Numerical methods for resolving the Gross-Pitaevskii equation

Author:

Kim Anh Stoeffler

Facultat de Fisica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor:

Bruno Julia Diaz

(Dated: September 2, 2021)

This paper aims at treating the dynamics of a Bose-Einstein condensate at zero temperature,
starting from the time-dependant Gross-Pitaevskii equation also known as nonlinear Schrodinger
equation. In order to do so, two numerical methods are implemented and studied, in both cases of

interacting and non-interacting particles.

I. INTRODUCTION

For a Bose-Einstein condensate to form, a gas of par-
ticles is cooled to a temperature of nearly absolute zero.
The transition to the BEC state is set by the condition of
quantum degeneracy [1]. Such an ”operation” results into
a decrease in energy and thus an increase in the particles
wavelength [2]. When the temperature is low enough,
the wavelengths are larger than the atomic separation,
eventually resulting in the creation of a single quantum
entity described as a single wave-function. Equivalently,
this happens when a fundamental quantum cell of size of
the order of de Broglie wave length contains more than
one particle. Thus, Bose-Einstein condensates allow the
observation of quantum effects on a macroscopic scale
and lead to interesting applications in various fields such
as transport and conductivity, superfluidity and quantum
tunneling [1].

To achieve such a state of matter, the most common
techniques are laser cooling and magnetic trapping [3]. If
an atomic beam travels in the direction opposite to that
of a resonant laser, the beam can be slowed down with a
remarkably large deceleration. The velocity spread of the
atoms can be dramatically reduced to temperatures in
the pk range above absolute zero [4]. Magnetic fields are
used to concentrate and trap atoms into small volumes.
Nowadays, one of the most promising developments is the
creation of perfectly controlled crystals of atoms loading
a Bose- Einstein condensate in a lattice. Those lattices,
whose parameters can be varied, form powerful model
systems for theory [4].

This paper aims at resolving 2 for both cases Uy =
0 and Uy # 0 in a one-dimensional system, using
the Crank-Nicholson and the imaginary time numerical
method. More particularly, the evolution of different ini-
tial states in a harmonical trapping potential will be stud-
ied for interacting and non-interacting particles.

II. THEORETICAL APPROACH
A. The Gross-Pitaevskii equation

In dilute gases, the typical atomic separation isn’t
small enough for atoms to interact at a significant level

[5]. When distances between particles reduce, it is
often convenient to introduce an effective interaction,
Up. In order to describe interactions between very-long-
wavelength excitations and at low energies, Uy can be
taken as a constant in momentum space :
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U

[5] (1)

where a is called the scattering length and characterises
the strength of the interactions. In coordinate space, it is
given by Upd(r —r') and describes a contact interaction
between particles positioned at r and r’ respectively.
The many-particle system can be reduced to the problem
of finding a single particle, or condensate wave-function.
To describe its time-dependant behaviour, one relies on
the Gross-Pitaevskii equation [6], also referred to as the
non-linear Schrédinger’s equation:
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where ¥(r,t) is the order parameter or wave function
of the condensate.

B. The Thomas-Fermi approximation

The Thomas-Fermi approximation is a tool which
may be used to simplify the Gross-Pitaevskii equation
in presence of a trapping potential. The approximation
is based on the following physical phenomena : in a
trap, both the kinetic energy and interaction energy per
particle work to expand the characteristic length of the
wave. Hence, one can try to neglect the weaker of the
two [7].

Starting from the time-independant one-dimensional
Gross-Pitaevskii equation, written as :
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where p corresponds to the chemical potential, one can
neglect the kinetic energy term when the interaction is
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much larger, i.e. for large Uj.

If one considers a harmonic trapping potential V' (z) =
%mw%c?, it is convenient to write the equations using

harmonic oscillator units :

_ t T - U
tho €ho Gho

)
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where e, = hw, ap, = \/h/mw and tp, = w™t. From
now on, every parameter introduced is to be understood
in terms of the redefined units. The Thomas-Fermi ap-
proximation yields :

1 _
(2x2 + U0|\I/|2> U =pa0v. (4)

Resolving Equation 4 leads to the following wave-
function :

T — Lo2

Upp(z) = { mu — 5T
0

Normalizing yields i = (3Uy/4v/2)%/3.

C. Solitons

The time-dependent Gross-Pitaevskii equation (2) has
exact one-dimensional solutions in the non-linear regime
: solitons. These disturbances are wave packets which
propagate without any deformation in a non linear dis-
persive medium. Solitons preserve their form because
effects non-linearity compensate those of dispersion. Dif-
ferent types of solitons exist, amongst which one can cite
dark solitons. Corresponding to density depressions or
holes in the Bose-Einstein condensate, they may be in-
terpreted as a lack of matter.

III. NUMERICAL APPROACH

The numerical method implemented are the Crank-
Nicholson algorithm and the imaginary time method.
Both will be discussed and analysed.

