harmonic oscillator is a coherent state, so it be-
have as a classical particle. When it is not centered it starts to oscillate, keeping
intact his form during the oscillation, such as a ball attach to a spring. This
phenomenon appeared in the numerical simulation, it is shown in Fig. 17.

Figure 17: In the left image, numerical simulation of density probability
|ψ̄(x̄, t̄)|2 evolution over time t̄. In the rigth image, numerical simulation of
density probability |ψ̄(k̄, t̄)|2 evolution over time t̄.

The comparison between the analytical and numerical mean values is shown in
Fig. 18, where it can be seen that the numerical results fits with the theoretical
ones.

Another test done in the simulation was study the shape change of the wave
function during time evolution. It was done calculating width at half maximum
or FWHM, which is related with the dispersion by

FWHM = 2
√
2Ln(2)σ. (71)

To do the study, position and momentum dispersion was calculated over time.
If the wave function keeps the shape in time evolution, the dispersion should be
constant. The results are shown in Fig. 19. As it was expected the dispersion
do not change significantly over time.
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Figure 18: Left image is shown position mean over time calculated analytically
and numerical. Right image is shown momentum mean over time calculated
analytically and numerical.

Figure 19: Left image is shown position dispersion value over time calculated
analytically and numerical. Right image is shown momentum dispersion value
over time calculated analytically and numerical.

3.3.3 Imaginary time evolution study

Besides calculating the time evolution, Split-step method also can find the eigen-
functions of a given Hamiltonian H by replacing time for imaginary time.
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Because it will be necessary to solve the GPE equation, it is important to
test if the program is able to find the eigenfunctions of different systems.The
systems chosen for the test were:

• Infinite well potential

• Harmonic oscillator

Infinite well potential

The time independent Schrödinger equation can be analytically solve, the cor-
responding wave function to different energy states En are

ϕn(x) =
1√
a
cos
(nπx
L

)
n = 1, 3, 5, ...

ϕn(x) =
1√
a
sin
(nπx
L

)
n = 2, 4, 6, ...

(72)

From last equation, x = ±a are the points where the potential barrier starts
and L = 2a. Also the discrete energy level En analytically are calculated by

En =
ℏ2π2n2

2mL2
. (73)

For the numerical study I used again atomic units and m = 1me.

The aim of this study was to test if the program was able to recover the ground
state. Because the ground state have even parity, an initial function with the
same parity was chosen. In addition,it has to be a function that tended to zero
as it approximates to the barrier position.

One function that fits these characterizes was ψ0 = x2e−2x2

. Another one
which fulfill the same requirements were ψ1 = [x4 − 5x2 + 1]cos(x)e−4x2

. This
two functions were sampled with N = 212 points in the x interval [−10, 10] a0.

To simulate the infinite potential barrier was used

V (x) = 10000 |x| > 9.2

V (x) = 0 |x| < 9.2
(74)
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With respect to time parameters, Nt = 5000 points were used in the time inter-
val τ [0, 100] ℏ

Eh
with dτ = i0.01 ℏ

Eh
.

Furthermore a study of the energy convergence in each time step was done
in parallel. Energy of every step En was calculated by

En =

∫ ∞

−∞

p2

2
|ψ̄(k, t)|2dk, (75)

then eq. 73 was used to obtain n.

From Fig. 20 and Fig. 21, one can conclude that the method seems to be
stable and that in the two cases the ground state ϕ1 was indeed recovered.

Figure 20: In the left image, imaginary time evolution of ψ0 until reach the
ground state ϕ0. In the right image energy level n convergence in time.

The next step was to study the relationship between error and time pass dτ .
Two different error studies were done. The first one, was the difference between
energy state obtained numerically at the end of the simulation nnum. and the
analytical one n = 1. The second one was < ψ(x, tf )|ϕ1 >. The results are
shown in Fig. 22.
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Figure 21: In the left image, imaginary time evolution of ψ0 until reach the
ground state ϕ1. In the right image energy level n convergence in time.

