
Pràctiques en Empresa
QuantumLabUB

Arnau Jurado Romero
Supervised by:

Bruno Juliá Díaz

Montserrat Guilleumas Morell

Departament de Física Quàntica i Astrofísica

Universitat de Barcelona

Grau de Física

Contents

1 Introduction 2

1.1 The QuantumLabUB Divulgation Project 2

2 Development Process 3

2.1 Weekly Meetings . 3
2.2 Main objectives . 3

2.2.1 Other tasks . 4

3 Two dimensional classical non-interacting particles simulator 5

3.1 Equations . 5
3.2 Numerical resolution . 5

3.2.1 Runge-Kutta-Fehlberg method 6
3.3 Implementation . 7

3.3.1 Potentials . 8
3.3.2 Testing . 10
3.3.3 Error in the implementation of RKF45 11

3.4 Program . 12
3.4.1 Phi class . 12
3.4.2 Particle class . 12
3.4.3 User Interface . 13

4 Two dimensional classical interacting particles simulator 17

4.1 Equations and interaction . 17
4.2 Numerical resolution . 18
4.3 Force computation . 19
4.4 Temperatures and Maxwell-Boltzmann distributions 21
4.5 Initialization of the system . 23
4.6 Program . 25

4.6.1 particle class . 25
4.6.2 PhySystem class . 25

4.7 Future improvements . 26

5 Usage of the Program 27

5.1 Interface . 27
5.2 Adding Potentials . 28
5.3 Adding Particles . 28

1

5.4 Computation and Reproduction 29
5.5 Saving and Loading . 30

6 Conclusions 31

1 Introduction

This report summarizes my work done from February 2019 to December
2019 at the Departament de Física Quàntica i Astrofísica of the Universi-
tat de Barcelona under the supervision of Bruno Juliá Diaz and Montserrat
Guilleumas Morell in collaboration with the QuantumLabUB project. The
work included development of python applications with graphical interfaces
and participation in weekly meetings as well as participation in the 'Festa de
la Ciència'. A total of 253 hours have been dedicated to this project.

1.1 The QuantumLabUB Divulgation Project

For the last few years, Bruno Juliá and Muntsa Guilleurmas with the col-
laboration of Artur Polls have led undergraduate physics students from the
Universitat de Barcelona in a divulgation project of quantum mechanics.
The project consists in the development of python codes to help illustrate
some particular e�ects of quantum mechanics and build intuition on the mat-
ter. Although the main aim of the project is to showcase quantum mechanics,
some classical mechanics programs have been developed to compare the phe-
nomena.
It is remarkable that all of the programs solve the real physics equation and
simulate the physical systems.

My initial task in this project was the development of a 2 dimensional clas-
sical simulator for non interacting particles to compare di�erent situations
with the 2D quantum simulator developed in parallel by Marina Orta and
with previous programs (like Doubleslit by Daniel Allepuz).

2

2 Development Process

2.1 Weekly Meetings

Weekly meetings of one hour where a very important part of the work. In
them Bruno Juliá and Muntsa Guilleurmas as supervisors and Marina Orta,
Manu Canals and me met to share ideas and help each of our individuals
projects advance. At the beginning these meetings helped decide the pro-
grams and their main features. Later these meetings helped with solving
technical problems that arose during development. Overall they were a great
tool to overcome obstacles through teamwork.

2.2 Main objectives

Among the di�erent physical systems developed previously at Quantum-
LabUB were very restricted 1D classical simulations, 1D quantum simulations
with lots of freedom and a very restricted 2D quantum simulation (double
slit experiment). The next step was making a 2D quantum and classical
simulator with freedom to choose the 'landscape' (potential �eld). It was
decided that Marina Orta would develop the quantum version and I would
develop the classical version.

From the start the main vision of my program was to allow the user the sim-
ulate multiple non interacting particles in a potential �eld. At �rst I wanted
to make the potential be drawable on the screen, this proved to present lots of
problems and ended with two potential �elds with lots of parameters (Gauss
and Woods-Saxon).

After all the features that we had planned were added to the the program
the development of a second program was started. Based on the same in-
terface, this program would include interactions between the particles to
show phenomena related to interacting systems (like how they reach thermal
equilibrium). This second program was not able to be �nished before the
internship ended, but the computational method and most interface features
were �nished so continued work could provide a very exhaustive program for
divulgation of thermodynamics.

3

2.2.1 Other tasks

Shortly after �nishing the development of the �rst program we were invited
to present an exhibit at the 'Festa de la Ciència' at Barcelona in which we
would present programs from QuantumLabUB. One disadvantage of python
programs is that is not easy to run the code in other machines, a lot of setup
has to be done before running the code. I explored the possibility of pack-
aging the QuantumLabUB programs into an executable that did not need
python installed to run. Using the PyInstaller tool I packaged each pro-
gram into executable �les that made the setup at the 'Festa de la Ciència'
much easier. Each program needed its own tweaks and it was a time con-
suming process so I wrote some documentation explaining how to do it for
future programs.

I also attended the 'Festa de la Ciència' exhibit in which I assisted in explain-
ing the attendants to the exhibit about the physics involved in the programs
and divulgating quantum mechanics. It was a very pleasing experience.