A. Dipolar mode with and without interaction.

The goal of this section is to study the evolution
of a particle trapped into a harmonic oscillator when
Equation (2) reduces to Schrodinger’s equation, i.e.
g = 0 and to compare the results when adding a weak
interaction between particles. This also allows one to
ensure the correct behaviour of the Crank-Nicholson
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FIG. 1: |¥(z)|* plotted for different times for the harmonic
oscillator case. Yellow curve : t= 0.55s, blue curve : t=
2.55s, red curve : t= 5.05s, magenta curve : t= 10.05s, cyan
curve : t=17.55s.

algorithm.

For the sake of simplicity, the particle’s mass m and
the constant k intervening in the potential energy are
taken to be equal to 1. The standard deviation sigma is
similarly set to unity.

Figure 1 depicts the probability density |4 (x)|? at var-
ious times. The evolution is expected to maintain the
shape of the wave packet : see Figures 2 and 3, respec-
tively illustrating the average position and its incertitude
as a function of time.

As one would expect from a particle in a harmonic
trap, Figure 1 shows the probability density moving along
the x axis in a back and forth movement. The algorithm
preserves the norm as expected : plotted as a function of
time, it shows variations of order 10714,

Plotting the average value of z, see Figure 2, one may
notice constant oscillations corresponding to the back
and forth movement of a particle evolving in a harmonic
trap. This is verified for both cases of interacting and
non-interacting particles. When Uy = 0, one may verify
that the movement’s frequency is in adequacy with the
one of the oscillator fj, :

o= w=y/Eon
27 m

The oscillations frequency can be derived using a lin-
ear interpolation, giving f = 0.15734 ~ % However,
one would expect the incertitude on x to be constant,
which is not the result depicted by Figure 3. Nonethe-
less, the oscillating pattern with amplitude growing with
time suggest the result is due to the numerical method
itself, rather than the physics implemented. A more pre-
cise result could be achieved by using a finer space and
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FIG. 2: (z) plotted as a function of time for non interacting
(blue curve) and interacting particles (grey) in the harmonic
oscillator case in real time evolution.
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FIG. 3: Uncertainty on x plotted as a function of time for
different number of points in the case of the harmonic oscil-
lator. Cyan : N =400, red : N = 1000, blue : N = 5000 and
magenta N = 10000.

time discretization. Figure 3 corroborates this hypothe-
sis : by implementing a smaller Az for the spatial grid,
one notices the oscillations of ¢ diminishing.

The norm is still conserved by the algorithm and the
density evolves as expected when adding an interaction
of amplitude Uy = 1. The results are quite similar to the
ones obtained in the previous section : in fact, the dipolar
mode should be independent of the interaction. Over-
all, the results obtained are satisfying and suggest the
Crank-Nicholson numerical method is a good approach
to solving the Gross-Pitaevskii equation.
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FIG. 4: Initial condition implemented for the imaginary time
propagation (case Up = 0 and Ve o acQ) and comparison
between the plot of the evolved state obtained with the IPT
method and the plot of the system’s ground state. o = 2.

IV. IMAGINARY TIME

This section aims at resolving the GP equation (for
Up = 0 and Uy # 0) making use of the imaginary time
propagation (IPT) numerical method. The latter con-
sists into replacing the time ¢ by an imaginary time, in-
troducing 7 such that ¢ = —ir. The formal solution
of the GP equation is hence given by the evolution op-
erator exp (—7H), with H being the system’s Hamil-
tonian. Any initial condition is hence meant to con-
verge asymptotically to the ground state solution for 7
large enough. In what follows, the initial conditions im-
plemented are taken amongst a Gaussian, the Thomas-
Fermi wave-function or an orthogonal state to the Gaus-
sian defined as :

() = #exp (_(552;2”)2) (5)

A. Harmonic oscillator case (Uy =0 and Vepr x2)

In this section, the initial condition is taken to be a
centred Gaussian of width ¢ = 2 (see Figure 4). One
thus expects to obtain a Gaussian of width ¢ = 1 after
running the simulation.

Figure 4 confirm that the state obtained with the ITP
method is, as expected, the ground state of the har-
monic oscillator. In fact, the curve obtained by running
the numerical algorithm is perfectly superposed to the
one corresponding to the theoretical ground state. One
may also verify the energy of the state obtained coincides
with the theoretical one : computing numerically the en-
ergy using the trapezoidal method, one obtains a value of
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FIG. 5: Initial condition (5) implemented for the imaginary
time propagation and comparison between the plot of the
evolved state obtained with the IPT method and the plot of
the system’s first excited state (case Up = 0 and Vet 1:2).

Ey = 0.54. This in fact corresponds to the expected re-
sult for the ground state of the harmonic oscillator since
Eoun =" =05 when h=w = 1.

The same study may be lead implementing as initial
condition a wave function orthogonal to the ground state.
In this case, one expects to obtain the first excited state
of the harmonic oscillator.