Harmonic oscillator

In oscillator units, the analytical stationary states are described in eq. (64).
When n is even, the Hermite polynomials are even, reversely when n is odd.

To obtain the ground state, the initial function must be even. The function
chosen was ψ̄(x̄)0 = [x̄4 − 5x̄2 + 1]cos(x̄)e−4x̄2

. It was sampled with N = 212

points in the x interval [−10, 10] ad..

With respect to time parameters, Nt = 1000 points were used in the time
interval τ i[0, 10] ad. with dτ = i0.01 ad..

Equally as infinite well potential, a study of energy convergence in each time
step was done in parallel. Energy of every step En was calculated by

Ēn =

∫ ∞

−∞

p̄2

2
| ¯̄ψ(k̄, t̄)|2dk̄ +

∫ ∞

−∞

x̄2

2
|ψ̄(x̄, t̄)|2dx̄. (76)

For an harmonic oscillator stationary states, the corresponding analytical en-

35



Figure 22: In the left image, convergence to energy level n with time pass dτ .
In the right, convergence of scalar product between simulated ground state and
analytical ground state < ψ(x, tf )|ϕ1 > with time pass dτ .

ergy in oscillator units are

Ēn = n+
1

2
. (77)

Combining eq. (76) and eq. (77), it is possible to calculate the state n.

From the results obtained in Fig. 23, the method seems to be stable and recover
without problems the ground state ϕ0.

The next step was to try to get the following energy state possible, which due
to parity of our initial function had to be n = 2. To obtain the first excited
state, the wave function ψ̄ was orthogonalized with ϕ0

ψ̄′ =
∑
i

Ciϕi − C0ϕ0,

C0 =

∫ ∞

−∞
ϕ∗0(x̄)ψ̄(x̄)dx̄.

(78)
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Figure 23: In the left image, imaginary time evolution of ψ̄ until reach the
ground state ϕ1. In the right image energy level n convergence in time.

However, this method was not good enough because in every calculation a nu-
merical error is introduced. As result the function which at the beginning was
orthogonal to ϕ0, after some iterations ceases to be orthogonal and eventually
evolve to the ground state. This particular effect can be appreciated in Fig. 24.

There are two possible options to avoid this problem. The quicker and less com-
putational expensive is use a small time interval, although sometimes a small
time interval do not produce a result satisfactory enough. If it is the case, the
other solution is to repeat eq. (78) every time step. This option ensure that in
every time step the function do not have any component of our ground state so
always evolve to the next low energy level.

The next study was how converge the error with time pass. Time t̄ interval
used was [0, 10], then the total number of points Nt was being changed. The
results are shown in Fig. 25. They seemed to point that split-step converge to
the ground state really fast, however in the energy value more error is accumu-
late and small dτ is needed to obtain satisfactory results.

To end the study, it was checked that the solutions obtained are truly stationary
states, which consequently do not evolve in time. The results are shown in Fig.
26, which conclude that the numerical solutions indeed are stationary.
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Figure 24: In the left image, imaginary time evolution of ψ̄ until reach the
ground state ϕ1. In the right image energy level n convergence in time.

3.4 Ground state of GPE

To obtain the ground state of the GPE with an harmonic potential one have to
rely on the imaginary time evolution method.

Even though one can not compare with analytical solution, the Thomas Fermi
approximation can be used to find analytical results to study the reliability of
the solution obtained.

1D Thomas Fermi approximation

The Thomas Fermi approximation is used when the interaction term is repulsive
and large g >> 0. In this case, the kinetic term can be negligible in front of the
harmonic and interaction terms.

The first equation from eq. (5) using this approximation is rewritten as
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Figure 25: In the left image, convergence to energy level n with time pass dτ in
logarithmic scale. In the right, convergence of scalar product between simulated
ground state and analytical ground state < ψ(x, tf )|ϕ1 > with time pass dτ .

