
Exact diagonalization studies of

quantum simulators

A dissertation submitted for the degree of Philosophiæ Doctor

David Raventós i Ribera

Institute of Photonic Sciencies, ICFO





Abstract

Understand and tame complex quantum mechanical systems to build quan-
tum technologies is one of the most important scientific endeavour nowa-
days. In this effort, Atomic, molecular and Optical systems have clearly
played a major role in producing proofs of concept of several important ap-
plications. Notable examples are Quantum Simulators for difficult problems
in other branches of physics i.e. spin systems, disordered systems, etc., and
small sized Quantum Computers. In particular, ultracold atomic gases and
trapped ion experiments are nowadays at the forefront in the field.

This fantastic experimental effort needs to be accompanied by a match-
ing theoretical and numerical one. The main two reasons are: 1) theoretical
work is needed to identify suitable regimes where the AMO systems can
be used as efficient quantum simulators of important problems in physics
and mathematics, 2) thorough numerical work is needed to benchmark the
results of the experiments in parameter regions where a solution to the
problem can be found with classical devices.

In this dissertation, we present several important examples of systems,
which can be numerically solved. The technique used, which is common to
all the work presented in the dissertation, is exact diagonalization. This
technique works solely for systems of a small number of particles and/or a
small number of available quantum states. Despite this limitation, one can
study a large variety of quantum systems in relevant parameter regimes.
A notable advantage is that it allows one to compute not only the ground
state of the system but also most of the spectrum and, in some cases, to
study dynamics.

The dissertation is organized in the following way. First, we provide
an introduction, outlining the importance of this technique for quantum
simulation and quantum validation and certification. In Chapter 2, we detail
the exact diagonalization technique and present an example of use for the
phases of the 1D Bose-Hubbard chain. Then in Chapters 3 to 6, we present
a number of important uses of exact diagonalization. In Chapter 3, we
study the quantum Hall phases, which are found in two-component bosons
subjected to artificial gauge fields. In Chapter 4, we turn into dynamical



gauge fields, presenting the topological phases which appear in a bosonic
system trapped in a small lattice. In Chapter 5, a very different problem is
tackled, that of using an ultracold atomic gases to simulate a spin model.
Quantum simulation is again the goal of Chapter 6, where we propose a
way in which the number-partitioning problem can be solved by means of
a quantum simulator made with trapped ions. Finally, in Chapter 7, we
collect the main conclusions of the dissertation and provide a brief outlook.



Extracte

Entendre i controlar sistemes complexos regits per la mecànica quàntica
per a construir tecnologies quàntiques és un dels reptes més rellevants de
la ciència en l’actualitat. Els sistemes atòmics, moleculars i òptics han
jugat clarament un rol capital en aquest esforç, produint proves de concepte
per a diverses aplicacions de consideració. Exemples notables en són els
simuladors quàntics dissenyats per a resoldre problemes complicats d’altres
branques de la física, com ara sistemes d’espins, sistemes desordenats, etc....
i ordinadors quàntics de dimensions reduïdes. En particular, els experiments
amb gasos d’àtoms ultrafreds i amb trampes iòniques són la punta de llança
del camp en l’actualitat.

El fantàstic afany experimental ha d’anar associat amb d’altres teòric
i numèric que el corresponguin. Les raons principals són: 1) els estudis
teòrics són necessaris per tal d’identificar règims adients en què els sistemes
AMO puguin ésser emprats com a simuladors quàntics eficients de problemes
rellevants de la Física i les Matemàtiques, 2) els treballs numèrics exhaustius
són necessaris per a contrastar els resultats dels experiments en regions de
paràmetres en què els dispositius clàssics són capaços de trobar solucions.

En aquesta tesi, presentem diversos exemples de sistemes rellevants que
poden ésser resolts numèricament. La tècnica emprada –que és comuna
per a tot el treball– és la diagonalització exacta. L’ús d’aquesta tècnica és
limitat a sistemes amb nombres baixos partícules i/o pocs estats quàntics
accessibles. Malgrat aquesta limitació, es poden estudiar una gran varietat
de sistemes quàntics en els règims rellevants dels paràmetres de control. Un
avantatge notable és el fet que permet calcular no només l’estat de mínima
energia del sistema, sinó que també la majoria de l’espectre i, en alguns
casos, àdhuc estudiar-ne la dinàmica.

La tesi s’organitza tal i com prossegueix. En primer lloc, proveïm una
introducció, subratllant la importància d’aquesta tècnica per a la simulació
quàntica i la validació quàntica i certificació. En el capítol 2, detallem
la tècnica de la diagonalització exacta i presentem un exemple del seu ús
per a les fases per a una cadena de Bose-Hubbard unidimensional. En els
capítols del 3 al 6, presentem alguns usos rellevants de la diagonalització



exacta. En el capítol 3, estudiem les fases degudes a l’efecte Hall quàntic
en un sistema de dues components de bosons sotmesos a camps de gauge
artificials. En el capítol 4, canviem a camps de gauge dinàmics, presentant
les fases topològiques que apareixen en un sistema de bosons atrapats en
una petita xarxa reticular. En el capítol 5, s’hi tracta un problema ben
diferent, el d’emprar gasos d’àtoms ultrafreds per a per a simular un model
d’espín. La simulació quàntica és de nou l’objectiu del capítol 6, en què
proposem una forma en què el problema de la partició de nombres pot ésser
resolt per mitjà d’un simulador quàntic construït amb trampes iòniques.
Finalment, en el capítol 7, recollim les conclusions principals del treball i
donem una breu opinió del futur d’aquesta investigació.



Extracto

Entender y controlar sistemas complejos regidos por la mecánica cuántica 
para construir tecnologías cuánticas es una de los retos científicos más rel-
evantes en la actualidad. Los sistemas atómicos, moleculares y ópticos han 
jugado claramente un rol capital en este esfuerzo, produciendo pruebas de 
concepto para diversas aplicaciones de consideración. Notables ejemplos son 
los simuladores cuánticos diseñados para resolver problemas complicados de 
otras ramas de la física, como lo son los sistemas de espines, sistemas desor-
denados, etc.. . . y los ordenadores cuánticos de dimensiones reducidas. 
En particular, los experimentos con gases de átomos ultrafríos y con 
trampas iónicas son la punta de lanza del campo en la actualidad.

El fantástico empeño experimental tiene que ir asociado a otros teórico
y numérico que le correspondan. Las principales razones son: 1) los es-
tudios teóricos son necesarios para identificar regímenes adecuados en que
los sistemas AMO puedan ser usados cómo simuladores cuánticos eficientes
para problemas relevantes de la Física y las Matemáticas, 2) los trabajos
numéricos exhaustivos son necesarios para contrastar los resultados de los
experimentos en regiones de parámetros en que los dispositivos clásicos sean
capaces de encontrar soluciones.

En esta tesis, presentamos diferentes ejemplos de sistemas relevantes que
pueden ser resueltos numéricamente. La técnica usada –que es común en
todo el trabajo– es la diagonalización exacta. El uso de ésta técnica está
restringido a sistemas con números bajos de partículas i/o estados cuánticos
accesibles. A pesar de esta limitación, se puede estudiar gran variedad de
sistemas cuánticos en los regímenes relevantes de los parámetros de control.
Una ventaja notable es que permite calcular no sólo el estado de mínima
energía del sistema, sino que también la mayoría del espectro e, en algunos
casos, incluso estudiar la dinámica.

La tesis se organiza como sigue. En primer lugar, ofrecemos una in-
troducción, subrayando la importancia de esta técnica para la simulación
cuántica y la validación cuántica y certificación. En el capítulo 2, detallamos
la técnica de la diagonalización exacta y presentamos un ejemplo de su uso
para una cadena de Bose-Hubbard unidimensional. En los capítulos del 3 al



6, presentamos algunos usos relevantes de la diagonalización exacta. En el
capítulo 3, estudiamos las fases debidas al efecto Hall cuántico en un sistema
de dos componentes de bosones sometidos a campos de gauge artificiales.
En el capítulo 4, cambiamos hacia campos gauge dinámicos, presentando
las fases topológicas que aparecen en un sistema de bosones atrapados en
una pequeña malla reticular. En el capítulo 5, se trata un problema bien
diferente, el de usar gases de átomos ultrafríos para simular un modelo de
espín. La simulación cuántica es de nuevo el objetivo del capítulo 6, en
que proponemos una forma en que el problema de la partición de números
puede ser resuelta mediante un simulador cuántico construido con trampas
iónicas. Finalmente, en el capítulo 7, recogemos las conclusiones principales
de los trabajos y damos una breve opinión del futuro de ésta investigación.
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CHAPTER 1

INTRODUCTION

The central theme of this doctoral thesis are exact diagonalizations. The
exact diagonalization is a method that can be used to analyse not too large
closed quantum many body systems, described by an Hamiltonian. Using
exact diagonalization one can analyse the static properties of the system in
question, i.e. its ground state or low energy excited states. Alternatively,
one can use these states to study the Hamiltonian dynamics of the system.

Even though, due to numerical complexity, one can apply exact diago-
nalization only to the systems of small, or better to say not too large size,
the method is very successful for the following reasons:

• The method has a direct experimental relevance, since many experi-
ments are performed with small or moderate size systems;

• Recent papers indicate that attaching moderate size systems to "en-
tanglement bath" on the boundary might mimic perfectly statics, and
even thermodynamics of infinite systems [1];

• Last, but not least, the results obtained with exact diagonalization
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16 CHAPTER 1. Introduction

may be used for finite size scaling, and thus may allow to infer about
the thermodynamical limit.

There are two areas of the contemporary quantum many body physics
with which exact diagonalizations are intimately connected: quantum sim-
ulations, one of the four pillars of the quantum technologies, and quantum
certification and validation, an absolutely essential part of all of the quan-
tum technologies, unfortunately sometimes forgotten and neglected. We
comment on them below.

Quantum simulators (QS) Quantum simulators constitute one of
the most mature pillars of quantum technologies. As pointed out in [2],
the first book devoted entirely to quantum simulators, the ideology of QS
may be described as follows: There exist many interesting quantum phe-
nomena/classical hard-to-compute problems (example: superconductivity,
travelling salesman) These phenomena may have important applications
but are often difficult to be described/understood with standard comput-
ers. Maybe we can use another, simpler and better controllable quantum
system to simulate, understand and control these phenomena? Such a sys-
tem would thus work as quantum computer of special purpose, i.e. quan-
tum simulators [3] QS of strongly correlated quantum systems were first
proposed in the context of ultracold atoms in optical lattices for the Bose
Hubbard model in [4], and confirmed in experiment in [5]. Although it is
perhaps still too early to confirm their genuine quantum advantage, for the
last decade they start to provide results that can hardly be achieved by
the classical supercomputers (for reviews see [2, 6–11]). So far, QS con-
cern mostly the models and problems of condensed matter physics, but
they start to address hard-to-simulate-classically questions of high energy
physics, computer science and mathematics. Quantum annealers, such as
D-Wave machines address general (even NP-complete) classical optimiza-
tion problems. QS may be realized in many platforms, such as for instance
ultracold trapped atoms (cf. [12, 13]), ultracold atoms in optical lattices
(cf. [14, 15]), atoms in arrays of optical tweezers [16], ultracold trapped
ions [17], quantum dots arrays [18], NV-centers in diamond [19], circuit
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QED [11], Josephson/supeconducting qubit arrays [20], polariton systems
[21, 22], photonic platforms [10, 23]. Just to quote very recent spectacular
achievements of QS, let us mention recent works on Fermi Hubbard model
[24], quantum many body localization [25], or quantum droplets [26]. So
far, most of the experimental realization of QS concern problems that be-
long to physics: AMO, condensed matter. The experimens on QS of high
energy physics problems have only begun, and mostly concern toy models
[27, 28]. D-Wave machines and similar machines based on superfluid qubits
offer solutions of NP-hard optimization problems, using quantum anneal-
ing, or better to say adiabatic quantum computing. D-Wave claim also to
be able to solve some optimization/sampling problems relevant to machine
learning applications. The challenges of QS design concern thus alterna-
tives to existing quantum annealing that could offer alternative approaches
to NP-hard problems. Extending the areas of science covered by QS might
serve to meet these challenges.

Quantum validation and certification (QVC) This is the area of
quantum information science that deals with validating and certifying that
what we generate in experiments is actually what we want to generate. For
QS of hard to compute systems, one usually seeks regime of parameters,
where the classical simulations are efficient and validate the results there
[2]. Quantum certifications are aimed at demonstration that quantum states
obtained in simulation/preparation protocols do have the desired quantum
properties with respect to correlations, entanglement, non-locality, etc. This
inevitably related to the studies of entanglement [2, 29, 30], area laws [31–
38] and non-locality [39] in many body systems. Obviously, the primary
applications of QVC methods are at the QS-QVC link. Validation and cer-
tification requires precise experimental detection methods such for instance
atomic microscope with single site resolution [14, 15, 40], combined with
novel theoretical tools, such as state-of-art quantum Monte Carlo (QMC)
methods [41]. For estimation of ground states energy/cost function of the
system/optimization problem in question, one can frequently use variational
methods to obtain upper bounds. There exist also semi-definite program-
ming methods to obtain lower bounds [42–44]. Robustness of QS can be
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tested by employing controlled disorder or noise [45]. Entanglement certifi-
cation can be achieved by measuring Rényi entanglement entropies. Origi-
nally, the idea was to consider two or more copies of the system in question
[46], but the experimental realization of it was very demanding [47]. In
Refs. [48, 49] a splendid trick was proposed to extract Rényi entropies from
applying random unitary operations to the single system – similar trick was
used to characterize entanglement on many body localization in Ref. [50].
Certification should in principle be based on device independent quantum
information processing (DIQIP) [51], and, indeed, recently there were sev-
eral proposals for DI entanglement certification [52], nonlocality [53, 54],
nonlocality depth [55], and entanglement depth [56].