4

3 Two dimensional classical non-interacting par-

ticles simulator

3.1 Equations

The system under consideration is a particle under the in�uence of a scalar
potential that is a function only of the position of the particle in the two
dimensional plane. The lagrangian for this particle is:

L =
1

2
mẋ2 +

1

2
mẏ2 + Φ(x, y) (1)

Thus the movement of the particle can be solved through the Euler-Lagrange
equations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (2)

ẍ = − 1

m

∂Φ(x, y)

∂x
(3)

ÿ = − 1

m

∂Φ(x, y)

∂y
(4)

3.2 Numerical resolution

First we translate the set of equations found to a form such as:

dy

dt
= f(y; t) (5)

Where y and f(y;t) are vectors for the dependent variables and their respec-
tive derivatives. In our problem we have 4 dependent variables: x, y, ẋ and
ẏ. And given the initial conditions, y0, their trajectory is determined by
equations (3) and (4):

dx

dt
= ẋ (6)

dy

dt
= ẏ

dẋ

dt
= ẍ = − 1

m

∂Φ(x, y)

∂x

5

dẏ

dt
= ÿ = − 1

m

∂Φ(x, y)

∂y

We can now solve this system of equations using any numerical method we
prefer. Because the potential �eld, Φ(x, y), could vary in complexity from one
point of the plane to another, I have decided that the Runge-Kutta-Fehlberg
method is best suited to this problem due to its adaptive time step.

3.2.1 Runge-Kutta-Fehlberg method

The Runge-Kutta Felbherg (RKF) method uses the results from two Runge-
Kutta methods with order n and n + 1 and estimates the error of the com-
putation by taking the di�erence between the results. I will be using the
RKF method with order 4 and 5 (also known as RKF45) which optimizes
the coe�cients so only one extra calculation has to be made to estimate the
error1 :

k0 = f (t0,y0) (7)

k1 = f

(
t0 +

h

4
,y0 +

h

4
k0

)
k2 = f

(
t0 +

3h

8
,y0 +

3h

32
k0 +

9h

32
k1

)
k3 = f

(
t0 +

12h

13
,y0 +

1932h

2197
k0 −

7200h

2197
k1 +

7296h

2197
k2

)
k4 = f

(
t0 + h,y0 +

439h

216
k0 − 8hk1 +

3680h

513
k2 −

845h

4104
k3

)
k5 = f

(
t0 +

h

2
,y0 −

8h

27
k0 + 2hk1 −

3544h

2565
k2 +

1859h

4104
k3 −

11h

40
k4

)
y = y0 + h

(
25

216
k0 +

1408

2565
k2 +

2197

4104
k3 −

1

5
k4

)
ŷ = y0 + h

(
16

35
k0 +

6656

12825
k2 +

28561

56430
k3 −

9

50
k4 +

2

55
k5

)
ŷ− y = h

(
1

360
k0 −

128

4275
k2 −

2197

75240
k3 +

1

50
k4 +

2

55
k5

)

6

Where h is the current step and ŷ and y are the values of the dependent
variables after a step in the independent variable (t) of h for the �fth and
fourth order methods respectively. A new estimation for the step size can be
determined following:

hnew = h

(
hε

|y− ŷ|

) 1
n

(8)

Where n is the lowest order of our methods, in this case, n = 4 and ε is
the error we desire in our new values. After computing the new step size we
should check if it is smaller than the previous one, if it is then we compute
again all the values of (7), reevaluate (8) and check again.

It is worth noting that it is not necessary to evaluate y nor ŷ to update
the step size, the di�erence between the two is enough. Once the appropriate
step size for the desired precision is determined we can compute ŷ, which will
be the next value for the dependent variables.

3.3 Implementation

A particle with massm (chosen by the user) and will be moving in a LxL box
with a potential �eld de�ned by the user from di�erent pre-made potential
functions. The program will compute the trajectory of the particle until a
time T has past since the initial instant (t = 0). For simplicity I have choose
the box to be 200 arbitrary units (so, for example x = +50 is halfway to the
right from the center to the edge horizontally, y = −33 is a third of the way
downwards from the center to the edge vertically, etc.).
The physical units will be determined from the units chosen for m, L and T :

[p] = [m] [L]
[T]

[E] = [m] [L]
2

[T]2

So for the SI ([m] = kg, [L] = m, [T] = s) the energy would be in Joules and
the box would be 200 meters by 200 meters while in c.g.s. system ([m] = g,
[L] = cm, [T] = s) it would be erg and the box would be 2 meters by 2 meters.

Like previously discussed, the numerical resolution of the trajectory will
be performed by the RKF45 method. While RKF45 allows for very large
step sizes I have limited the biggest step size possible to make the later
representation more intuitive and �uid. The (current) relevant parameters
are presented next:

7

L = 200 T = 60
hmax = 0.1[T] nmax = 100 ε = 0.01 = 10−2

nmax is a parameter that limit the number of iterations that RKF45 does
before �xing the �nal step size, it ensures that the program does not try
to make the step size in�nitely small in zones with discontinuities in the
potential. This parameter can prevent the algorithm from achieving the
desired precision, ε, but if the potentials and their derivatives are continuous
(which in our case, they will be) this should not be a problem.
Also, because the potential �eld will not be changing with time, I can ignore
all the time dependence on the set of equations (7).