1

2
x̄2φ̄(x̄) + ḡ|φ̄(x̄)|2φ̄(x̄) = µ̄φ̄(x̄), (79)

from the last equation one can obtain directly

|φ̄(x̄)|2 =
1

ḡ

(
µ̄− 1

2
x̄2
)
. (80)

The Thomas−Fermi radius is defined as x̄ where the density of the wave func-
tion is zero, which it means that |φ̄(x̄)|2 = 0. In 1D case, the Thomas−Fermi
radius expression is

RTF =
√

2µ̄, (81)

in addition, one can have an extra condition imposing the normalization of the
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Figure 26: imaginary time evolution of ψ̄ until reach the ground state ϕ1. In
the right image density probability |ψ̄|2 evolution in time.

probability density

∫ RTF

−RTF

|φ̄(x̄)|2dx̄ =

∫ RTF

−RTF

1

ḡ

(
µ̄− 1

2
x̄2
)
dx̄ = 1. (82)

Applying eq. (81) into eq. (82) and integrating, the relationship between
Thomas−Fermi radius and the interaction term is obtained

R3
TF =

3

2
ḡ,

RTF α ḡ
1
3 .

(83)

In Fig. 27 it is observable that numerical results fits perfectly with analytical
results when g >> 0. Consequently, the ground state seems to be computed
correctly.
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Figure 27: Amplitude of ground state σx̄ in front of the interaction term ḡ
calculated numerically and analytically.

3.5 Dark soliton dynamics

Finally the program is ready to simulate the dynamics of the dark soliton.

To create the dark soliton it is necessary to create a node (lack of density)
in the ground state, one possibility to achieve it is multiplying the function by
x− x0 or tangh(x− x0), where x0 is the node position.

Then, the resulting function is evolved with imaginary time. Even though the
imaginary time should return our function back to the ground state, due to or-
thogonality between our present function and the ground state, the imaginary
time evolution pass trough a meta stable state which correspond to the dark
soliton solution. Taking advantage of this, if the time evolution is short enough
the evolution stops in the meta stable state.

In the program the tangh(x − x0) is used because it showed the superior ef-
ficiency to find the meta stable state.

To check the veracity of the simulation is useful to compare the oscillation fre-
quency of the dark soliton obtained numerically with the theoretical one, which
is calculated analytically in [4] for a soliton trapped in an harmonic potential.
The analytical value is
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wsol =
whar√

2
,

w̄sol =
1√
2
.

(84)

In first equation wsol and whar are the frequency oscillation of the soliton and
the harmonic trap respectively. In the second expression w̄sol is the frequency
oscillation of the soliton in oscillator units.

The method used to calculate the numerical soliton frequencies is plotting the
time evolution of the condensate density in a 2-D image, where the y-axis is the
time, the x-axis is the position and the density is showed with a color bar. In
Fig. 28 an example of the plot used is shown.

Once the image is obtained the period of oscillation T can be obtained di-
rectly. In Table 2. the numerical wsol calculate with different parameters of
the simulation is shown. As it was expected from eq. (84), all the values are
around 0.7 approximately,the difference between values can be attributed to the
imprecision of the method used which relies in a graphical study instead of a
numerical one.

Figure 28: Graphical study of the condensate density (ϕ2(x̄, t̄)) with respect
time (t̄) and position (x̄). The parameters used in this simulation were (̄g) = 70
and x0 = −1
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Study soliton frequency wsol
Coupling constant
((̄g)

Node initial posi-
tion (x0)

soliton frequency
(wsol)

400 0.5 0.70
400 5 0.70
300 5 0.74
300 1 0.71
50 1 0.73

Table 2: Study of the dark soliton frequency oscillation wsol with respect the
change of the numerical parameters used in the simulation.

4 Application

The final objective of this project was to create an application which let the
user explore the dynamics and behavior of the dark soliton.

At this point not only the numerical method which the application relies to
do all the calculations needed has been deeply tested, but also the program has
proved to simulate correct not only one dark soliton but more than one in the
same condensate.

However, all this tests and studies has occupied the most part of my time in
the internship. Consequently I decided to focus on creating a simple functional
application which could be used as a base to someone who will be willing to
continue the project in the future.