Validation is possible by going to the regime of parameters where the
QS is accessible to efficient classical simulation. This may happen for large
systems in some situations (lack of frustration, etc., ...), but it practically
always happen for not too large systems. This is exactly the domain of
exact diagonalizations.

Below we describe in short the contents of the subsequent chapters of
this thesis. Each of these chapters is based on original results and a paper
in the internationally acclaimed journal.

Plan of the thesis

Chapter 2 is based on original tutorial article about exact diagonaliza-
tions, published in Journal of Physics B [57]. Exact diagonalization tech-
niques are a powerful method for studying many-body problems. Here,
we apply this method to systems of few bosons in an optical lattice, and
use it to demonstrate the emergence of interesting quantum phenomena
like fragmentation and coherence. Starting with a standard Bose-Hubbard
Hamiltonian, we first revise the characterization of the superfluid to Mott
insulator transitions. We then consider an inhomogeneous lattice, where
one potential minimum is made much deeper than the others. The Mott
insulator phase due to repulsive on-site interactions then competes with the
trapping of all atoms in the deep potential. Finally, we turn our attention
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to attractively interacting systems, and discuss the appearance of strongly
correlated phases and the onset of localization for a slightly biased lattice.
The chapter is intended to serve as a tutorial for exact diagonalization of
Bose-Hubbard models.

Chapter 3 is based on the original article, published in Phys. Rev. B
[58]. The recent production of synthetic magnetic fields acting on electro-
neutral particles, like atoms or photons, has boosted the interest in the
quantum Hall physics of bosons. Adding pseudospin-1/2 to the bosons
greatly enriches the scenario, as it allows them to form an interacting in-
teger quantum Hall (IQH) phase with no fermionic counterpart. Here we
show that, for a small two-component Bose gas on a disk, the complete
strongly correlated regime, extending from the integer phase at filling fac-
tor ν = 2 to the Halperin phase at filling factor ν = 2/3, is well described
by composite fermionization of the bosons. Moreover we study the edge
excitations of the IQH state, which, in agreement with expectations from
topological field theory, are found to consist of forward-moving charge exci-
tations and backward-moving spin excitations. Finally, we demonstrate how
pair-correlation functions allow one to experimentally distinguish the IQH
state from competing states, like non-Abelian spin singlet (NASS) states.

Chapter 4 is based on the original article, published in Phys. Rev. A
[59]. Optical lattices with a complex-valued tunnelling term have become a
standard way of studying gauge-field physics with cold atoms. If the com-
plex phase of the tunnelling is made density-dependent, such system features
even a self-interacting or dynamical magnetic field. In this chapter we study
the scenario of a few bosons in either a static or a dynamical gauge field
by means of exact diagonalization. The topological structures are identified
computing their Chern number. Upon decreasing the atom-atom contact
interaction, the effect of the dynamical gauge field is enhanced, giving rise
to a phase transition between two topologically non-trivial.

Chapter 5 is based on an original article, published in Phys. Rev. B
[60]. Ultracold bosons in a triangular lattice are a promising candidate for
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observing quantum spin liquid behaviour. Here we investigate, for such sys-
tem, the role of a harmonic trap giving rise to an inhomogeneous density.
We construct a modified spin-wave theory for arbitrary filling, and predict
the breakdown of order for certain values of the lattice anisotropy. These
regimes, identified with the spin liquid phases, are found to be quite robust
upon changes in the filling factor. This result is backed by an exact diago-
nalization study on a small lattice.

Chapter 6 is based on several original publications [61, 62], Exploiting
quantum properties to outperform classical ways of information-processing
is an outstanding goal of modern physics. A promising route is quantum
simulation, which aims at implementing relevant and computationally hard
problems in controllable quantum systems. Here we demonstrate that in a
trapped ion setup, with present day technology, it is possible to realize a spin
model of the Mattis type that exhibits spin glass phases. Remarkably, our
method produces the glassy behaviour without the need for any disorder
potential, just by controlling the detuning of the spin-phonon coupling.
Applying a transverse field, the system can be used to benchmark quantum
annealing strategies which aim at reaching the ground state of the spin
glass starting from the paramagnetic phase. In the vicinity of a phonon
resonance, the problem maps onto number partitioning, and instances which
are difficult to address classically can be implemented.

Recently it has been demonstrated that an ensemble of trapped ions
may serve as a quantum annealer for the number-partitioning problem .
This hard computational problem may be addressed employing a tunable
spin glass architecture. Following the proposal of the trapped ions annealer,
we study here its robustness against thermal effects, that is, we investigate
the role played by thermal phonons. For the efficient description of the sys-
tem, we use a semiclassical approach, and benchmark it against the exact
quantum evolution. The aim is to understand better and characterize how
the quantum device approaches a solution of, an otherwise, difficult to solve
NP-hard problem.

Chapter 7, finally, contains our conclusions and outlook.



CHAPTER 2

COLD BOSONS IN OPTICAL

LATTICES: A TUTORIAL FOR

EXACT DIAGONALIZATION

2.1 Introduction

The Bose-Hubbard model (BHM), originally introduced in order to describe
different phenomena in condensed matter physics [63], has gained new im-
pact in the field of quantum gases [2], following the experimental realization
of the model in a setup with cold atoms in optical lattices [5]. In particular,
the prediction of a phase transition from a superfluid (SF) to a Mott insula-
tor (MI) has been confirmed. The origin of this transition is genuinely quan-
tum, that is, it is driven by quantum fluctuations, which are controlled by
the Hamiltonian parameters, interaction and hopping strength, and which
are present also at zero temperature.

The advantages offered by cold atoms for studying quantum phase tran-
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sitions are clear. First, in these systems, high isolation from the surrounding
environment is achievable. There have been recent advances in producing
different sort of lattice configurations, determining the Hamiltonian param-
eters. Second, atom-atom interactions are tunable via Feshbach resonances.
These properties allow one to use ultracold atomic systems as quantum sim-
ulators of theoretical models that are not tractable with classical computers.
Although different techniques are able to capture ground state properties
of the Bose-Hubbard Hamiltonian, the solution of the full model, that is
complete spectrum and eigenstates, appears to be intractable with classical
techniques. Exact diagonalization techniques, which in principle allow one
to solve the full problem with high accuracy, suffer from the clear shortcom-
ing of being restricted to fairly small many-body quantum systems [64].

Several approaches have been used to study the BHM: Bogoliubov tech-
niques at small interactions [65], perturbative ones at large interactions [66,
67], Gutzwiller mean-field approaches [4, 68], field-theoretic studies [69–71],
etc. Ground state properties can be studied by means of DMRG meth-
ods [72, 73] and Quantum Monte-Carlo techniques [74].

While the phase boundary between the Mott insulating phase and the
superfluid phase is well-defined in the thermodynamic limit, where symmetry-
breaking gives rise to a non-zero order parameter, the situation is less unique
for finite systems. In particular, as reviewed in Ref. [75] and also pointed
out in [73], there is still uncertainty on the precise value of the transition
from Mott to superfluid in 1D systems. In particular quantum Monte-Carlo
studies have produced slightly disagreeing results on the critical value of the
parameters [76–78]. In view of this, further study of the Mott transition is
needed, using different techniques and applying different definitions. Here,
exact methods allow to extract quantities not reachable by means of other
methods, such as eigenstates, eigenenergies and the entanglement spectrum.

In this work we consider small lattices which we study using exact diag-
onalization (ED). We apply and compare different signatures of the MI-SF
transition: Given the full ground state of the system, a simple figure of merit
is the overlap between the numerical solution and analytical trial states for
the Mott and the SF phase. To capture the phase boundary more accu-
rately, we extract the single-particle insulating gap from the energy spectra
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at different numbers of atoms. Performing a finite size scaling, we determine
the parameters for which the gap would close in the thermodynamic limit,
indicating the transition to the superfluid phase.

Interesting new phenomena are brought into the problem by a simple
modification of the model, assuming a lattice with one highly biased site
attracting the atoms. This gives rise to a series of quantum phase transitions
upon changing the lattice depth: For certain values, number fluctuations
in the system become strong while the average number of particles on the
biased site is decreased by one.

Finally, we consider the case of attractive interactions. Similarly to the
two-site case discussed in Refs. [79, 80], strong fragmentation is found in
the ground state of the system for a small attractive interaction. Direct
diagonalization allows us to quantitatively discuss the appearance of many-
body correlations in the ground state. Considering a slightly biased lattice,
we study the onset of localization in the system as the attraction is increased.

The present chapter is also intended to provide a detailed, tutorial like,
description of the methods employed to perform the exact diagonalization
of the model. Our work complements other tutorial like ones, like refer-
ence [81], as we also incorporate a state-of-the-art discussion of the defini-
tion of the transition between the MI and superfluid phases.

This work is organized as follows: The BHM is introduced in Sec. 2.2. In
Sec. 2.2.1, we introduce different quantities used to characterize the system
behaviour, such as eigenvalues of the one body density matrix, and the
populations of the Fock states. They allow us to discern if the system is
condensed and to measure its spatial correlations. We also define different
entropies in order to capture important properties about the system with
a single scalar value. In Sec. 2.2.2, we present the phases exhibited by
the Bose-Hubbard model. In Sec. 2.3 we explain the exact diagonalization
techniques used together with a detailed description of how to perform them.
In Sec. 2.4 we present the U/t value at which the MI-SF phase transition
takes place for the BHM at filling 1, applying several finite size studies to
our exact diagonalization results. In Sec. 2.5, we go beyond the standard
BHM: In Sec. 2.5.1, we study an inhomogeneous lattice, and observe several
transitions as the hopping and/or interaction strengths are varied, and in
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Sec. 2.5.2, we turn to attractive interactions, focusing on the appearance
of correlated states. In Sec. 2.5.3, the reader is briefly introduced to the
treatment of quantum Hall effects with Exact Diagonalization.

2.2 The Bose-Hubbard model and its characteri-

zation

We start considering the standard Bose-Hubbard model which contains two
terms: the hopping term, which allows the exchange of particles between
the sites, related to the kinetic energy, and the on-site interaction term,
which can be repulsive or attractive. The Hamiltonian of the model reads,

Ĥ = −
M
∑

j 6=k
tk,j â

†
j âk +

U

2

M
∑

i=1

n̂i(n̂i − 1) ≡
M
∑

j 6=k
T̂k,j +

M
∑

i=1

Ûi (2.1)

where â†j (âj) creates (annihilates) one particle in the jth site and n̂i = â†i âi
is the number of particles operator in the ith site, being M the number of
sites. A convenient finite basis, with a fixed number of particles N , is given
by the states of the Fock space restricted to N particles,

|β〉 ≡
∣

∣

∣
nβ1 , n

β
2 , · · · , nβM

〉

≡ 1√
n1!n2! . . . nM !

(

â†1
)n1

(

â†2
)n2

...
(

â†M

)nM |vac〉
(2.2)

where nβi is the number of bosons at the ith site in the state |β〉, and β
is the labelling of the Fock states. Since the number of bosons N in the
system is fixed, nβi satisfies

∑M
i nβi = N for any state |β〉. Arbitrary states

can be written in this orthogonal basis,

|Φ〉 =
NM

N
∑

β

cβ |β〉 , (2.3)

with cβ ∈ C. For total number of bosons N and sites M there are NM
N

Fock states in the basis. This number is the number of ways of placing N



2.2. The Bose-Hubbard model and its characterization 25

particles in M sites, see Table 2.1,

NM
N =

(

N +M − 1

N

)

=
(N +M − 1)!

N ! (M − 1)!
. (2.4)

If the particles were fermions instead of bosons, the number of basis states
is,

NM,fermions
N =

(

M

N

)

. (2.5)

2.2.1 Useful quantities

Let us introduce some quantities that we will use in this work to discuss the
characterization of the BHM.

Fragmentation in the ultracold gas.

The generalization of the concept of Bose-Einstein condensation to inter-
acting systems was introduced by Penrose and Onsager [82, 83]. They es-
tablished a condensation criterion in terms of the one-body density matrix
(OBDM),

ρ(1)
(

r, r′
)

=
〈

ψ† (r′
)

ψ (r)
〉

, (2.6)

where the field operator ψ† creates a boson at position r and 〈· · · 〉 is the
thermal average at temperature T . Since ρ(1) is a Hermitian matrix, it
can be diagonalized. The eigenvectors are termed natural orbitals, and the
eigenvalues are their corresponding populations.

The way to find out if a given state is condensed involves the computa-
tion of the OBDM and its diagonalization in order to study the size of the
populations of its eigenstates. In second quantization, the definition of the
OBDM ρk,l of a state |Φ〉 is,

ρk,l = 〈Φ| â†l âk |Φ〉 . (2.7)
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But writing the state |Φ〉 as in Eq. (2.3), we explicitly get,

ρk,l =

NM
N
∑

α,β

c∗αcβ 〈α| â†l âk |β〉 . (2.8)

From the diagonalization of the OBDM in an arbitrary basis, one obtains,

ρi,j = nOBDM
i δi,j , (2.9)

where nOBDM
i is the ith largest eigenvalue of the OBDM.

In order to simplify the information given by the eigenvalues of the
OBDM of a given state, we introduce an entropy based on the von Neumann
one, S1, which will be used in the following. It is defined as,

S1 = −
M
∑

i

pi ln pi , (2.10)

with pi = nOBDM
i /N the normalized eigenvalues of the OBDM. So,

∑

i pi =
1. The minimum of S1 is 0 and corresponds to pi = δi,1. The entropy S1
has a maximum which equals lnM when pi = 1/M, ∀i. So, its maximum
value corresponds to a uniform probability distribution (fragmented conden-
sate [84]), whereas the minimum corresponds to a Kronecker-δ distribution,
full condensation. In all computations, the entropy has been divided by its
maximum value, lnM , in order get a non-extensive quantity, bounded by 0
and 1.