3.3.1 Potentials

For de�ning the potential �eld, Φ(x, y), the users has a series of de�ned
potentials with some parameters. The sum of the potentials at every point
will make up the potential �eld.
For stability of the RK45 method, the functions representing these potentials
should be continuous and derivable up to the �rst derivative.
Following is a list of the implemented potentials with their parameters and
special considerations, if any:

8

1. Woods-Saxon potential:

• Formula:

Φ(x, y) = −V0
1

1 + e
|x′|−Rx

a

1

1 + e
|y′|−Ry

a

x′ = (x− x0) cos(θ)− (y − y0) sin(θ)
y′ = (x− x0) sin(θ) + (y − y0) cos(θ)

• Parameters:

� x0: center x position
� y0: center y position
� V0: depth (if positive) or height (if negative) of the potential
well/mountain

� Rx and Ry: length and width of the potential well/mountain,
for x > Rx or y > Ry the potential rises/drops rapidly to 0

� a: slope of the transition zone around r = R. For stability,
0.1 < a < 1. It is �xed at a = 1.

� θ: sets the angle of rotation for the rectangle.

• Considerations: has an exception for r = 0 for the derivative. The
derivative tends to 0 on r → 0.

2. Gaussian Potential:

• Formula:
Φ(x, y) = V0e

− (x−x0)
2+(y−y0)

2

2σ2

• Parameters:

� x0: center x position
� y0: center y position
� V0: depth (if positive) or height (if negative) of the potential
well/mountain

� σ: controls the size of the potential well/mountain. If this
potential was a normalized gaussian distribution then about
68.2% of the values represented by the distribution would be
located from 0 to σ. However, this has little to no meaning
in our problem outside how wide the potential is.

• Considerations: none

9

3.3.2 Testing

A series of di�erent tests were done on the method to see its stability and
accuracy. Theoretically, the method should be accurate in all of the depen-
dent variables up to ε precision.
To analyze the results, 7 di�erent plots were used:

• A color map of the potential �eld.

• The kinetic, potential and mechanical energy of the particle vs. time.

• The trajectory of the particle without time (x vs. y).

• The trajectory of the particle for x (x vs. t).

• The trajectory of the particle for y (y vs. t)

• The phase space of the particle for x (ẋ vs. x)

• The phase space of the particle for y (ẏ vs. y)

Because the lagrangian (1) of the particle is independent of time then on all
tests the mechanical energy should be conserved (up to what ε allows).

Also, for initial conditions and potential �elds where we expect the parti-
cle to oscillate or to make a periodic motion on either the x or y coordinates,
a closed line should be seen on the phase space plots.

Using this plots it was determined that the method worked well in simu-
lating the trajectories of the particles. Energy was conserved, particles os-
cillated in harmonic oscillators with the appropriate frequency, etc. These
plots also helped in diagnosing the an error in the implementations of the
RKF45 method.

10

3.3.3 Error in the implementation of RKF45

Although multiple errors and bugs were found and �xed during the develop-
ment of the numerical method, this one stands out from the rest because it
was di�cult to detect and it was probably present from the very beginning
of development.
Due to an error in the code the algorithm performed the adaptation of the
step properly (and the trajectories were, in fact, correct) but then registered
as if the step was always the same (the maximum step, 0.1).

Because all of the particles were computed independently (and with their
own steps) the steps that each particle took were di�erent but for the algo-
rithm (and the subsequent interpolation) that was not the case. It is notable
that if a particle did not need to adapt the step (because with 0.01 was
enough) then this bug did not manifest. This consistently happened with
gaussian potentials, however Woods-Saxon potentials were more demanding
and forced the particles to adapt the step so we �rst detected the e�ects of
this bug with WS potentials.

When WS potentials were implemented the particles got 'stuck' for a long
time when contacting the walls of the WS. At �rst we thought this was nor-
mal due to the huge inclination of theses potentials that slowed down the
particles so much that maybe this was the result. Of course, before seeing
this we thought that the particles would bounce in a short time so this be-
havior seemed weird. After the implementation of the cone particle addition
mode we saw that sending a 'wave front' of particles to a WS wall caused
the front to distort weirdly, the expected behavior was for the front to re�ect
and maintain its spherical (or rather, circular) shape. This last behavior was
the one that led to the investigation of the code and �nding the error.
After �nding the error the strange behavior was easily explained, because the
particles were moving as if a lesser step equaled a 0.01 step then the particles
got 'slowed down' when they needed to adapt the step size, this explained the
�rst behavior. The second behavior occurred because di�erent particles took
di�erent step sizes (because they encountered di�erent potentials along their
respective trajectory), and so some particles were, at some point, 'slowed
down' more or less respect to others, which caused the distortion in the wave
fronts.

11

3.4 Program

Because the �nal objective was to add as many particles as the user wanted,
the process of de�ning and computing the particle and its trajectory had
to be generalized. That is why I decided to create the particle python
class that allowed me to de�ne a completely generic particle so adding more
particles to the simulation would not be a problem. In a similar manner,
the Phi class allows multiple potentials with an analytic expression to be
superposed, although di�erent potential con�gurations were not necessary in
this case.