Once again, Figure 5 suggest the algorithm in fact
leads to the expected state with a good precision. Com-
puting the energy of the state obtained, one finds a value
of F1 = 1.499, which is the expected result for the first
excited state of the harmonic oscillator. The method
could be improved by a finer discretization of time and /or
space.

B. With an effective interaction Uy = 50

In this section, the imaginary time method is used to
evolve various initial states when considering the Hamil-
tonian of many bodies, when particles are trapped in
a harmonic oscillator potential. In a first approach, a
Gaussian is plotted as the initial state : see the light
blue curve of Figure 4.

The results being highly sensitive to time discretiza-
tion, the simulations are run with a time interval dt =
0.01. There is however a noticeable difference between
the Thomas Fermi state and the ground state obtained
with the imaginary time evolution. This may be ex-
plained by the approximations used on both sides. The
numerical method first of all introduces errors at each
time step as it is not an exact resolution of GP equation.
On the other hand, the Thomas Fermi limit is itself an
approximation of the initial problem, hence explaining
the differences observed. The approximation is expected
to be more accurate for a higher interaction between par-
ticles.

Starting from an orthogonal state, for example the
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FIG. 6: Comparison between the plot of the evolved state
obtained with the IPT method (red) and the plot of the state
corresponding to the Thomas Fermi approximation (blue)
with a time interval dt = 0.01 (case Up = 50).
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FIG. 7: 1st excited state obtained with the imaginary time
method when Uy = 50 for an initial condition given by Equa-
tion (5).

wave-function given by Equation 5, one obtains the first
excited state as shown by Figure 7. Figure 8 depicts the
real time evolution of the first excited state, the different
colours corresponding to various moments in time. The
energy is similarly expected to converge towards a certain
value : this result is depicted by Figure 9.

The imaginary time method can yield a quasi-
stationary state with a displaced soliton (see Figure 11).
This is achieved running the imaginary time method with
the following initial state :

Yo(x, d) = ¢rp(z) tanh (z — d) (6)

where Ypp(z) designates the wave-function of the
Thomas-Fermi approximation and d is a displacement

Barcelona, July 2021



Numerical methods for resolving the Gross-Pitaevskii equation

Kim Anh Stoeffler

[wt x|

-100 -75 -50 -25 00 25 50 75 100

X =/ muw/h

FIG. 8: Real time evolution of the 1st excited state obtained
with the imaginary time method for Uy = 50.
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FIG. 9: Energy convergence of the imaginary time method
for Uy = 50 and an initial state given by (5).

from the origin. Figure 11 in fact depicts very slight
differences between the solitonic state at different times.
The plot of the energy, see Figure 10, shows the quick
convergence of the energy towards a stable plateau.

V. CONCLUSION

The studies conducted have shown the the efficiency of
the Crank-Nicholson method and the imaginary time al-
gorithm to resolve the linear and non-linear Schrédinger’s
equation. In fact, the results appeared to be in general
accuracy with what was expected. The Thomas-Fermi
approximation turned out to be a good approach to re-
solving the GP equation. However, the approximation
could have been more accurate with a higher interaction
term between particles and a finer discretization of space
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FIG. 10: Energy convergence of the imaginary time evolution
when starting with a dark solitonic state, see Equation (6),
and for a perturbation Uy = 50.
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FIG. 11: Imaginary time evolution of a dark solitonic state
(6) for Uy = 50.

and time. A solitonic state has been achieved using the
imaginary time method.
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VI. PERSONAL EXPERIENCE

Working on this project with Prof. Bruno Julia has
been a rewarding experience. I learned to code in Python
(previously using c++), a language which turned out to
be very useful and convenient. Tackling the very inter-
esting subject of Bose-Einstein condensates taught me a
lot, both on academic and personal point of views. In
fact, it allowed me to dig deeper into applied physics in
a branch I was already interested in. Hence, I aim at
continuing my studies in similar fields.

Working on this project was not always easy considering
the 4 other subjects I had taken, most of which were in
Catalan, a language I am not familiar with, but it taught
me to organise my time wisely. I would have enjoyed
something with more of human contact and less screen

time, but the Covid pandemic unfortunately didn’t allow
it. Another difficulty I faced, again due to the sanitary
situation, is the fact that I barely got to meet any of my
classmates. I hence was working and studying by myself
during the whole semester. Although it has its downsides
(such as losing a lot of time trying to figure everything
out on my own), this situation helped me rely more on
myself and trust my abilities.

Overall, working on this project gave me a clearer view
on how a scientific report is constructed and what is ex-
pected from a physicist. It taught me to have certain
reflexes in order to lead fine and rigorous analysis. I
most definitely enjoyed the project and I am more than
happy to have done it. Prof. Bruno Julia was very help-
ful and understanding along with being a great teacher
which made my experience quite pleasing.
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