The entropy S1 measures condensation, as defined by the Penrose-Onsager
criterion. When the value is 0, the system is condensed. When it is lnM ,
it is completely fragmented. When the value is the logarithm of a certain
integer r, the state is fragmented in r states.

Spatial correlations from Fock-space coefficients.

In order to quantify the correlations between the particles on different sites,
we take advantage from the fact that our Fock basis builds on spatially local-
ized single particle states. We define a second entropy SD, which measures
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the clustering of particles in the Fock space,

SD = −
NM

N
∑

β

|cβ |2 ln |cβ|2 , (2.11)

where cβ are the coefficients of the decomposition of a given state into the
Fock basis |β〉, Eq. (2.3). In the same way as the entropy S1 allowed us
to distinguish between condensed and fragmented states, the entropy SD
distinguishes between many-body states which are represented by a single
Fock state (SD = 0), and superpositions of many Fock states (SD > 0).
Apparently, if only few Fock states contribute to a many-body state, there
is a high amount of spatial correlations in the system, which thus can be
captured by the value of SD. The entropy SD is the von Neumann entropy
of the diagonal ensemble after tracing off one site. This means that it
provides the von Neumann entropy after a long-term time evolution in a
local Hamiltonian Ĥ =

∑

i ǫin̂i, with ǫi local energies. Note that in the case
of solely two-sites, the entropy SD coincides with the left-right bipartite
entropy [80].

2.2.2 Phases of the BH model

The homogeneous case of the Hamiltonian (2.1), with tk,j = t, becomes
exactly solvable in two limiting cases: t/U = 0 and t/U → ∞. We take
ground states in these two cases as analytical trial states for the two quan-
tum phases exhibited by the model: the non-interacting limit provides a
trial state for the SF phase, while the system without hopping yields a trial
state for the MI phase.

Mott Insulator regime.

When t/U → 0 with U > 0, the system is dominated by the repulsive
interactions, and it minimizes energy by reducing the number of pairs in
each site. So, the GS of the system is a state with q ≡ N/M particles on
each site, where q is a positive integer, i. e., a Mott insulator state. This
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corresponds to one many-body state of the Fock basis and it reads,

|ΦMI(q)〉 =
M
∏

i=1

(â†i )
q

√
q!

|0〉 = |q · · · q〉 . (2.12)

The first excited state looks like a MI state where a particle has been an-
nihilated in one site and created in a different site, i. e., it is a quasiparticle-
quasihole excitation of the MI state. When the particle is created in the ith
site and the hole is localized in the jth one, the first excited state reads,

|ΦMI(q)〉(1) =
1

q
â†i âj |ΦMI(q)〉 . (2.13)

The Mott insulator is an insulator in the sense that the “transport” of
one particle from one site to another costs a finite amount of energy (the
energy gap ∆E). In the MI state, when q particles are in one site, the
value of the interaction term in that site is (U/2)q(q − 1). When in the MI
state, a particle hops from one site to another, the value on the interaction
term is (U/2)(q − 1)(q − 2) in the site where the particle comes from and
(U/2)(q + 1)q in the site where the particle goes. This situation coincides
with the first excitation of the MI state. So, the energy difference of the MI
state and its excitation is,

∆E =
U

2
[(q − 1)(q − 2) + (q + 1)q − 2q(q − 1)] = U. (2.14)

Thus, the MI phase has a characteristic energy gap ∆E = U in the energy
spectrum which separates the ground state from the excitations.

We consider systems at filling one, that is, q = N/M = 1. In the MI
phase, there is one particle in each site and S1 = logM . Due to the fact that
in this phase the GS coincides with a single Fock state, SD is zero. Since
the number of particles q in each site is a well-defined integer, there are no
fluctuations on the on-site number of particles in the Mott phase. The MI
phase also has a finite correlation length ξ, defined in 〈aiaj〉 − 〈ai〉 〈aj〉 ∝
e−|ri−rj |/ξ as a measure of the spatial range of pair correlations.
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Superfluid regime.

When U/t → 0, the hopping rules the system and each particle becomes
completely delocalized over all sites of the lattice. So, we can write the
single particle state as,

|φsp〉 =
1√
M

M
∑

i=1

â†i |0〉 . (2.15)

Since there are no interactions, the state of the whole system is a prop-
erly symmetrized product of the single particle state up to the number of
particles. So,

|ΦSF〉 =
1√
N !

[

1√
M

M
∑

i=1

â†i

]N

|0〉 . (2.16)

Then, the squared coefficients of the decomposition of the SF state into the
Fock basis follow a poissonian distribution in the sense that its variance
Var

(

|cβ|2
)

coincides with its mean
〈

|cβ |2
〉

[5].

The SF state is characterized by a vanishing gap (since there is no inter-
action, the only contribution to the gap comes from the hopping term), large
fluctuations in the on-site number of particles and a divergent correlation
function. In the SF phase, all particles are delocalized, that is, each one of
them has the same probability of presence in all sites of the lattice, without
interacting with each other. Since all the particles in the system have the
same single particle wavefunction, the system is condensed and so, S1 = 0.
The SF state involves many Fock states with a non-uniform distribution.
The entropy SD, defined in Eq. (2.11), is larger than in the Mott phase,
but it will never equal 1 because the distribution is not uniform. Increasing
the number of particles in the system, the value of the entropy SD in the
SF phase decreases. In contrast to S1, the entropy SD does not exhibit an
extremal value. In Sec. 2.5, we will encounter cases where the distribution
of coefficients is closer to a uniform distribution, giving rise to even larger
values of SD.
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2.3 Exact diagonalization

Let us depiece how we have performed the exact diagonalization of the
Hamiltonian, Eq. (2.1). The same procedure may be applied to many mod-
els involving particles with bosonic and/or fermionic statistics.

Exact diagonalization is the straightforward way to obtain the eigenval-
ues and eigenvectors of a Hamiltonian. Naively, we first need the Hamilto-
nian written in matrix form in a particular basis of states, solving a system
of linear equations. The apparent drawback is the fast growth of the di-
mension of this matrix, defined by the size of the basis, see Table 2.1. In
general, obtaining the full spectrum of the Hamiltonian, eigenvectors and
eigenvalues, requires a number of operations which scales as

(

NM
N

)3. This
makes the problem already intractable for fairly small quantum systems,
and strictly impossible for larger ones.

Once the Hamiltonian matrix (or its action on arbitrary state vectors)
is known, there are two classes of algorithms, direct and iterative methods,
which can be used to completely or partially diagonalize a matrix, that is
to find (at least) some of its eigenvalues and eigenvectors:

• Direct methods perform similarity transformations to the hermitian
(non-hermitian) matrix of interest until it is written in a reduced form.
Hermitian matrices (general non-Hermitian) are reduced to symmetric
tridiagonal (upper Hessenberg) matrices. Once the matrix of interest
is in the reduced form, it can be eigendecomposed in an efficient way
with LU (QR) decomposition for Hermitian (non-Hermitian) matri-
ces. LU and QR decompositions are procedures to efficiently factor
a matrix into the product of a lower (L) and upper (U) triangular
matrices and an orthogonal (Q) and upper triangular (R) matrices,
respectively.

• In the iterative projection methods, the matrix operator spectrum
is shifted in order to make the eigenvectors of interest the ones with
maximal eigenvalues. Then, the transformed matrix is applied to a
trial vector or a set of them. They are only guaranteed to converge for
most matrices using Krylov subspace methods. In those, the subspace
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closed by the succession of acting from 0 to m − 1 times the matrix
onto the trial vector(s) is a m ×m subspace Km called Krylov sub-
space. When orthonormalizing the vectors of Km, the corresponding
matrix of the transformation is a m×m Hessenberg matrix. Inverting
it with direct methods, we can recover the m-iteration approximate
eigenvectors and hence, the corresponding eigenvalues. The iteration
increasing m is continued until convergence under tolerance values is
reached. Notice that they are able to approximate a number of eigen-
values and eigenvectors without any need to solve the entire system.
Despite some of them are able to solve the entire system, it is not prac-
tical in most applications, due to a much larger number of operations
than required by direct methods.

The direct methods are the only ones that are able to truly diagonalize
a matrix, up to rounding machine errors, while the second ones obtain
approximate partial solutions of increasing precision in an iterative way.
On the other hand, direct methods require enough memory to store the full
Hamiltonian and the similarity matrix, while iterative methods only need
storage for a few state vectors. Matrix elements needed to compute the
action of the Hamiltonian onto a state vector can either be determined on
the fly, or stored in a less costly sparse-matrix format.

In our case, we have used an iteration projection method for sparse,
Hermitian problems: the Lanczos algorithm with Gram-Schmidt ortonor-
malization. In order to implement it, a number of libraries are publicly
available. Most of them only require a function which computes the action
of the Hamiltonian on any given input vector, as explained below. The
Lanczos method does not deal with degeneracy as well as other methods
as the Jacobi-Davidson or the Band Lanczos methods. We have used an
Implicitly Restarted Lanczos with a large enough Krylov subspace to over-
throw the degeneracy limitations. It is important to know that there exist
some preconditioners that transform the Hamiltonian, making it cheaper
to evaluate in terms of operations or increasing the convergence for certain
diagonalization methods, such as the Jacobi-Davidson. An extensive and
very pedagogical review about not only hermitian problems, but numerical
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solving of algebraic eigenvalue problems can be found in Ref. [85].

2.3.1 Basis states and their ordering

In order to identify all the states of the basis, every state needs to have
an associated label. The basis states should have a known and unique
ordering, since it must be able to run loops over the vectors of the basis,
so that it is able to evaluate actions on arbitrary states. Computing the
action of the Hamiltonian on the vectors of the basis has to be as efficient as
possible because of the repeated iterations. In this work we have used the
Ponomarev ordering [86]. It provides an efficient way to have all vectors of
the basis labelled with a single integer ranging from 1 to the exact dimension
of the Hilbert space, NM

N . In the procedure devised by Ponomarev, the
mapping between a Fock state and its integer label can be carried out in
both directions using a few, simple computational steps. It builds on a
recursive relation for the dimensions of Hilbert spaces of different number
of particles,

NM
N =

O
∑

n=0

NM−1
N−n with N,M,O > 0 , (2.17)

where O is the maximum occupancy per site, which sometimes is taken
smaller than N to speed up the computations. Eq. (2.17) allows one to
devise a counting algorithm covering all numbers from 1 to NM

N . To perform
the mapping, one first needs to evaluate all Nm

n occurring in Eq. (2.17).
Once this information has been obtained, the algorithm first re-writes

the Fock state, determining the occupations of the M orbitals, into an N -
component array (m1,m2, . . . ,mN ), where mi denotes the orbital in which
the ith atom is. This becomes a simple one-to-one map by demanding
mi ≥ mj for i < j. The integer label of the Fock state, nβ, is then obtained
as

nβ = 1 +

N
∑

j=1

NM−mj

j . (2.18)

With this, we can straightforwardly map a Fock state onto an integer label
running from 1 to NM

N . The opposite map is slightly more complicated, as
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it involves an iterative procedure: Given nβ, we find mN by determining the
largest Nm

N < nβ. We then identify mN = m, and continue to determine
mN−1 by finding the largest Nm

N−1 < nβ −NmN

N , and so on.
Let us see some examples. Consider for instance N =M = O = 6, with

the Nm
n given in Table 2.2, and the Fock vector |β〉 = |103020〉. This tells

us that the first site is occupied by one atom, the third site is occupied by
three atoms, and the fifth site is occupied by two atoms. Accordingly, we
re-write this information in agreement to the rule mi ≥ mj for i < j as
(m1,m2,m3,m4,m5,m6) = (5, 5, 3, 3, 3, 1). Plugging this into Eq. (2.18),
the integer label is then found as:

nβ = 1 +N 1
1 +N 1

2 +N 3
3 +N 3

4 +N 3
5 +N 5

6 = 258. (2.19)

In Table 2.2 we illustrate this mapping graphically for a second example,
and explain how to operate in the inverse direction, that is from the integer
label to the Fock state.

The inverse procedure, to go from the index to the actual Fock state is
also fairly simple, subroutines coded in Fortran are provided in A.1.

In our bosonic case, we have used the Fock states of populations of the
lattice sites, see Eq. (2.2), allowing up to N particles per site and restricting
the total number of particles in the system to N . For fermions the main
difference is that the maximum population per site is 1, due to the Pauli
exclusion principle, the labelling scheme works well simply considering O =
1 in Eq. (2.17)

2.3.2 Use of sparse matrices to store the Hamiltonian ma-
trix

Since Hamiltonians are hermitian, roughly half of the entries in the matrix
are easily derived from the other half. This fact can be used to reduce
storage memory, and to prevent us from redundant computations. More-
over, Hamiltonians of physical models are typically not very dense. In the
case of the Bose-Hubbard model, different states in the Fock basis are con-
nected through hopping processes, but clearly this leads to non-zero matrix
elements only between Fock states differing in two entries.
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n6−M
6 1 6 21 56 126 252 462
5 1 5 15 35 70 126 210 2
4 1 4 10 20 35 56 84 1

M 3 1 3 6 10 15 21 28 1
2 1 2 3 4 5 6 7 0
1 1 1 1 1 1 1 1 2
0 1 0 0 0 0 0 0 0

0 0 1 2 3 4 5 6
N

Table 2.2: Number of Fock states for a given N and M . The diagram shows
the procedure to obtain the index for the Fock vector |β〉 = |211020〉 for
N = 6 and M = 6. The corresponding index is nβ = 1 + 210 + 126 + 35 +
10 + 1 + 1 = 383 out of the 462 states in the Hilbert space. The inverse
procedure can also be read out, starting with nβ = 383, we look for the
largest number in the N = 6 column which is already smaller than nβ, in
this case, 210, we put one particle in the first mode, then we compare the
remained with the values in the N = 5 column, turns out larger than 126,
and so on. In A.1 we provide explicit Fortran codes for the procedures.
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The most benefits of this sparseness can be made, if the matrix is stored
in a sparse matrix format. We then only care about the non-zero elements
which are stored in three 1D arrays of length L, with L being the number
of non-zero elements. Typically, N < L ≪ N 2, with N the Hilbert space
dimension. Two of these arrays carry the integer labels of the pairs of states
which are connected by the Hamiltonian (i.e. column and row of every non-
zero matrix element). The third array stores the complex amplitude of such
process, i.e. the value of the corresponding matrix element. In the case of
the BHM, the length L is bounded from above by (1 +Mz)NM

N , where z
is the coordination number. Each Fock state can (at most) be connected
to Mz other states through hopping processes, and to itself through the
interaction.