3.4.1 Phi class

Phi is a python object that stores the analytic expressions of the potentials
and its partial derivatives and the means to compute the values at any point
in a 2D plane. The potentials have to be set as python functions with the
following arguments: (r,param). The �rst argument is a numpy.array or list
of two elements that represent the coordinates of the point to be evaluated.
The second argument is a list of parameters of the potential (like, for example,
the potential height or slope). The param list has to be common for all three
of the functions, even if some parameters are not used. After setting the
three separate functions the following methods can be used:

• add_function(fun,dfunx,dfuny,param): with this method the new
potentials are added to the list of potentials stored by the object. The
method clear() can also be used to delete all the added potentials.

• val(x,y), dvalx(x,y) and dvaly(x,y): evaluates and returns the po-
tential, its x partial derivative or its y partial derivative, respectively,
at a point (x,y) in the plane. Note that this methods can accept and
return numpy.array objects if the functions that de�ne them are com-
patible with numpy.

3.4.2 Particle class

Particle is a python object contains all the information regarding the parti-
cle and its trajectory: mass, charge, positions, velocities, energy, etc. It also
contains the RKF45 method programmed. For the computation the parti-
cle class requires a potential �eld set with Phi. The main methods of the
Particle class are:

12

• ComputeTrajectoryF(r0,T,pot): this method updates the trajectory
array using the RKF45 method, which is a (4,steps.size) shaped array
containing x, y, vx and vy in that order. The initial conditions are
speci�ed by r0, which is a list or numpy.array of shape 4. T speci-
�es when to stop the computation and pot the potential �eld (which
is a Phi object). This method also registers the steps taken in the
particle.steps array and creates an interpolation of the trajectory
to be used in the animation.

• KEnergy(), PEnergy() and Energy(): returns the kinetic, potential
and total energy at the same times as particle.steps, this is useful
for checking conservation of energy.

After performing a succesful computation, the interpolated trajectory of the
particle is available and easy to acces for the animation.

3.4.3 User Interface

I decided to use the open source python library Kivy for the UI. This decision
was made because of its simplistic design, the ability to port the interface to
Android and touchscreen devices and the fact that some code in the Quan-
tumLabUB repository used Kivy so a it could be used as a reference.

Figure 1: Comparison between a �rst version of the interface (left) and the
�nal version (right).

Once the Particle object was implemented, a way to tell what to com-
pute and to show it was necessary, that is the objective of the UI. I decided
to divide the screen of the UI in two areas: the left area would show the
potentials and the trajectories of the particles and the right side would show
all the interactive buttons to communicate with the program.

13

A summary of the development process of the UI in chronological order is
presented next (from February 2019 to April 2019 all work was dedicated to
developing the numerical method):

1. (05/2019) At �rst the screen was divided in two halves. Kivy works
by adding building blocks named widgets which range from labels and
buttons to �le browsers and drop-down menus, so at �rst I simply
divided in two BoxLayout which allows to put more widgets in an
orderly manner. The left half was left empty and the right half was
�lled with buttons that I thought were needed (play, compute, pause,
speed of the animation, a zone to add and reset potentials and particles,
etc.). All of the buttons would not do anything when pressed, they
needed to be 'wired'.

2. For adding the particles and potentials I decided to use a tabbed panel,
which is a widget already implemented in the Kivy library. I started
by adding the necessary elements to add a Gaussian potential and a
single particle (you could, at this moment, add multiple particles but
only one by one). A list of all the added potentials and particles was
also added but this feature is not present in the �nal program. The
parameters were set by using sliders.

3. At this moment the animation was ready to be shown. At �rst I decided
to use the implementation of MatPlotLib in Kivy but ended using the
drawing tools of Kivy itself for the animation. This posed a problem
immediately: most computer screen have a 16:9 aspect ration which
meant that the halves were not square but rather rectangular while the
space of the physical simulation was 200 by 200 units. This was solved
by forcing the left half to be square.

4. After the implementation of the animation more features were added:
a speed modi�er for the reproduction of the animation, an status label
that informed if a computation is needed and clicking a point on the
screen modi�ed the x0 and y0 (the central positions for either a po-
tential or a particle) so the slider were no longer needed to set these
parameters.

5. A save/load feature was added. At �rst it simply saved the con�gura-
tion of potentials and particles in a save.dat �le and loaded the same

14

�le. Although not useful for using multiple saves, it sped up the testing
process for the next potential to be added.

6. (06/2019) After lots of trial and errors with lots of functions, the
Woods-Saxon form was found to be useful for making rectangles in two
dimensions. The function itself needed a lot of �ne tuning to make it
work without over�owing or causing problems in the computation (es-
pecially its derivatives). However, the Woods-Saxon potential helped in
�nding an important error in the implementation of the RKF45 method
(see section 3.3.3)

7. Once the Woods-Saxon potential was integrated into the UI I started
adding additional modes for adding particle. The spread mode for
adding multiple particles in a cone was the �rst to be added. At this
point I also started working on the preview of the added particles, for
a single particle it would show in blue where the particle would be
added with the current selection of parameters, the velocity was also
represented with a line. Once the particle was added it would stay in
place in orange until the animation started.

8. (07/2019) The compute and play button were joined, now it was impos-
sible to press play without �rst computing (which was causing crashes
and problems). Also started the implementation of a rotation angle for
the WS potential which made the analytic function far more complex.