4.1 Application objective

The application has two main purpose. The first one is to show graphically how
the GPE is solved, the second one is to let the user explore the special behaviour
of the dark soliton when it interacts between them.

To fulfil the first one, the application displays how the GPE ground state is
found, how the dark soliton is introduced and finally the time evolution.

To let the user interact and explore the interaction dynamics, the application
allows the user to decide not only the number of solitons that will be introduced,
but also where they want to put them in the condensate.
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4.2 Application structure

The application is programmed with python, using Kivy. Kivy is a multi-
platform application development framework for Python.

The first screen corresponds to solve the ground state of GPE. Here the user can
see how starting with an initial Gaussian function and applying the imaginary
time evolution, the wave function starts to change until reach a stationary state,
which corresponds to the ground state.

Figure 29: Application screenshot. It is shown the ground state calculated after
doing the imaginary time evolution.

The next screen is only to decide how many solitons the user want to introduce
in the condensate. When a number is selected, the user is moved forward to the
next screen.

After selecting the number of solitons the user has arrived to the second step.
In this screen the user first decide where he want to put the solitons, then the
imaginary time evolution is displayed to arrive at a stable state. At this point
the user can change again the solitons position or can observe the time evolution
of the condensate.

Once the user want to change the number of solitons, he can go back to the last
screen and repeat all the process.

Further acknowledgment of how the application is and works can be found in
the annex.
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Figure 30: Application screenshot. The screen let the user decide how many
solitons wants to introduce.

Figure 31: Application screenshot. The first screen shows the wave function
with the dark solitons introduced after doing imaginary time. The second screen
shows one frame of the time evolution animation.

4.3 Further implementations

Even thought the application is functional, it is far from complete. In this sec-
tion will be pointed some improvements and features, which could not be done
due to lack of time, hopping it will be helpful to the next one who continue the
project in the future.
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Improvements

The most simple and direct improvement which can be implemented is code
optimization using the parent-child features of python classes. This could avoid
repeating some functions common in different screens and sharing variables
which are calculated in different screens.

Other optimization could be trying to avoid ”for in range” in the kivy ap-
plication. When the ”for in range” is called, kivy stops and wait until all the
loop is done. Consequently the flow application is really slowed down.For this
reason it will be better to find a way of computing time evolution loop with
only kivy functions.

New features

Finally, there are a few features which will be interesting to add.

One is the comparison between the harmonic and the soliton frequency, for
example an animation where both evolve in time could be shown. Following the
same line but being a more challenging feature, an animation comparing the
interaction between classical particle oscillator and dark solitons could be done.

Another one to make more visually understandable what is happening, could be
add the 2-D image of condensate density with respect time and space could be
added. An example of this image is Fig. 28, where the user could see better that
the dark soliton is a lack of density, which oscillates with time as a sinusoidal
function.

5 General conclusions

At the end of the project, all the goals set at the beginning were accomplished.
Not only all the numerical tests fitted perfectly with the analytical solutions, as
it is detailed in section 3, but also the application was completed and help the
user to understand how the GPE equation is solved and how the dark solitons
behave.

However, the application has not reached his fully potential. As it is pointed
in section 4, the code can be modified to fit in better with kivy structure and
more features could be implemented. Nonetheless, it is still functional and what
it is more important, it will serve as a good base for the next one to finish the
project.
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6 Experience and personal conclusions

This project was a thrilling and fascinating experience. It was the first contact
I had with a physics project that was not related with the academic world.

At the beginning I was frightened of not being able of prosper with my tasks
because I did not know anything about the topic of the project. Nevertheless, I
succeed in all the tasks and adversities faced, and to be honest there were not
few. All this make me more confident for my future academic and professional
career and I am really grateful for it.

To end, I had the opportunity to learn from two great professionals, my tu-
tor Dr. Bruno Juliá and Dr. Carles Calero, who helped me with every reunion
to set my next objective and to advise me in my studies. I really thank both
of them for this experience, to all the help and mentoring they did I am very
grateful. Also to mention that I really enjoyed to share this experience with my
fellow student Eric Vidal, who also has supported me in the whole project.
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