2.3.3 Geometry of the lattice

In our computations we have considered a chain of atoms, but the topology
and coordination number of the lattice could easily be changed. All infor-
mation about the lattice is stored in an M × z array of adjacencies A. Its
elements aiδ contain, for each site i, the labels δ of all neighbouring sites.

This can be extended to any kind of neighbourhood (nearest neighbours,
next nearest neighbours, superlattices, anisotropic models, fully connected
models, . . . ). We then simply define a generalized array A of dimension
M×z×w. Here, w counts the different types of neighbourhoods, and z is the
largest coordination number in any neighbourhood. For instance, assume a
2D lattice with nearest- and next-nearest-neighbour hopping. Each site is
then connected to 4 nearest neighbours, as well as 4 next-nearest neighbours,
thus z = 4. We have two different types of connections, thus w = 2.
Or consider a triangular lattice. In the isotropic case, each site is equally
connected to six neighbours, e.g. z = 6 and w = 1. If the model becomes
anisotropic, we have three types of connections, w = 3, to two different
sites, z = 2.

The important advantage of implementing the lattice geometry as de-
scribed here is its flexibility, specially in the implementation on inhomoge-
neous and anisotropic models. The counterpart, it should be said, is that
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it does not make use of lattice symmetries, like translational symmetry in
the case of periodic boundaries, or parity symmetry for finite lattices. Since
the Hamiltonian commutes with the corresponding symmetry operator, the
Hamiltonian matrix is block-diagonal in the eigenbasis of a symmetry op-
erator. The diagonalization can then be performed within each block sepa-
rately. A comprehensive instruction for implementing translational symme-
try in the exact diagonalization code can be found in Ref. [81]. The largest
block in the translationally invariant eigenbasis has a dimension which is
approximately by a factor 1/M smaller than the full Hilbert space of N
bosons on M sites.

2.3.4 Diagonalizing the Hamiltonian

As mentioned earlier, diagonalization algorithms differ greatly, but all of
them need to calculate the action of the Hamiltonian onto the basis vec-
tors. In exact methods the outcome of this calculation is stored in a matrix,
and the unitary transformation diagonalizing this matrix is determined nu-
merically. The advantage of the direct method is the fact that they provide
the full spectrum of the Hamiltonian. However, direct methods are only
feasible for matrix sizes on the order to 104 × 104, e.g. 7 particles in 10
sites, see Table 2.1.

Beyond that, only iterative methods can be employed. Even where direct
methods are still possible, iterative methods are much faster in providing
only a few eigenvalues and eigenvectors. Iterative methods repeatedly apply
the Hamiltonian with a shifted spectrum (eventually inverted) on a set of
state vectors, thereby filtering out an effective subspace of interest. This
procedure can be designed such that the invariant subspace corresponds
to the low-energy subspace. Since it is typically much smaller than the
total Hilbert space, direct methods can finally be used to diagonalize the
Hamiltonian within the low-energy subspace.

While the iterative methods do not require that the action of the Hamil-
tonian on a basis vector is stored in memory, nevertheless this information is
frequently needed in order to perform the iterative multiplications. Thus, in
particular if memory restrictions forbid to store this information, it is cru-
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cial for these algorithms to quickly evaluate the action of the Hamiltonian
on a base vector “on the fly”. For this goal, the labelling scheme presented
above is an important ingredient.

Let us analyse the different steps the diagonalization algorithm has to
go through. Consider an arbitrary state represented as a state vector in the

Fock basis, |Φ〉 =
∑NM

N

β cβ |β〉. The Hamiltonian is applied in two nested
iterative operations:

• One loop runs through all elements in the Fock basis, iβ = 1, . . . ,NM
N .

In this loop, we perform a map from the state label iβ onto the occu-
pation numbers.

• A second loop runs through all non-zero terms in the Hamiltonian,
Ĥ =

∑

j Ĥj, where Ĥj is a monomial of creation and annihilation

operators, e.g. Hj = â†3â
†
5â2â14. Clearly, each step in this loop maps

the state |β〉 onto a new basis state |β′〉, with an amplitude wβj :

Ĥj |β〉 = wβj
∣

∣β′
〉

. (2.20)

It is straightforward to determine both the new state |β′〉 in the occu-
pation number basis, and the amplitude wβj . Using the mapping from
occupation numbers onto state labels, we also find iβ′ .

Accumulating the amplitudes wβj in the iβ′th component of the new state
vector, both loops together produce |Φ′〉 = Ĥ |Φ〉. In summary, the main
computational task is the mapping between labels and states back and forth,
and application of monomials to the states. Since any operation relies on
the previous, all operations on the nested loops may run in parallel in a
computer. Let us exemplify this for two of the monomials in Eq. (2.1).
As an initial state we take the Fock state 383 from Table 2.2, e.g. |Φ〉 =
∑

i Φ(i) |i〉 = |383〉, or Φ(i) = δi,383. First, we translate the Fock state
into the occupation-number basis: |β〉 = |211020〉. Then, we apply all
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monomials, e.g.

U

2
n̂1(n̂1 − 1)|211020〉 =

U

2
2× 1|211020〉

−t1,2â†2â1|211020〉 = = −2t1,2|121020〉 , (2.21)

The first monomial corresponds to an interaction term. It is diagonal in
the Fock basis and thus is easily evaluated. We accumulate on the output
vector, Φ′(383) + UΦ(383) → Φ′(383). The second monomial represents a
tunnelling term, and is not diagonal in the Fock basis, that is, it changes the
state. The new state and the amplitude can easily be found, and using the
Ponomarev mapping, we finally identify the label of the new state, n121020 =
210+56+35+10+1+1 = 313. This means, we accumulate the amplitude
on that position of the resulting vector, Φ′(313)− 2t1,2Φ(383) → Φ′(313) in
this case.

Once we have this procedure, the iterative methods will perform a num-
ber of calls to this procedure in order to obtain approximate values for the
desired part of the spectrum. In this work we have used the ARPACK pack-
age [87], which requires on the order of 600 calls to this action to obtain
the first 10 states of the Hamiltonian. With this, we are able to obtain the
ground state and first excitations of systems of up to 5× 106 states.

2.4 Boundary between Mott insulator and super-

fluid

We are now ready to apply the exact diagonalization method to the Bose-
Hubbard model. Our goal is to find the value of t/U at which the MI is no
longer the GS of the system and it starts to be a SF in an infinite system with
N =M , which is known as the critical value of the order parameter of the
MI-SF transition at filling q = 1. Although we also show a few results for the
2D square lattice, our focus is on a homogeneous 1D Bose-Hubbard chain
with nearest neighbour hopping. The superfluid to Mott-insulator phase
transition exhibited by the BHM with a commensurate number of particles,
N/M ∈ N, in d dimensions belongs to the (d+ 1)D XY model universality
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class. For the 1D model, the exhibited phase transition is of the Berezinskii-
Kosterlitz-Thouless type [63] (BKT). This phase transition is known to be
infinite order —every derivative of the free energy is continuous— and very
sensitive to finite size effects. As we will see in this section, this makes the
determination the phase boundary extremely hard.

In order to interpret our numerical results, we will follow three different
strategies: In Sec. 2.4.1, we will consider the ground state vectors and
determine their overlap with the analytic trial wave functions for the Mott
phase and the SF phase. In Sec. 2.4.2, we will analyse the insulating gap
which in the thermodynamic limit closes at the transition point. In Sec.
2.4.3, the scaling behaviour of the system is analysed. We shall stress that
all three approaches come with their own limitations, which will be discussed
in each subsection. Accordingly, it is also not surprising that each method
produces quantitatively different results.

In all calculations, we restrict ourselves to hopping between neighbouring
sites k and j, t = tk,j. This keeps the essential symmetries to produce the
Mott insulator to superfluid phase transition, cf. Ref. [88]. We also take
U = 1, as only the ratio between t and U determines the system behaviour
(for U > 0).

2.4.1 Overlap.

Since we have the eigenstates of the system, which is a quantity that not
every method is able to obtain, we may try to use this information to find
the transition value. Then, we will compare the obtained ground states at
different values of U/t with the analytical solution of the system in the cases
U/t = 0 and U/t = +∞. In particular, we compute the overlap between
GS and trial states as a function of U/t,

OV = |
〈

ΦAnalytic

∣

∣ΦGS

〉

| . (2.22)

This overlap is never expected to be zero for finite systems, since the two
trial states become orthogonal only in the thermodynamic limit. Analyti-
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Figure 2.1: a) Overlap of the GS of the system with the analytical SF (red)
and MI (green) states in 1D lattices with periodic boundary of 5 (dotted
line), 6 (dashed line) and 7 (solid line) sites. b) Computations in 2D: 2x2
(dashed line) and 3x2 (solid line) lattices with periodic boundary. The
abscissa where the two overlaps have the same value is marked to ease
visualization. Filling factor q = 1 so, N =M in all the cases.

cally, we find
∣

∣

〈

ΦMI (q)
∣

∣ΦSF

〉∣

∣ =

√

N !

(M)N (q!)M
. (2.23)

Therefore, this method is ill-conditioned for the BKT transition, but we
show it for illustrative purposes. Nevertheless, the overlap OV can estimate
the phase boundary by looking for the value U/t where both overlaps, for
the MI and the SF phase, cross each other, that is, the GS of the system
populates them equally, see Fig. 2.1. We denote this value by (U/t)N , as it
depends on the number of particles N . Performing a finite size study [89],



42 CHAPTER 2. Cold bosons in optical lattices . . .

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0  0.1  0.2  0.3  0.4  0.5  0.6

U
/t

1/M

U/t=(7.69 ± 0.05)*(M)−(1.12 ± 0.02) + (4.45 ± 0.04)

Figure 2.2: Finite-size scaling: The value of U/t at which the crossing of
the overlaps happens is plotted as a function of 1/M for a 1D system with
periodic boundary. The fitting to the analytical form, U/t = a(M)−b +
c has been made with the non-linear least-squares Marquardt-Levenberg
algorithm. This fit is used to extrapolate to the thermodynamic limit as
explained in the text.

we estimate the critical value in the thermodynamic limit, (U/t)∞, by ex-
trapolation. We assume a size-dependency given by

(

U
t

)

M
= AM−b+

(

U
t

)

∞,
and perform the finite size study for the 1D systems.

This is a naive approach that is routinely used in the study finite-size
effects of FQH systems. The size-dependency is chosen as a power with
a variable exponent in place of a linear relation in order to capture any
correction depending on non-integer powers.

The finite size study is shown in Fig. 2.2. The extrapolated value for
the phase transition in the thermodynamic limit is U/t = 4.45 ± 0.04, or,
t/U = 0.224 ± 0.002 with a reduced χ2 = 6 × 10−5. It is far indeed from
most values in the literature, cf. Ref. [69] for an overview. The value found
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here lies between the one from third-order strong-coupling expansion [67]
and the one from density-matrix renormalization-group calculations [76].

Thus, based on our knowledge of overlaps in a small system, we are
able to predict the phase diagram in the thermodynamic limit, although
the overlap itself is certainly not a good figure of merit for the BKT phase
transition. In the following subsection, we take the opposite (and more
systematic) approach, which characterizes the phase boundary via an order
parameter which, in the thermodynamic limit, vanishes exponentially in one
of the phases.

2.4.2 Insulating gap.

By means of exact diagonalization, we are able to find the ground state
energy of the system with N particles in M sites at a given value of t/U ,
E0 (t/U,M,N), in units of U , with machine precision.

According to Ref. [63], in the phase diagram of the BMH model, the
critical value of the MI to SF phase transition is the value of t/U at which
the upper and lower boundaries of each Mott lobe cross each other. We
will try to exploit that idea defining an order parameter as the difference in
ordinates between the two boundaries as function of t/U , following Ref. [78].
In the infinite system, that order parameter vanishes for the SF phase,
as the boundaries cross each other at the transition value. Meanwhile, it
remains finite as long as the GS of the system is the MI state. At first, we
set a definition to find the upper and lower boundaries of the Mott lobes.
According to Ref. [63], the upper (lower) boundary of a Mott lobe is given
by exciton energy of one particle (hole) in the system. That is, the chemical
potentials of the systems with M sites containing M +1 (M − 1) particles.
Then, we can find the upper (lower) boundary of the Mott lobe at filling q
of the system of M sites, µ+M,q (t/U) (µ−M,q (t/U)), as,

µ+M,q (t/U) =E0 (t/U,M, qM + 1)− E0 (t/U,M, qM) (2.24)

µ−M,q (t/U) =E0 (t/U,M, qM) − E0 (t/U,M, qM − 1) . (2.25)

In Fig. 2.3, the value of µ+M,q=1 (t/U) and µ−M,q=1 (t/U) is plotted as a
function of t/U for M = 4 to M = 12. This figure shows the famous Mott
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Figure 2.3: Boundaries of the Mott insulator region with N/M = 1 for finite
size systems. The sizes are M = 4, 5, 6, 7, 8, 9, 10, 11, 12. The upper family
of curves is µ+M and the lower is µ−M .

lobes for finite systems. Notice that for our finite sizes and fixed number
of particles, the boundary never closes, that is, the upper and the lower
boundary of the lobe do not merge. However, it can clearly be seen how
these two boundaries approach each other upon increasing the number of
particles.