9. I added the line particle addition mode which added multiple particles
with parallel velocities. Also added a preview for this mode. Started
working in particles addition mode that could be used to compare with
quantum phenomena, after some discussion at the meetings we reached
the conclusion that sampling the free-particle eigenstate could ful�ll
this role (in conjunction with a double slit demo). This mode was also
added with a preview.

10. Once all the previews were ready I removed the list of particles that was
present from the start, as I thought it provided redundant information.
This space was later used to add the demos

11. A this point the major error in the RKF45 was �xed. This �xed the
behavior with the WS potential and the numerical resolution didn't
seem to have any more errors.

15

12. The time inversion button was added. This button re-added all the
particles with their velocities at the time of the press reversed. After
this, the computation had to be re-done. This served both as a check
of the numerical method as a tool to show the time symmetry, which
sometimes produced interesting e�ects like the ordination of seemingly
randomly distributed particles.

13. (08/2019) Demos of interesting potential landscapes were added for
quick usage, this demos were meant to be loaded and then add particles.
The demos added were: single slit and double slit (for comparison with
the quantum equivalent); lattice and alternative lattice (which featured
9 positive/negative Gauss potentials distributed in a square lattice);
and square (which featured a closed surface with WS potentials).

14. Finally, all of the buttons of the UI were given icons to make the aes-
thetic of the program more appealing and easier to read.

From September 2019 until December 2019 all work was dedicated towards
the interacting particles simulator.

16

4 Two dimensional classical interacting parti-

cles simulator

4.1 Equations and interaction

The system is now N particles that interact with each other. The lagrangian
of the system now has to account for all the particles:

L =
N∑
i=1

1

2
mi|~̇ri|2 −

N∑
i<j

V (~ri, ~rj) (9)

Where V (ri, rj) is some potential that describes the interaction between the
particles. This again can be solved trough the Euler-Lagrange equations:

~̈ri = − 1

m

N∑
j 6=i

~fi,j = − 1

m
~fi with ~fij ≡ ~∇i · V (~ri, ~rj) (10)

Where ~fi are all of the forces applied to the i-th particle by the rest.

We will consider that all the particles have the same mass and that the
interaction potential is the so-called Lennard-Jones potential:

V (ri, rj) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

rij ≡ |~ri − ~rj| (11)

Which has a strong repulsion at distances shorter than σ (hard sphere) and
an attractive well of depth ε. For simplicity, we will work in reduced units

which consists in taking ε for the unit of energy, σ for the unit of length
and the mass of the particles m as the unit of mass. All the other units
are derived from these. The values of these units have been taken from
experimental values of Argon gas:

ε = 0.0103 eV σ = 3.405 Å m = 6.6323 · 10−26 kg

t∗ = σ
√
m/ε = 0.109 fs T ∗ = ε/kB = 119.8 K

Where an asterisk has been used to denote reduced units and kB is the Boltz-
mann constant.

17

Usage of reduced units is very useful from a theoretical perspective. Two
di�erent systems at the same density and temperature (or same pressure
and temperature, etc.) in reduced units present the same properties. This
is the law of corresponding states and is a consequence of the universality of
thermodynamic systems. This means that a simulation can be translated to
any (hydrsotatic) system by using the corresponding ε, σ and m.
It is also useful from a practical standpoint: numerical values in reduced
units are more manageable than in S.I units (which are usually much larger
or much smaller than 1). This helps prevention of over�ows in computation.

So, in reduced units the Lennard-Jones potential acquires the form:

V (ri, rj) = 4

[(
1

r∗ij

)12

−
(

1

r∗ij

)6
]

(12)

The spatial derivatives of this potential will determine the force applied to a
particle i by another j:

~fi,j =
48

r2ij
~rij

[(
1

r∗ij

)12

− 1

2

(
1

r∗ij

)6
]

with ~rij =

(
xi − xj
yi − yj

)
(13)

In addition to the interaction between the particles, the system will be en-
closed in impenetrable walls. The usual way in computational physics to
simulate such a wall is to '�ip' the normal component of the velocity to that
wall when a particle gets close enough. This simulates an elastic collision
between the wall and the particle. Because the algorithm that will be used
does not use velocities we cannot use this approach. Instead we will place
Woods-Saxon potentials at the edges of the box which have proved to be a
good reproduction of walls in the simulations of non-interacting particles.

4.2 Numerical resolution

A popular algorithm in molecular dynamics is the Verlet algorithm, this
algorithm uses only positions to integrate the equations of motion. We start
by expanding by Taylor the position (which I will label r but remember that
it has two components) of a particle at a time t+ ∆t around t:

r(t+∆t) = r(t)+ṙ(t)(t+∆t−t)+1

2
r̈(t)(t+∆t−t)2+1

6

...
r (t)(t+∆t−t)3+θ(∆t4)

(14)

18

By equation (10) r̈ is exactly − 1
m
f(r) (where I have dropped the sub-index

i in favor of r to symbolize the speci�c particle). So (14) becomes:

r(t+ ∆t) = r(t) + ṙ(t)∆t− f(r(t))

2m
∆t2 +

1

6

...
r (t)∆t3 + θ(∆t4) (15)

Similarly we can expand the position at a time t−∆t around t:

r(t−∆t) = r(t)− ṙ(t)∆t− f(r(t))

2m
∆t2 − 1

6

...
r (t)∆t3 + θ(∆t4) (16)