The energy gap in the MI phase, for any value of t/U , corresponds to
the particle-hole excitation, which is the difference between µ+M,q (t/U) and
µ−M,q (t/U) for a fixed t/U . So, we define the single-particle excitation gap
of the lobe with filling q in a system with M sites as,

∆M,q (t/U) =µ+M,q (t/U)− µ−M,q (t/U)

=E0 (t/U,M, qM + 1) + E0 (t/U,M, qM − 1)− 2E0 (t/U,M, qM) .

(2.26)
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In the standard quantum phase transitions the single-particle excitation
gap is particularly well suited as an order parameter because in an infinite
system it vanishes in the superfluid phase, meanwhile it remains finite in
the MI phase. Unfortunately, the single particle gap is not well suited to
locate the transition in the 1D case. In the BKT transition the gap is
exponentially weak near the criticality, hardly detectable in finite systems.
Hence, the formula above is by construction incorrect for small gaps in the
Mott insulator phase. In addition, the studied systems exhibit finite size
gaps due to the small size. Those gaps may dominate the single-particle
excitation gap in the transition and clearly do in the superfluid phase, and
besides, they can have different extrapolation exponents than the single-
particle excitation gap. Obviously, a reliable extraction of the gap is also
possible from Monte-Carlo methods, and possibly they will do a better job
for this transition. The analysis of the energy gap performed in the present
case, leads indeed to the results which do not have a clear physics meaning;
nevertheless, one can estimate quite well the position of the criticality from
that.

For simplicity, we define the single-particle excitation gap in the Mott
lobe of filling 1 as ∆M (t/U) ≡ ∆M,q=1 (t/U). In Fig. 2.4, the value of
∆M (t/U) is plotted as a function of t/U for M from M = 4 to M = 12.
Notice that the gap does not vanish due to the mentioned domination of
the finite size gaps in the superfluid phase, at large values of t/U, while the
vanishing gap is an intrinsic property of the superfluid in the thermodynamic
limit.

In order to determine the value of t/U for which the phase transition
takes place, we have used values of ∆M (t/U) as the plotted in Fig. 2.4
for M from M = 3 to M = 13. We have used here the fitting method
from Ref. [78]: For every value of t/U , we fit ∆M (t/U) to a fifth-degree
polynomial of the inverse of the size, 1/M . This expression has six fitting
parameters. The constant term of the polynomial is ∆∞ (t/U), which cor-
responds to the single-particle excitation gap of the thermodynamic system
(M → ∞) as function of t/U . Then, the phase transition takes place at
the value of t/U for which ∆∞ (t/U) just vanishes. The determination of
∆∞ (t/U) through the regression is just a hidden extrapolation to the in-
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Figure 2.4: Single-particle excitation gap in the regime q = 1, for finite size
systems. The sizes are M = 4, 5, 6, 7, 8, 9, 10, 11, 12.

finite system. Following Ref. [78], the behaviour of the extrapolation to
M → ∞ could imply a non-integer extrapolation exponent that a poly-
nomial expression could not properly capture. In order to extrapolate the
proper value of ∆∞ (t/U) in the region where the finite size gaps could
potentially play a role (t/U & 0.24), we have used a fitting expression as
function of 1/Mα instead of 1/M , where α is a positive real exponent. This
adds one extra free parameter to the fitting expression.

The obtained values of ∆∞ (t/U) as function of t/U for three sets of sizes
M ∈ {3, ..., 13}, M ∈ {4, ..., 13} and M ∈ {5, ..., 13} are shown in Fig. 2.5,
along with the corresponding value of the exponent α. The log scale has
been used for an easier visualisation of the vanishing point. In Fig. 2.5, the
behaviour of ∆∞ (t/U) in units of U is roughly similar for every set of sizes:
it starts at 1 for t/U = 0 and monotonically decreases to 0 at t/U ≈ 0.285.
For t/U & 0.285, the different sets show different behaviours: The set with
sizes M ∈ {3, ..., 13} shows negative, small values of ∆∞ (t/U), while the
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Figure 2.5: Extrapolated value ∆∞ as a function of t/U in a log scale
for three different sets of sizes. The inset shows the value of the fitting
parameter α as a function of t/U for each set of data. The errorbars show
the 95% confidence intervals.

set with sizes M ∈ {5, ..., 13} shows even smaller, positive and negative
values, whose errorbars make them mainly compatible with 0. The set with
sizes M ∈ {4, ..., 13} shows an intermediate behaviour. It shows positive
and negative values of ∆∞ (t/U), that are smaller in magnitude than in
the former set, but they are more biased to negative values than in the
latter set. Some of the values are incompatible with 0. Obviously, any
value ∆∞ (t/U) < 0 is clearly non-physical. Still, the value of ∆∞ (t/U)
and its dependence on t/U suggest that are a reasonable way to identify
the criticality. The value of ∆∞ (t/U) deep in the SF phase is not zero as
we know it should, but a negative small value. This is because we did an
extrapolation from small, finite sizes that led to an inaccurate values of the
y-intercept, ∆∞ (t/U). As we restrict the analysis to sets of larger sizes,
the value of ∆∞ (t/U → ∞) goes closer to zero, becoming less negative, and
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even erratic around zero. Consequently, we will treat any small negative
value as what it is: an non-physical value that has been obtained just
because it is the one that better meets the fitting relation with data from
small systems. So, the estimation of the critical value (t/U)c will be the
value of t/U for which ∆∞ crosses zero for first time and its uncertainty will
be the difference between the latter value and the value of t/U at which the
errorbar has crossed zero for first time. Then, the obtained critical value
for the sets M ∈ {3, ..., 13}, M ∈ {4, ..., 13}, and M ∈ {5, ..., 13} using
this method is (t/U)c = 0.285±0.002,(t/U)c = 0.292±0.006, and (t/U)c =
0.283±0.009 respectively. Being conservative, we estimate the critical value
with this method as the mean of the latter values, weighted with the relative
error, giving (t/U)c = 0.286± 0.017. Notice that the set of bigger sizes has
8 different sizes and its data is fitted with an expression with up to 7 free
parameters. The fact that this system is minimally overdetermined leads
to some instability in the values of the fitting parameters and to bigger
uncertainties.

The fitting parameter α has remained within the range [0.94, 1.00] for
all the values of t/U used in the analysis. Notice that the transition value of
the Ref. [78], (t/U)c = 0.275± 0.005, is compatible with ours. Interestingly
enough, our values of the fitting parameter α near the transition are also
compatible with their value α = 0.95. Also notice the strong discrepancy
with the estimation from the previous naiver method. Despite this method
is nothing more than an elaborated extrapolation to infinite size, the final
result with this method is within the range of the most recent studies. It
is also compatible with most of values in the literature, due to its broad
uncertainty margins.

2.4.3 Finite-size effects of the gap.

We may try to focus in a more general procedure in order to try to get rid
of the finite size effects. The way to proceed in most of phase transitions is
the general finite-size scaling hypothesis. According to it, close to the phase
transition, and with the proper finite-size power rescaling of the order and
control parameters, the curves for different sizes should collapse into a single
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curve, independent of the size of the system, called universal scaling func-
tion. In our case, order and control parameters would be ∆M,q and t/U ,
respectively. Regrettably, the exponential closing of the gap characteristic
of the BKT transition does not allow such development. Since the gap in the

superfluid phase closes as ∆ ∼ exp

[

− g√
|(t/U)c−t/U |

]

—with g being an un-

known constant—, the finite-size corrections become logarithmically small,
not potentially as the finite-size scaling hypothesis assumes and therefore,
the finite-size power rescaling is not suitable. As a consequence of this be-
haviour, the BKT transition is known to converge to the thermodynamic
limit very slowly when increasing the size of the system. This is, in order to
get rid of finite size effects, order parameter curves corresponding to sizes
from a wide range of orders of magnitude are essential.

We have followed an approach similar to the one of the authors of
Refs. [73] and [90]. They propose an ansatz for the scaling relation of the
single-particle excitation gap, ∆′

M,q (t/U) = M∆M,q (t/U)
[

1 + 1
2 ln(M)+C

]

where ∆
′

M,q (t/U) is the rescaled gap, and C is an unknown constant. Those
authors found that C → ∞ for the standard BHM so, the logarithmic correc-
tion becomes negligible. We defined the rescaled reduced control parameter
as t̃ ≡ t/U−(t/U)c

(t/U)c
Ma, where a is an scaling exponent. The former takes the

value t̃c = 0 at criticality. We also propose the rescaling ∆′
M ≡ ∆MM

b

for the order parameter, where b is an scaling exponent. Both, a and b
are related to the critical exponents of the universality class of the phase
transition. From it we already knew that they should be a = 1/2 and b = 1,
respectively. Notice that this implies a potential relation that will deviate
from the one given by [73] for large enough systems. Although ED does
not allow to compute large enough systems to obtain finite-size effect free
results, we proceed with the analysis of the obtained results for illustrative
purposes.

We use the fact that, at criticality, the order parameter collapses in a
single size-independent universal curve to find the proper exponents and the
critical value of the phase transition through a minimization of the squared
differences between curves of different sizes. Far from the phase transition,
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the subleading terms overcome the scaling relation and then, the rescaled
order parameter depends on the size of the system. The problem is to
determine how far from the phase transition the system starts to exhibit
resolvable finite size effects, and so, which interval of data points has to
be taken in consideration for the minimization. We call t̃− (t̃+) the lower
(upper) limit of that interval. That is, the curves of the rescaled order pa-
rameter follow the same curve in the interval

[

t̃−, t̃+
]

around the criticality.
Then, we define the figure of merit of the minimization as,

S ((t/U)c , a, b) =
∑

M>M ′

∫ t̃+

t̃−
∆′
M

(

t̃
)

−∆′
M ′

(

t̃
)

dt̃ . (2.27)

where the integral is calculated numerically over interpolation of the data
points with cubic splines.

Since we don’t know how far from the critical point the system starts to
exhibit resolvable finite size effects, we try to collapse the curves for several
system sizes M as function of t̃− and t̃+ with the following procedure:

• For a given value of t̃−, we fix t̃+ = −t̃−/e, since we have visually
realized that the lowest values of S are achieved when t̃+ ∼ −t̃−/2
holds.

• We minimize S changing the set of parameters ((t/U)c , a, b).

Then, we find an optimum set of parameters ((t/U)c , a, b) as a function of
t̃−. We may expect that when t̃− is very small, the number of data points
is not enough to properly describe the universal scaling function, due to the
lack of resolution. On the other side, when t̃− is large enough, the finite size
effects play a role and the curves are no longer collapsed in the universal
scaling function. This leads to obtaining parameters that are size-dependant
and not related to the universal scaling function.

For a range of t̃− in between, we may expect to have a constant, size-
independent values of the parameters, showing a plateau. This is due to
the fact that the curves are collapsed in a universal scaling function, which
has the same parameters for any choice of t̃− and sizes M . In order to
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Figure 2.6: Optimal values of (t/U)c, a and b as a function of t̃− to collapse
several sets of system sizes M .

control those possible size dependency of the parameters ((t/U)c , a, b), we
have computed those parameters taking in account different sets of curves:
pairs of consecutive sizes (M = 11 and 12, 9 and 10, 7 and 8, ...), subsets
of the larger systems (from M = 9 to 12, from 8 to 12, ...) and for all of
them.

The parameters (t/U)c, a, and b for a several size sets are shown in
Fig. 2.6. According to those results, the estimated values are: (t/U)c =
0.3115 ± 0.0010, a = 0.5010 ± 0.0010, and b = 0.9870 ± 0.0010. The fact
that the parameters that we have found do not have a resolvable size depen-
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dency seems quite noticeable. It is because our set of sizes are too clustered
to resolve the differences due to the size. Notice that we have let both
exponents, a and b, to vary, despite we know their value. This allows to
explore a broader area of the space of parameters to improve the final value
of (t/U)c, and let the minimization find the proper scaling exponents by
itself. Additionally, it gives us a proof of the goodness of the scaling. As a
matter of fact, the value of the exponent b is several error bars below the
expected value b = 1. It is due to the fact that the small sizes we studied
didn’t allowed to get rid of the finite-size effects. Then, the analysis has
led to a non-universal coefficient. Reminding that the size corrections in
the BKT transition are logarithmic becomes clearer that the set of sizes
shall include sizes with larger orders of magnitude. It has to be stated that
potential scaling relations are wrong for analysing the BKT transition, but
with this treatment a good value is fortuitously obtained because of the
small sizes studied —given that the value obtained for the exponent b does
not correspond to the expected, 1. Finally, the collapse of various system
sizes with those parameters is shown in Fig. 2.7.

2.4.4 Summary

Given that the most recent numerical results localize the BKT transition
at values t/U between 0.26 and 0.31, we must clearly state that our first
approach considering the overlaps fails, as it yields (t/U)crit = 0.224±0.002.
Despite the nature of the BKT and the weakness of the gap even in the
insulating phase, the second method produces a result which agrees with the
literature, (t/U)crit = 0.286 ± 0.017. Also our third approach, the scaling
analysis, produces a result which is still compatible with the literature,
0.3115 ± 0.0010, although the underlying scaling hypothesis does not hold
for the BKT transition.

2.5 Beyond the standard BHM

A number of modifications to the standard Bose-Hubbard model have been
studied. Those modifications include different topologies and coordination
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the estimated parameters (t/U)c = 0.3115, a = 0.501, and b = 0.987 in a
log-log scale.

numbers of the lattice, inhomogeneous potentials, negative interactions, ad-
ditional neighbouring interactions, long range interactions, among others.
Exact diagonalization very suitable for most of those modifications, due to
the lack of assumptions on the parameters. We have played with a couple of
modifications: inhomogeneous lattices, and attractive on-site interactions.

2.5.1 Phase transitions in a deeply biased lattice

An interesting modification of the SF to MI transition is obtained by con-
sidering a lattice with a large attractive bias. In this case the tendency
to form a superfluid is suppressed, as in the limit of weak interactions the
particles prefer to localize on the biased site. Increasing repulsive interac-
tions, the system reaches the Mott phase, undergoing several transitions in
which the number of particles on the biased site is reduced by one. The
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large inhomogeneity is produced by making the potential energy in the kth
site much lower than the others. Theoretically, we take it into account by
adding the term −ǫ∑M

i n̂iδi,k to the Bose-Hubbard Hamiltonian.
To evaluate the effect of the bias potential in the system, we introduce

the fluctuation of the number operator in the ith place,

(∆n̂i)
2 =

〈

(â†i âi)
2
〉

−
〈

â†i âi
〉2
. (2.28)

It can be written explicitly with the number operators in the Fock basis.
Moreover, due to the fact that the Fock states are eigenstates of n̂i, the only
non-zero contribution occurs when |β′〉 = |β〉. So,

(∆n̂i)
2 =

∑

β

|cβ|2 〈n̂i〉2β −





∑

β

|cβ |2 〈n̂i〉β





2

, (2.29)

where 〈n̂i〉β means 〈β| n̂i |β〉. The fluctuation of the on-site number of
particles may serve as a precursor of a phase transition which involves re-
distribution of the particles in the ground states. In the presence of a strong
bias potential, ǫ ≫ t, several peaks of the number fluctuations occur upon
tuning U/t.

In Fig. 2.8, we chose ǫ = 100t, and study a square lattice consisting of
a single plaquette, that is, four sites. Accordingly, we observe N − 1 = 3
peaks of the number fluctuations upon tuning from U/t = 0 to large values
of U/t. In order to infer which mechanisms produces the fluctuations, we
have calculated the population of each site in the lattice, simply by taking
the diagonal values of the OBDM, plotted in Fig. 2.8. When the fluctuation
reaches a maximum, the population in the biased site decreases by one.
Between two consecutive fluctuation peaks, the populations remain mainly
constant, showing plateaus with a step structure. The last peak of the
fluctuations, occurring at the largest value of U/t, indicates a transition
into the MI phase: We find that for larger values of U/t, the population
of all the sites takes the same integer value q, and the fluctuation decrease
monotonically to zero.
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Figure 2.8: Transition from the fully localized state to the MI phase in a
deep biased 2x2 lattice with open boundary condition. The bias is taken
to be ǫ = 100t in the 4th site. The values of the average population of all
sites is depicted together with the fluctuation of the number of particles in
the biased site (red solid curve). The direct hopping between the 4th site
and the 1st is not allowed and hopping between the 4th and the 2nd and
3rd are equivalent. Note the clear peaks in the number fluctuation for fixed
values of U/t corresponding to the transitions described in the text.

The values of U/t for which fluctuation maxima appear can be parametrized
by U/t = 100/i, for i = 1, · · · , N − 1. These values are easily explainable
for the MI with q = 1, keeping in mind the Hamiltonian in Eq. (2.1): the
migration happens when the energy of keeping the particles in the same site
becomes greater than extracting one particle from the biased site to place
it in other site without particles,

U

2
nB(nB − 1)− ǫnB =

U

2
(nB − 1)(nB − 2)− ǫ(nB − 1) , (2.30)
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where we have neglected the hopping term t, which is small compared to
ǫ and U . The subindex B denotes the biased site. From this equation, we
obtain the condition,

U =
ǫ

nB − 1
, (2.31)

where nB is a positive integer which 1 < nB ≤ N .
As can be seen in Fig. 2.8, in general the unbiased sites are not equally

populated. When the interaction is large enough to expel the first particle
from the biased site, the second most populated site is the one which is not
directly connected to the biased site. This might appear counter-intuitive
in the first place, but one has to bear in mind that a particle on this site
benefits from having two empty neighbours, allowing to reduce energy by
tunnelling processes to these sites. On the other hand, once a second parti-
cle is pushed out from the biased site, the situation changes, and two nearest
neighbours of the biased site become more populated. But now, two par-
ticles occupying these two sites still can share the empty neighbouring site
for virtual tunnelling.

2.5.2 Attractive interactions: Localization

As studied for the two-site case in Refs. [79, 80], systems with attractive
interactions feature large quantum superpositions due to the several com-
peting single-particle ground states [84].

For U/t = −∞, all the particles in the system will aggregate in a single
site, so the GS is the Fock state with N particles in the ith site and 0 in
the other sites. But this state is M -degenerate. Due to this degeneracy, the
ground state can be a superposition of these M states. Each one of them
aggregates the system in one different site of the lattice. In this state, when
a particle is fixed in one site, all the rest cluster there. So, this state is
highly correlated. For the two site case, the ground state build a so-called
NOON state [79].

In any practical implementation there will be small imperfections that
will trigger small biases between the sites. It is thus expected, that for
sufficiently large attractive interactions in realistic systems, the GS will be
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Figure 2.9: Entropy SD of the GS in a system with attractive interactions,
for 5 to 7 particles in different geometries with periodic boundaries. The plot
is zoomed in order to appreciate the weakly attractive regime. In particular,
it is worth emphasizing the fact that the maximum of the entropy, maximal
delocalization in Fock space, is not achieved for zero interaction but for
slightly attractive one. The bias is ǫ = 10−10t.

unique with all particles clustered in one site. To account for such effects,
we consider a slightly biased case which favours one site, the kth.

The localized condensate (LC) state in the kth site of the lattice, reads,

|ΨLC(k)〉 =
1√
N !

(â†k)
N |0〉 . (2.32)

In this state, as in the MI, the number of particles in each site is well defined
and the correlation length vanishes. Different from the MI, also the energy
gap vanishes, and its value is given by the value of the bias. Since this state
is a single state of the Fock basis with all the particles localized in the same
site, the values of S1 and SD are both 0.
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It is noticed that if several sites on the lattice were biased significantly
more than the rest, it could be possible to obtain a fragmented condensate.
It is also possible to engineer the number of fragmented fractions by setting
a number of biased sites in the lattice.

To understand the system behaviour for intermediate values of the at-
tractive interactions, we apply exact diagonalization and calculate the en-
tropy SD as function of NU/t. The results are depicted in Fig. 2.9. The
entropy has its maximum in the attractive regime, not at U/t = 0 where
the entropy S1 exhibits a minimum. This observation implies that the GS
of a weakly attractive system is more uniformly distributed over the Fock
basis than the GS of the SF phase. Increasing the attractive interaction, but
keeping the bias smaller than the gap, the system is in a cat-like state, with
SD = ln (M). By cat-like state we mean a superposition state of events
that mutually exclude each other from happening simultaneously, in this
case, the superposition of clustering all the particles in every site of lattice.
Finally, for even stronger attraction, the gap becomes smaller than the bias.
Then the bias term dominates and the system localizes on a single site, with
a single Fock state being the ground state.

The phenomenon is similar to the one studied in Ref. [80]. There, the
system is found to go from a binomial distribution in Fock space, to a
very homogeneous one at slightly attractive interactions. Further increas-
ing the interactions, the distribution does not become more homogeneous,
but instead starts to develop peaks around each of the two-sites, which cor-
responds to the two superposed states of the cat-like structure. In presence
of a small bias, further increasing the attractive interaction, the system
localizes.

Effects in the weakly attractive regime in higher dimensions than 1D are
finite-size effects, since in the thermodynamic limit, a soft-core system of
bosons collapses at any finite value of attractive interactions [91]. In 1D, due
to the interplay between the kinetic energy and the attractive interaction
energy, bright soliton solutions arise from the Gross–Pitaevskii equation
[92].

Notice that in the weakly attractive regime, the number of populated
Fock states increases when interactions are strengthened, but the distribu-
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tion becomes less uniform. This behaviour is more pronounced in the cases
with open rather than periodic boundary conditions, as open boundary pro-
vide a natural bias with less connected sites at the edge of the system.

2.5.3 Exact Diagonalization for other problems: quantum
Hall physics

When it comes to studying Bose-Hubbard models with Exact Diagonaliza-
tion, the reader has to notice that, despite its insurmountable size limi-
tations, one strength of the method is its applicability to a wide range of
problems. As example, just adding complex values to the tunnelling, models
with gauge potentials can be studied.

In this section, we will briefly outline how the method can also be applied
to continuum systems. As an example, we choose the fractional quantum
Hall effect, which can be exhibited by fermionic particles (electrons), but
also by bosons, e.g. a cold gas of bosonic atoms rotating around the z axis
in 2D [93]. In this bosonic scenario, we shall find some analogies to the
treatment of the Bose-Hubbard model.

The first step for treating the problem by exact diagonalization again is
to construct a basis for the Hilbert space. In the quantum Hall effect, the
single-particle energy levels are the Landau Levels (LLs), and it is usually
enough to consider only one LL, for bosons the lowest LL (LLL). All states
in the LLL are degenerate, and can be labelled by a quantum number l ≥ 0,
the angular momentum along the rotation axis. These angular momentum
eigenstates play a role analogous to the sites in the Bose-Hubbard model,
and it allows to map between the basis for the Bose-Hubbard model onto
the basis of bosons in the LLL. Since, in principle, there are infinitely many
single-particle states, though, we have to truncate the basis at a sufficiently
large l = lmax. Due to rotational symmetry, the total angular momentum L
along z is conserved. This provides a natural value lmax = L for truncating
the Hilbert space, but in practice the available angular momentum will be
distributed more equally between all particles, so lmax can be chosen much
smaller, at the order lmax ∼ L/N for N bosons.

In contrast to the Bose-Hubbard model, due to the degeneracy of single
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particle levels in the fractional quantum Hall problem, there is no single-
particle term in the Hamiltonian. Taking into account a trapping potential
only introduces a L-dependent energy shift. The interactions, though, are
much more difficult to treat than in the Bose-Hubbard model, as two parti-
cles at l and l′ may scatter to arbitrary orbitals (l+l′)/2+x and (l+l′)/2−x.
The interactions may lift the huge single-particle degeneracy, and may give
rise to a unique state describing a fractional quantum Hall phase. In or-
der to interpret the numerical results, one tries to identify the fractional
quantum Hall phases by scanning through different values of L, searching
for pronounced gaps. Similar to our strategy presented in Sec.2.4.1, one
can then compare the numerical ground state with trial wave functions by
evaluating their overlaps.

In practical applications, the number of particles is clearly restricted
to a small numbers, N . 20. The studies of mixtures of multicomponent
systems restricts the computations to even smaller numbers. For those
systems, a subspace containing every Fock-Darwin state of every species
[58] is constructed. The total Hilbert space is direct sum of the subspaces,
and hence, the total dimension of the space is the product of dimensions of
those subspaces.



CHAPTER 3

QUANTUM HALL PHASES OF

TWO-COMPONENT BOSONS

3.1 Introduction

The classical Hall effect is studied at the undergrad level. In the usual
setting one has a two-dimensional rectangular metal plate. A voltage is
applied to two of the opposing sides of the rectangle, thus inducing a current
between the two sides. The Hall effect appears when one adds to this
configuration a perpendicular magnetic field. In this case, a net transversal
current appears. This current is found to increase if the applied field is
increased. The explanation of course is that the electrons of the first current
get deflected due to the action of the magnetic field, thus producing a net
transversal current. Interestingly, this simple picture broke down when
the applied magnetic fields where extremely intense. In 1980, von Klitzing
reported a quantization of the Hall conductance [94], that is, as he increased
the magnetic field, the conductance of the sample only changed in discrete

61
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steps. This phenomenon was the so called integer Quantum Hall effect. The
explanation came from quantum mechanics and was directly linked to the
Landau Level structure of the single particle spectrum of a 2D electron in the
presence of a external magnetic field. Later on, fractional Hall phases were
also reported [95], which could not be explained in a non-interacting picture.
The most notable one, was the so-called Laughlin state [96], which explained
a simple non-integer fraction. The Laughlin phase is a quantum liquid
where the electrons are strongly correlated and whose low energy excitations
are anyonic. These phases were described by topological properties, and
thus, the Hall quantization was understood as arising from the topological
properties of the ground state manifold of the system [97].

As commented in the previous chapters, ultracold atomic experiments
provide a very clean and controllable setup in which several intricate con-
densed matter problems can be efficiently simulated. An appealing one is
clearly the quantum Hall effect. At first, it seems difficult to simulate the
physics of charged particles subjected to magnetic fields with neutral atoms,
which basically do not get deflected by magnetic fields. The way out is to
generate so called synthetic magnetic fields, that is, configuration which
mimic the same physics. The first attempt in this direction was to consider
ultracold atomic gases trapped in quasi 2D traps, subjected to fast rota-
tion [93]. In this case, the mathematical resemblance between the Coriolis
forces and the magnetic forces does the job [98]. This approach has actually
been experimentally explored with ultracold bosons, producing phases with
a large number of quantized vortex states [99]. In recent years, a differ-
ent approach has been proposed, namely to produce synthetic gauge fields
for ultracold atoms by profiting from the accumulation of Berry phase in
certain configurations of lasers [see review, [100]].