And summing the two expansions we obtain:

r(t+ ∆t) + r(t−∆t) = 2r(t)− f(r(t))

m
∆t2 + θ(∆t4) (17)

So, approximately we obtain that the position at r(t+ ∆t) is:

r(t+ ∆t) ≈ 2r(t)− r(t−∆t)− f(r(t))

m
∆t2 (18)

So knowing the position of the of a particle at a certain time we can know its
next position with its previous position and the forces acting on the particle
at that time. If we wish to compute the velocities we can take the di�erence
of (16) and (17):

v(t) ≈ r(t+ ∆t)− r(t−∆t)

2∆t
(19)

If we know the initial conditions of the particles we need the previous po-
sitions to compute the next step and iterate further. We can generate an
approximate �rst position by using a di�erent algorithm (say, an RK4 step)
or we can simply generate a previous position (instead of the next) by com-
puting:

r(t0 −∆t) = r(t0)− v(t0)∆t (20)

Which is, in fact, an Euler method step performed backwards.

4.3 Force computation

To evaluate (18) it is needed to compute the sum of all forces (13) which
requires the distances of all the particles with each other. Making this pro-
cess e�cient requires the usage of the Python library NumPy to the fullest.
NumPy is based on the array object which behaves like vectors or matrices

19

and allows python to perform computations between these vectors and ma-
trices, which is not possible with lists, the common form of python vectors.
Let dx and dy be the NxN matrices of the di�erences of the x and y coordi-
nates such that:

dαij = αi − αj with i, j ∈ [0, N] and α = {x, y} (21)

Both matrices are antisimmetrical and their diagonal is 0, but we will not take
advantage of this information, as it would make the program more di�cult
to implement. To compute these matrices we can use the numpy.meshgrid

function which takes two uniaxial arrays (vectors) returns two arrays with
each vector 'extended' along the other vectors' dimension. This function has
many uses (it isn't even restricted to vectors) but we will focus on the result
when the two vectors are the same one. Suppose that we have the vectors
with the α coordinate of every particle:

A =


α1

α2

· · ·
αN

 (22)

Then if we apply meshgrid(A,A) we obtain two NxN arrays of the form:

Mα =


α1 α2 · · · αN
α1 α2 · · · αN
· · · · · · · · · · · ·
α1 α2 · · · αN

 MT
α =


α1 α1 · · · α1

α2 α2 · · · α2

· · · · · · · · · · · ·
αN αN · · · αN

 (23)

From here we can obtain dα by simply taking the di�erence:

dα =


α1 − α1 α1 − α2 · · · α1 − αN
α2 − α1 α2 − α2 · · · α2 − αN
· · · · · · · · · · · ·

αN − α1 αN − α2 · · · αN − αN

 (24)

This array follows the de�nition (21) so if we take dα[i, :] we have the vector
of distances of the i-th particle with the rest, so we can compute (13) easily
by also computing R2 = (dx)2+(dy)2 which is the matrix of square distances.

20

4.4 Temperatures and Maxwell-Boltzmann distributions

Seeing particles collide and attract each other can be interesting on its own,
but showing how a system reaches thermal equilibrium is is also an interesting
demonstration. The temperature of our system (and any system similar to
ours) is given in reduced units by:

T =
1

Ndf

N∑
i=1

V 2
i (25)

Which is the mean kinetic energy of the system in reduced units. Ndf is the
number of degrees of freedom of out system, which is: Ndf = 2N − 2 because
we are in 2 dimensions and we have �xed the velocity of the center of mass.

This temperature can be computed even when the system is not in ther-
mal equilibrium. It is known from statistical mechanics that once a system
like this reaches thermal equilibrium the magnitude of the velocities of the
particles will follow a Maxwell-Boltzmann distribution. In 2D and in reduced
units the Maxwell-Boltzmann distribution curve has the following expression:

f(V, T) =
V

T
e−

V 2

2T (26)

So if we plot an histogram of the magnitude of the velocities it should have
the same shape as this distribution. The more particles we have in our system
(i.e. the more samples we have) the better we will be able to represent the
distribution.

21

1 2 3 4 5 6 7 8 9 10

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V

f(V, T) T = 2
T = 3
T = 5

Figure 2: Examples of Maxwell-Boltzmann distributions at di�erent temper-
atures

The only problem is that computations with a high number of particles
take lots of time. So another strategy is to bring the system to equilibrium
and start sampling the velocities of the system after a certain number of steps
(ideally after some collisions so the system 'forgets' the previous con�gura-
tion). This way after some time has passed we have a collection of sample
signi�cant enough to make the histogram.

22

4.5 Initialization of the system

Before applying the Verlet algorithm to evolve the system we �rst need to
assign initial positions and velocities to all of our N particles. The initial
con�guration is irrelevant once the system has reached equilibrium (or at
least it is for the properties we want to study) but we need to take into
account that:

1. There should not be any overlap between two particles at the initial
con�guration.

2. Some initial con�gurations do not evolve towards thermal equilibrium.

The �rst consideration is easily avoided by setting the initial positions in a
square lattice. The second consideration can be tricky. If we set all the ini-
tial velocities in a square lattice to, for example, towards positive x, all the
particles will start performing one-dimensional periodic movements if the in-
teraction is very weak at long distances (and the density is low enough, both
of which happen in our case).

In general, if there is any kind of symmetry in the initial con�guration the
system will take more time to reach thermal equilibrium (or not reach it at
all like in the previous example). One way to solve this is to assign a ran-
dom velocity to each particle. There are two main ways to do this: we can
assign a random x and y component or we can assign a �xed magnitude and
a random direction. Keeping in mind that the main objective is to make
an histogram of the magnitude of the velocities and see how it approaches
the Maxwell-Boltzmann distribution it is more interesting the use the second
approach because the initial distribution of a random uniform-uniform for
both the x and y components is very similar to a MB distribution. But if we
�x the magnitude of the velocity the histogram would show a spike at the
chosen velocity, which is very di�erent from a MB distribution.

To choose this velocity we will set our system at a chosen temperature and
rescale all the kinetic energies to match this temperature. If we take (25)
with Ndf = 2N , because we the center of mass velocity is not �xed yet, we
can see that the scale factor for a a given velocity is:

T =
1

2N
NV 2 =

1

2
V 2 → Tset

T
=
V 2
set

V 2
→ Vset = V

√
2
Tset
V 2

(27)

23

Where Tset denotes our chosen temperature (which in general will be high
T = 3 or ∼ 360K). it is not important what the value of V is.

The last operation we will perform on the initial state of our system is set the
center of mass velocity to 0. This will ensure that the system does not drift
out of the box (although we have enclosed the box on walls, which makes
this not as necessary). Because all the particles have the same mass the cen-
ter of mass velocity is simply the mean velocity of the system. Because we
were initially working in polar coordinates we have to transform to Cartesian
coordinates �rst and then compute:

V α
CM =

1

N

N∑
i=1

V α (28)

And then subtract this velocity from every particle. In practice this operation
will be done at the same time as operation as (27) like so:

~Vset = (~V − ~VCM)

√
2
Tset
V 2

(29)

Note that this last operation would not have any e�ect for N →∞ because
the center of mass velocity would be 0 due to the fact that there is not a
privileged direction in the plane. But when dealing with a �nite number of
particles it is necessary to consider it. This operation will make the �nal
magnitude of the velocity vectors of the particles di�erent from each other
(more or less, depending on the 'luck' we have when generating the numbers).

24

4.6 Program

The two dimensional simulator with interactions was developed after the non-
interacting, which allowed me to use the knowledge I learned while developing
it to design it in a more streamlined manner. The base of the interface is the
same as in the previous program with slight modi�cations.

4.6.1 particle class

The particle class for the interacting program was designed di�erently from
the non-interacting one. Without interactions, the trajectory of the particle
only depends on its initial conditions and the potential �eld but with inter-
actions it also depends on the other particles that from the physical system.
Because of this, the particle class for the interacting program only stores its
mass, charge, its initial position and velocities in a r0 and v0 numpy.arrays
and its current position and velocities in a r and v numpy.array.
The only method of this class is the reset method which sets r and v to r0
and v0.

Even though each particle can have di�erent mass, in practice all of them
will have the same one. Charge is also not used but its added so di�erent
interactions could be easily added in the future.

4.6.2 PhySystem class

PhySystem contains the Verlet algorithm and computes the trajectories of
all the particles, among other information such as temperature of the system
and the distribution of velocities.

The class is initialized by providing a numpy.array full of particle objects
which will form the system and a python list with the units of the system
in the following order: [Unit of energy, Unit of length, Size of the box (in
units of length)]. Remember that the unit of energy is the minimum of the
associated Lennard-Jones and the units of length is the radius of the particles
(See section 4.1). Note that this radius is not stored in the particle object.

Once initialized you can use the solververlet(T,dt) method to compute
the trajectory of the system until a time T units of time have passed (in
reduced units) and at a time step of dt. After the computation (which may

25

take some time depending on the number of particles, T and dt) the following
information will be available:

• X,Y,VX,VY,V: the x,y coordinates and the velocities (x and y com-
ponent and magnitude) of all particles at all time steps. They all are
numpy.arrays of shape (T

dt
,N) so the �rst index accesses the time and

the second the particle.

• T: associated temperature of the system. numpy.array of one index to
access time.

• MB: associated Maxwell-Boltzmann curve of the system. numpy.array
of one index which corresponds to the x-axis of velocity histogram plot
(sampled with 100 points in the [0,V.max()] range)

• Vacu,Tacu,MBacu: lists with the cumulative velocities (magnitude),
temperatures and Maxwell-Boltzmann distributions for N,2N,3N... each
element of the lists is an object of the same form of V, T and MB but
with increasingly more particles (except for MB which is sampled with
100 points always).

• KE: total kinetic energy of the system. numpy.array with one index
that accesses time .

• U: total potential energy of the system. numpy.array with one index
that accesses time.

4.7 Future improvements

The interacting particles program was not able to be �nished before the
internship ended. The program has lots of potential to show interesting
physical systems like for example:

• Two gasses at di�erent temperatures reaching thermal equilbrium through
collisions.

• Other interacting systems like star/planetary systems (changing the
interacting potential to −1

r
is easy to implement)

• Crystal lattices or �uids reacting to external potential �elds.

I hope that in the future this program can be continued by other students of
the Universitat de Barcelona.