Recent progress in producing strong synthetic gauge fields in neutral sys-
tems like atomic quantum gases [100, 101] or photonic fluids [102] has catal-
ysed the research in bosonic quantum Hall states. While in the fractional
quantum Hall (FQH) regime the bosonic states are often simply the counter-
parts of fermionic states, a significant difference occurs for non-interacting
particles: Instead of forming an IQH liquid as fermions do, the bosons’ fate
is to condense. However, as has been strikingly predicted by effective field
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theory [103, 104], this does not exclude the possibility of an IQH phase of
bosons. This phase can be obtained in a two-component system at filling
factor ν = 2. As has been confirmed by numerical studies [105–107], re-
pulsive two-body contact interaction favours this phase against competing
FQH phases. In contrast to the fermionic case, interactions are a crucial
ingredient for the integer quantum Hall physics of bosons.

Different from FQH states, integer quantum Hall states have no any-
onic excitations, nor do they exhibit topological degeneracies in non-trivial
geometries (e.g. tori). Nevertheless, they possess topologically protected
edge states which due to Wen’s edge-bulk correspondence [108] make them
distinct to conventional bulk insulators. A particularly appealing property
of the edge in spin-singlet systems is the fact that it can be excited in
twofold ways: by spinless charge excitations (“holons”) or by charge-neutral
spin excitations (“spinons”) [109]. For the edge of the bosonic IQH phase,
a K-matrix description predicts opposite velocities for these two types of
excitations [104], as a consequence of one positive and one negative eigen-
value of the K-matrix. This interesting property has been discussed before
for a FQH state of spin-1/2 fermions at ν = 2/3 in a singlet [110, 111].

In the context of FQH physics, two-component Bose gases have been
considered in a torus geometry [112, 113], where ground state degeneracies
suggest them as a candidate for realizing NASS phases [114]. Quantum
many-body states with non-Abelian excitations are particularly relevant, as
their use for topological quantum computations has been proposed [115].
A recent study of two-component bosons in a spherical geometry [106],
however, gave rise to some controversy: Competitors of the NASS states
are the composite fermion states which have Abelian topological order.

In this chapter we shed further light on the quantum Hall physics of
two-component bosons by performing a systematic numerical study in a disk
geometry. After briefly introducing different trial wave functions, we study
for N = 6 particles all incompressible states on the Yrast line, starting with
the IQH state at Lz = 9 (in units of ~) and ending with the Halperin state at
Lz = 21, where the system is able to fully avoid contact interaction. We find
all the incompressible states to be well described by the composite fermion
(CF) approach [116]. We then study (for N = 8) the edge excitations of
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Figure 3.1: (Color online) Yrast line for N = 6: For the incompressible
states (marked by arrows) we give the overlap with corresponding CF wave-
functions.

the IQH phase. Apart from some exceptions in the forward-moving branch,
we find number and spin of the edge excitations to precisely agree with the
predictions from effective theory. A model of the edge states based on CF
theory is found to accurately describe the wave functions of the backmoving
states. It is shown that the forward moving states can be modelled by
multiplying the ground state wave function with symmetric polynomials.
Finally, we demonstrate how pair-correlation functions distinguish the IQH
state from competing states in an experiment.
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3.2 System and trial wave functions.

We study a system of N two-component bosons described by the Hamilto-
nian

H =

N
∑

i

[pi −A(zi)]
2

2m
+
m

2
ω2|zi|2 + V0

∑

i<j

δ(zi − zj) , (3.1)

where zi = xi + iyi represents the position of the boson, A(z) = B
2 (x,−y)

is a gauge potential, m, V0, and ω are positive parameters specifying the
mass, the two-body interaction strength, and the frequency of a harmonic
confinement. The single-particle part of H has a Landau level (LL) struc-
ture, and is solved by Fock-Darwin (FD) states ϕn,ℓ, which in the lowest
Landau level (LLL) read ϕ0,ℓ(z) ∝ zℓ exp(−|z|2/4), in units of length given

by λ =
√

~/(Mω0), and ω0 ≡
√

ω2 + B2

4m2 .
One way to account for interactions is the CF theory developed by

Jain [116]. It provides a compelling picture to understand both IQH and
FQH phases on an equal footing: By attaching magnetic fluxes to each par-
ticle, one obtains CFs, which are assumed to behave like non-interacting
particles, that is, they fill one or several LLs. Originally, this theory has
been formulated for fermions, but it has been extended to bosonic quantum
Hall phases triggered by the experimental progress in producing synthetic
gauge fields acting on ultracold atoms [117]. Recently, CF states for two-
component Bose systems have been introduced and studied in a spherical
geometry [106].

Here we consider a system on a disk, for which a similar CF construction
is detailed in the Appendix. Omitting the omnipresent Gaussian factor, the
wave functions at angular momentum Lz read

Ψ
[na,nb]
Lz

= PLLL [Φna({za}) Φnb
({zb})J1({z})] . (3.2)

The last term is a Jastrow factor J1({z}) =
∏

i<j(zi − zj), which attaches
one magnetic flux to each particle, turning the bosons into CFs. The wave
function of the composite particles is given by the Slater determinants Φna

and Φnb
, for particles of type a and b, respectively. The indices na(b) yield
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the number of LLs occupied by the CFs. If na = nb, the total spin is zero,
S = 0. Importantly, negative na and nb shall refer to flux-reversed LLs:
Φ−n ≡ Φ∗

n. Finally, PLLL projects back into the LLL of the bosonic system.
We perform this projection in the standard way by replacing conjugate
variables z∗ by derivatives ∂z.

The only difference between Eq. (3.2) and the corresponding definition
on a sphere is the fact that in closed geometries the number of states in each
LL is finite. This gives rise to the notion of “completely filled” LLs, and the
state Ψ[na,nb] is uniquely defined. Depending on the sign of n = na+nb, its
filling factor is ν± = n/(n±1). Contrarily, on a disk, there is more than one
way to distribute Na (Nb) particles in na (nb) LLs. Typically each choice
leads to a different total angular momentum Lz, such that wave functions
at different angular momentum Lz correspond to the same filling factor ν in
the thermodynamic limit. Note that, for |na| = |nb| = 1, however, the wave
functions are unique also on a disk. In particular, Ψ[−1,−1] has Lz = N2/4
and corresponds to an integer filling factor, ν = 2. In contrast to all other
CF wave functions with fractional filling, this wave function might describe
an IQH liquid.

Another important trial wave function, obtained within the CF theory
by putting all composite particles to the LLL (Ψ[1,1]), is the Halperin state
[118], explicitly given by:

ΨH ∼
∏

i<j

(zia − zja)
2
∏

i<j

(zib−zjb)
2
∏

i,j

(zia − zjb) . (3.3)

It is a spin singlet wave function at filling ν = 2/3, with zero energy in a
two-body contact potential, and describes an Abelian FQH phase. A series
of non-Abelian quantum Hall states can be constructed from it by forming
k clusters, putting each cluster into a Halperin state, and symmetrizing over
all possible clusterizations [114]. In this way, one obtains the NASS states
at filling factor ν = 2k/3 as the zero-energy eigenstates of (k + 1)-body
contact interaction.
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3.3 Yrast line.

We have studied N = 6 two-component bosons in the LLL on a disk by ex-
actly diagonalizing the SU(2)-symmetric two-body contact interaction. The
presence of an additional harmonic trapping in H which is invariant under
spatial rotations along the z-axis and under spin rotations will not modify
the eigenstates of the system, but simply increase the energy eigenvalues by
a value proportional to Lz. Properly choosing the trapping frequency, one
can tune the ground state of the system to different Lz.

The system’s Yrast line (i.e. the spectrum of the interaction energy at
fixed Lz), is shown in Fig. 3.1. Different Lz = 9, 12, 15, 18, 21 correspond
to incompressible states, that is, here an increase of angular momentum
will not (directly) lead to a decrease in energy. Notably, for all these Lz it
is possible to construct CF states. Moreover, exact ground states and CF
states agree in spin, and have very good overlap (> 0.97). At Lz = 21,
the overlap equals 1, as the Halperin state of Eq. (3.3) becomes the exact
ground state. At Lz = 18, two CF states with Sz ≡ (Na − Nb)/2 = 0 can
be constructed: Ψ[1,2] and Ψ[2,1]. Accordingly, the ground state is a triplet,
but notably, also the antisymmetric combination of the two states gives rise
to a quasi-degenerate singlet state. For Lz = 15, the CF construction yields
a unique singlet phase, Ψ[−2,−2], with overlap 0.9878 and large gap. For
Lz = 12, the situation is similar to Lz = 18, with a triplet ground state
and a quasi-degenerate singlet state obtained from two possible CF states,
Ψ[−1,−2] and Ψ[−2,−1]. The incompressible phase with smallest Lz is found
for Lz = 9: the clearly gapped ground state is a singlet and has large overlap
(0.985) with Ψ[−1,−1].

3.4 Edge physics of the IQH phase.

We now focus on this lowest-Lz state on the Yrast line, for which we can
extend our numerical study to N = 8 particles and, accordingly, Lz = 16.
Compared toN = 6, we find an only slightly smaller overlap, |

〈

GS
∣

∣Ψ[−1,−1]
〉

| =
0.9709. As Ψ[−1,−1] describes a spin singlet with integer filling ν = 2, and
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∆Lz -4 -3 -2 -1 +1 +2 +3 +4
number of singlets 2 1 1 0 1 2 3 5
number of triplets 2 2 1 1 0 0 0 0
number of quintets 1 0 0 0 0 0 0 0

Table 3.1: Number of modes of Hedge with vs < 0 and vc > 0.

the phase turns out to be strongly gapped and incompressible, all prerequi-
sites for an IQH phase are fulfilled. Previous studies provided evidence of
the integer topological character of this phase by analysing spectral prop-
erties [105–107], and wave functions on on a sphere [106]. In the present
chapter, we consider the equivalent system in a plane, and focus on the
physics at the edge to characterize its topology [108].

An effective theory of the edge physics in fermionic singlet states [110]
is applicable also to the bosonic IQH state. It allows for a straightforward
counting of the edge excitations. This theory is based on the observation
that edge excitations of a spin singlet state might either be excitations which
change angular momentum of the spin-up (down) particles, or be excitations
which flip the spin of some particles. Thus, the effective edge Hamiltonian
has the form [110]

Hedge ∝ vs(S
2
z +

∑

l

lb†l bl) + vc
∑

l

lc†l cl . (3.4)

Here, the first term denotes the spinon excitations with velocity vs, and the
second term the holon excitations with velocity vc. The operators bl and cl
annihilate bosonic modes at angular momentum l.

For a counting of the modes, we only consider pure charge excitations
(〈b†l bl〉 = 0) or pure spin excitations (〈c†l cl〉 = 0), as mixed charge/spin
excitations are expected at higher energies. Moreover, we assume that vc >
0 and vs < 0, such that the charge (spin) excitations are located at positive
(negative) ∆Lz. As a result, we find the multiplicities listed in Table I:
The spinless c modes are simply counted by the number of positive-integer
sums which add up to ∆Lz. Since S2

z = 0 for all c-modes, they must be
singlets. In the spinon branch, instead, we have to count the number of
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Figure 3.2: (Color online) Low-energy part of the spectrum of H, obtained
by exact diagonalization of a system with N = 8 around Lz = 16. The num-
bers beside some states denote their overlap with the trial wave functions
described in the text.

positive-integer sums which add up to |∆Lz|−S2
z , where Sz now might take

also non-zero integer values. For example, for ∆Lz = −1, we might have
Sz = ±1 and 〈b†l bl〉 = δl1, or Sz = 0 and 〈b†l bl〉 = 0. These three states yield
a triplet. Following this reasoning, the first occurrence of a quintet (S = 2)
is expected for ∆Lz = −4.

3.5 Backward moving edge states.

In the spectrum shown in Fig. 3.2, we find one gapped triplet ground state
at ∆Lz = −1, and two quasi-degenerate gapped ground states, one singlet
and one triplet, at ∆Lz = −2. This perfectly matches with the counting
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expected from effective theory. Also at ∆Lz = −3 and ∆Lz = −4, the spin
of the lowest states agrees with the spin predicted by effective theory, but
the degeneracy lifting within the ground state manifold becomes larger than
the gap to the excited states. A particularly striking confirmation of the
effective theory is the fact that at ∆Lz = −4 a S = 2 multiplet becomes
member of the ground state manifold.

A simple intuitive explanation for the presence of backmoving state,
which directly leads to a scheme for constructing trial wave functions, can
be given in terms of the CF approach: Since the ground state, Ψ[−1,−1], de-
scribes an IQH phase of CFs which are subjected to a flux-reversed magnetic
field, a forward-directed edge excitations of the CFs constitutes a backward-
directed edge excitations of the bosons. More formally, as a consequence
of the complex conjugation of the Slater determinants in Ψ[−1,−1], the edge
excitation of the CFs (that is the shift of one or several CFs to higher an-
gular momentum) will correspond to a reduced angular momentum of the
bosons.