26

5 Usage of the Program

After so many features had been added to the non-interacting particles pro-
gram. It was pointed out by some colleagues and users that the program
was complicated and overwhelming when it was �rst seen by someone. In
this section a detailed explanation of the intended usage of the program is
presented.

5.1 Interface

Figure 3: Elements of the interface

1. Main screen. The previews and animation will show here. An example
of a gaussian potential, a Woods-Saxon potential, a line mode preview
and a dispersion mode are shown.

2. Compute/Play button.

3. Pause button.

4. Stop button.

5. Speed selection button.

27

6. Reverse time button.

7. Status of the computation/animation.

8. Save button.

9. Load button.

10. Demos.

11. Selection of potentials and particles.

5.2 Adding Potentials

The intended way to use the program is to �rst add the potential �elds (or
choose from an already prepared demo) and then add the particles. To add
potentials you must be situated in the 'Potentials' tab on the bottom right
of the screen. Then the kind of potential has to be chosen by selecting its
corresponding tab (this defaults to the Gaussian potential). After deciding
the parameters (see the parameters in section 3.3.1) then the location of the
potential can be chosen be using the sliders above or by clicking any point
of the left screen. Finally the potential can be added by pressing the '+'
button next to the position sliders. The left screen will automatically update
to show the newly added potential.

If you wish to remove the potentials the '-' button has to be pressed. This
will erase all the present potentials (without a�ecting the particles). Sadly all
the potentials are deleted by this action and you cannot delete one potential
at a time.

Note that you can choose a demo and modify it by adding more potential
�eld.

5.3 Adding Particles

To add particles you must be situated in the 'Particles' tab and select which
mode of addition you wish to use (by default 'Single', see section ... for
other modes). Like in potentials, the position of the particle/cone/center of
dispersion of the particles can be chosen with the sliders or clicking on the

28

screen. Above the position sliders you can choose the mass of the particles
as well. For the modes 'Dispersion' and 'Line' the direction of the cone/line
can be also speci�ed by dragging the mouse after selecting the position on
the left screen.

While the parameters are been adjusted, you will see orange indicators on
the left screen showing a preview of the particle to be added. The indicator
is di�erent for each mode. When the parameters are the ones desired the '+'
button next to the positions sliders will add the particle(s) and the preview
indicator will change from orange to blue, indicating the particles that have
been added. You can continue to add particles after this.

In the same way as with potentials, the '-' button will erase all particles.

5.4 Computation and Reproduction

When the combination of potentials and particles are ready. You can press
the compute button indicated by a cog on the upper left corner of the right
screen, the cog will turn blue and the computation will start. The process
can take more or less time depending on the number of particles added and
complexity of the potential. The progress can be checked in the console.
After the computation is complete the cog will turn into a play button.

To start the animation you can press the play button. The speed of the
animation can be increased by pressing the speed select button. The pause
button will pause the animation and can be resumed by pressing play. The
stop button will stop the animation and reset it to the start.

If you wish to modify the potentials/particles you can do so by adding them
directly (which will stop the animation) or stopping beforehand. After a
modi�cation, a computation has to be done.

At any point during the animation the reverse time button can be pressed
and all the particles will be re-added with their speed �ipped. After another
computation the system will start to evolve like time has been reversed.

29

5.5 Saving and Loading

Before or after the computation. The save button can be pressed to open a
pop-up that will allow to save the current con�guration potentials in a �le.

Figure 4: Save (left) and load (right) screens

After pressing the save button the pop-up shown on the left image of �g-
ure 4 will appear. After typing the name of the �le to be saved in the white
�eld the button labeled "Save" can be pressed to con�rm. If the check-box
'Save particles and computation' is checked the �le will also contain the par-
ticles and the computation (which should be performed before saving). The
'Cancel' button an also be pressed to close the saving window.

A saved �le can be loaded by pressing the load button, which will make the
load pop-up shown on the right image of �gure 4 appear. Selecting a �le and
pressing the button labeled 'Load' will automatically close the window and
load the �le. If the 'Save particles and computation' check-box was checked
in the saving process then the play button can be pressed immediately to
start running the animation, otherwise the compute button will show. Like
with the saving window, the 'Cancel' button will close the loading window.

30

6 Conclusions

This project has allowed me to develop and learn skills both as a physicist
as a programmer. In every step of the development I learned something new
and I have expanded my array of tools to tackle any future problems in my
scienti�c and professional career.
I also have learned how to organize and prepare for long term projects, which
is a invaluable skill for any programming related work.

I wholeheartedly recommend this experience to other students of physics
at the UB as this has been growing and gratifying to work in such a good
environment.

References

[1] Erwin Fehlberg, Low-Oder classical Runge-Kutta formulas with stepsize

control and their application to some heat transfer problems. NASA
Technical Report 315.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021375.pdf
(page 18)

[2] Daan Frenkel, Berend Smit, Understanding Molecular Simulation. Aca-
demic Press, San Diego CA, 2002.

[3] Dusry Philips, Creating Apps in Kivy. O'Reilly, Sebastopol CA, 2014.

[4] QuantumLabUB and ClassicalLabUB github repositories:
github.com/brunojulia/quantumlabUB and

github.com/brunojulia/classicallabUB

[5] Smashicons, Essential set icons, www.flaticon.com/packs/essential-set-2.

31