Following this reasoning, we have constructed trial wave functions for
edge states with −4 ≤ ∆Lz ≤ −1. For example, consider the state with
Sz = 0 at ∆Lz = −1: The ground state Ψ[−1,−1] consists of four spin-up
and four spin-down CFs, each filling the FD states with ℓ = 0, . . . , 3 in
the flux-reversed LLL. An edge state can then be obtained in two ways:
for either the spin-up or the spin-down CFs, we replace the FD state with
ℓ = 3 by a FD state with ℓ = 4, which after complex conjugation leads to
∆Lz = −1. Strikingly, after projecting these wave functions into the LLL,
both choices lead to exactly the same wave function, and we recover a single
state at Sz = 0, as demanded by both the effective theory and the numerical
results. This becomes more remarkable for ∆Lz < −1: At ∆Lz = −2, we
find five ways to construct Sz = 0 edge states, but they reduce to two
linearly independent states. At ∆Lz = −3, ten different constructions lead
to three states, and at ∆Lz = −4, twenty constructions yield precisely five
different states. Thus, the CF construction is in perfect agreement with
the counting of modes. Apart from the counting, also the overlaps of the
trial states with the exact states are remarkably high. They are explicitly
given within Fig. 3.2, and for any of the eleven edge states in the interval
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Figure 3.3: (Color online) Spin-dependent pair-correlation function for N =
8 particles, showing the probability density of finding one particle with given
spin after fixing another particle of the same spin (a–c) or of opposite spin
(d–f) to (x, y) = (2.5, 0). In plots (a) and (d), the system is in the exact
ground state at Lz = 16. in (b) and (e), the system is in the corresponding
CF state, and in (c) and (f), it is in the ν = 4/3 NASS phase.

−4 ≤ ∆Lz ≤ −1 they are larger than 0.82, demonstrating the power of the
CF description.

3.6 Forward moving edge states.

For ∆Lz > 0, the effective theory predicts spin singlet ground states, with
degeneracy 1, 2, 3, 5, . . . for ∆Lz = 1, 2, 3, 4, . . . . Indeed we find a single sin-
glet ground state at ∆Lz = 1, though it is not separated by a large gap from
a second, low-lying triplet state, see Fig. 3.2. Also at ∆Lz = 2, there is a
singlet ground state, but a nearby second state in the spectrum is a triplet
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state, instead of a second spin singlet. At ∆Lz = 3, even the ground state
is a triplet. It has been argued that forwardmoving edge states have a large
velocity and thus merge with bulk excitations, spoiling the spectral struc-
ture expected from effective theory [106, 110]. Moreover, we note that the
state Ψ[−1,−1] is the first incompressible state on the Yrast line. Therefore,
while backmoving modes of this state do not interfere with forward moving
edge modes of other incompressible states, the forwardmoving excitations of
Ψ[−1,−1] are expected to mix with backmoving modes of an incompressible
triplet phase at Lz = 20 (for N = 8).

Nevertheless, it is possible to identify some states in the spectrum of
Fig. 3.2 as forward moving edge states of Ψ[−1,−1]. We construct them
by multiplying the ground state by homogeneous polynomials which are
symmetric in all variables. Such excitation might either act on the bosons,
that is on the wave function Ψ[−1,−1], or on the composite fermions, that
is on the CF wave function before LLL projection. Remarkably, the latter
approach yields slightly better results.

For ∆Lz = 1, the construction yields one singlet, having overlap 0.9709
with the exact state. Note that this is precisely the overlap of the exact
ground state at ∆Lz = 0 with Ψ[−1,−1], suggesting that the construction of
the edge itself is exact, and the slight deviation of the overlap from unity is
caused by a discrepancy between the ground state at Lz = 16 and the CF
state. Also, the ground states at both ∆Lz = 0 and ∆Lz = 1 have exactly
the same energy.

At ∆Lz = 2, the energy of only the sixth state in the spectrum, a
singlet, matches with the ground state energy at ∆Lz = 0. This state is well
reproduced (again overlap 0.9709) by our construction of edge states which
now yields two singlet states. At lower energies, we find two singlet states,
two triplet states, and one S = 2 multiplet. Each of the two singlet states
has an overlap around 0.63 with our edge state construction, suggesting
that a linear combination of the two states would reasonably well agree. In
that way, we can, out of the three low-energy singlet states, recognize two
as the edge states predicted by effective theory.
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3.7 Experimental realization.

We propose to use a system of two-component Bose atoms subject to two
independent strong synthetic fields, employing the method of Ref. [119].
To this aim one can use two microwave couplings of opposite circular po-
larization to couple, for instance, F = 1, M = ±1 and F = 2, M = ±2
states of 87Rb (employing methods proposed in Ref. [120] and pioneered
for spin-dependent lattices in Refs. [121, 122]), or F = 3, M = ±3 and
F = 4, M = ±4 states of 133Cs, as realized recently in Ref. [123]. The
proposed scheme could be tuned from the microscopic regime to the macro-
scopic regime, where it could resolve a competition between NASS and the
CF state at ν = 4/3 in the thermodynamic limit [106], or for N ≥ 16, non-
accessible by exact diagonalization. The favoured phase could be detected
by a measurement of correlations, which has been demonstrated with single
atom resolution in Refs. [14, 15]. Here, the same method can be used by
switching on rapidly a deep lattice to localize the atoms.

To illustrate how correlations may identify the phase, we refer to a
different competition which takes place for N = 8 at Lz = 16: Here the
CF picture with the ν = 2 state describes well the ground state (overlap
0.97), but an alternative trial wave function is the ν = 4/3 NASS state
(overlap 0.52). Note that the CF state and the NASS state themselves have
overlap 0.41, despite their different topological order. The overlaps certainly
give a clear picture in favour of the CF state, but they are not accessible
to experiment. Instead, measuring the pair-correlation functions allows to
distinguish clearly between CF and NASS state, as shown in Fig. 3.3.

3.8 Conclusions.

We have studied quantum Hall phases of two-component bosons on a disk.
All incompressible phases are understood in the CF picture. The edge
states identify the IQH phase of bosons. This phase could be realized in
experiments with cold atoms, and detected by measuring pair-correlation
functions.





CHAPTER 4

TOPOLOGICAL PHASES OF

LATTICE BOSONS WITH A

DYNAMICAL GAUGE FIELD

4.1 Introduction

In the previous chapter we considered a setup in which ultracold bosons
where subjected to static artificial gauge fields. In that case, we could
mimic or simulate the physics of the fractional quantum Hall effect. An im-
portant current goal in the race for building quantum simulators of complex
problems in physics and other fields is to go one step further and simulate
dynamical gauge fields. The long-term goal is the simulation of quantum
electromagnetism or chromodynamics, that is, of models where matter in-
teracts with dynamical fields, as described in Refs. [124–128]. In the case of
quantum chromodynamics (QCD), the need for accurate methods to study
its non-perturbative domain is clearly desirable. Currently, the most accu-

75
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rate methods to study statics aspects of QCD is lattice QCD, a formulation
of the of the theory on lattices which is solved with the help of large super-
computing facilities, see for instance the some of the recent achievements
on the mass of the proton and neutron from lattice QCD calculations [129].
Quantum simulators of such systems, could, in principle, allow one also to
study dynamical and scattering processes.

The current situation is still far from allows for a quantum simulation of
QCD. Current quantum simulation with artificial gauge potentials are ex-
ploring the variety of interesting physics related to background gauge fields:
spin liquid phases [130], topological phases evidenced by non-zero Chern
numbers [131], or quantum Hall phases with edge currents [132, 133]. In-
deed, an intermediate step might be the realization of simpler but neverthe-
less dynamical gauge fields, engineering an occupation number-dependent
tunnelling term [134–141].

In this chapter, we consider a specific dynamical gauge field and apply
exact diagonalization techniques to shed light on the involved interplay be-
tween the atoms’ external degree of freedom and the system’s U(1) gauge
potential. The atoms are confined to a two-dimensional optical lattice,
where a gauge field is present due to a density-dependent complex phase of
the tunnelling parameter t. Deep in the Mott phase, where density fluctu-
ations are strongly suppressed, the gauge potential is static. We follow the
system’s evolution upon decreasing the ratio U/t, where U parametrizes the
strength of the repulsive on-site interactions. For sufficiently weak interac-
tions, topological transitions, not present in the system with a static gauge
field, are found in the system with a dynamical gauge potential.

In our study the system is assumed to be close to filling one, where
for large enough atom-atom interaction the Mott insulating state provides
a vacuum-like configuration. In the strongly interacting regime, an extra-
particle on top of the Mott insulator can be viewed as a single particle
in a static gauge potential with a fixed magnetic flux per plaquette. This
configuration therefore reproduces Hofstadter physics [142]. Due to compu-
tational limitations, our study addresses a 3×3 lattice with 4π/3 flux per
plaquette. Twisted periodic boundary conditions allow for reducing finite-
size effects. The low-energy subspace is clearly divided into three gapped
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bands. Chern number calculations demonstrate the non-trivial topological
nature of the bands. Since a hole in the Mott insulator does not feel any
gauge potential, the extra-particle configuration also captures the behaviour
in a larger Mott insulator with a particle-hole excitation. Upon decreasing
the interaction, we find deviations from this single-particle picture. For a
dynamical gauge potential we find that the ground state undergoes a topo-
logical phase transition before it becomes topologically trivial in the limit
U → 0.

The chapter is organized as follows. First, in Sec: 4.2, we describe our
theoretical tools, including the density dependent Hamiltonian we are con-
sidering. Then in Sec. 4.3 we present results for the different band gaps
found, comparing the case of a dynamical field and the one of an static
external field. The characterization of the topological properties by means
of Chern numbers is presented in Sec. 4.4. In Sec. 4.5 a phase diagram
through a Mean Field approach is presented in order to give an intuitive
idea of the behaviour of the system in the infinite size case. In addition, the
Appendix A.3 includes the procedure used to compute Chern numbers for
the many-body bands to characterize the topological phases.

4.2 Theoretical model

Cold atoms in optical lattices are well described by a Hubbard model com-
bining nearest-neighbour hopping processes and on-site interactions [2]. The
effect of a (synthetic) magnetic field is taken into account by a Peierls phase
in the hopping parameter. For instance, if b̂k,l (b̂†k,l) denotes the annihila-
tion (creation) of a particle at site (k, l), the hopping term in a constant
magnetic field with magnetic flux ϕ per plaquette is written in the Landau
gauge as

ĤLandau = −t
∑

k,l

(

eiϕlb̂†k,lb̂k+1,l + b̂†k,lb̂k,l+1 + h.c.
)

. (4.1)

Here, t is a real-valued parameter associated with the kinetic energy of
the particles. We consider a two-dimensional system of scalar bosons. Im-
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Figure 4.1: Brief rendition of the considered density dependent Hamiltonian.
As an example we provide the phase acquired for the single particle case,
ĤLandau, with ϕ = 2π/3. The solid lines represent the tunnelling terms, the
dashed ones correspond to the periodic boundary conditions considered.

portant quantities like the energy spectrum of the Hamiltonian are gauge-
independent, that is, alternative hopping Hamiltonians with complex phases
along the x-direction or along both the x- and y-direction would lead to the
same results as long as the flux per plaquette remains the same. A schematic
representation of the hopping structure is given in Fig. 4.1.

A possible implementation of Hamiltonians like ĤLandau goes back to
Ref. [143]. In this chapter, we are interested in a situation where the gauge
field becomes dynamical, that is, the complex phase factor should in some
form depend on the positions of the atoms. A simple dynamical gauge field
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is obtained by letting the phase depend on the occupation numbers,

Ĥdyn =− t
∑

k,l

(

b̂†k,le
iϕl(n̂k,l+n̂k+1,l)b̂k+1,l

+ b̂†k,lb̂k,l+1 + h.c.
)

. (4.2)

The experimental implementation of density-dependent gauge fields as those
of Hamiltonian (2) can be done using similar techniques as those recently
discussed in Refs. [138, 139]. Particular details of how to implement it fall
beyond the scope of the present study.

This choice of the density dependent field is particularly attractive as
it has one specific limit in which the topological properties of the system
can be easily understood. Deep in the Mott insulating phase, where the
number operators n̂k,l can be replaced by an integer number n, this Hamil-
tonian reduces to the form of a ĤLandau. The amount of particle number
fluctuations and thereby the dynamical features of the gauge potential are
controlled by the interaction term, Ĥint =

U
2

∑

k,l n̂k,l(n̂k,l − 1). With this,
the full Hamiltonian reads

Ĥ = Ĥdyn + Ĥint . (4.3)

We will take an additional constraint on the Hilbert space, stemming from
the implementation scheme described in Ref. [138], namely, the maximum
occupancy per site will be set to two bosons.

To clarify our discussion we will compare our results to those obtained
with an static field, that is,

Ĥst = ĤLandau + Ĥint . (4.4)

4.3 Energy gaps

We have concentrated on the filling case around one by means of exact
diagonalization. We have focused on a 3×3 lattice at ϕ = 4π/3, and take
the interaction strength U (in units of t) as the main tuning parameter.
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Figure 4.2: Energy spectrum as a function of the twisted boundary con-
ditions for several systems under Ĥst with a flux per plaquette ϕ = 2π/3
in a 3 × 3 lattice. Degenerated states forming bands have the same color.
a) Single particle case. b)–e) Energies of the ten lowest eigenstates of the
system with 10 particles for the interaction values: b) U = 0t, c) U = 4t,
d) U = 13t and e) U = 20t. ESs means Excited States.

As argued above, this also controls the influence of the dynamical gauge
field. To gain meaningful results despite the small system size, we apply
twisted boundary conditions with twist angles θx and θy. With this, the
energy spectrum ǫi of the Hamiltonian becomes a function of the twist
angles, ǫi(θx, θy). Degeneracies of different levels which would be lifted due
to the finite system size manifest themselves in crossings of bands ǫi(θx, θy).
Accordingly, we define the gap above a level ǫi as

∆ǫi = min [ǫi+1 (θx, θy)− ǫi (θx, θy)] . (4.5)

If ∆ǫi is zero, that is, if band i and band i + 1 have (at least) one
crossing, we consider these levels a degenerate manifold. To check whether
the manifold is separated from higher levels by a gap, we then have to
consider ∆ǫi+1. In general, the gap above a k-fold manifold including the
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Figure 4.3: Gap above each band, [as defined in Eq. (4.6)], between consec-
utive eigenstates of Ĥ as function of the on-site interaction parameter U .
The system is a 3×3 lattice with 10 particles with the parameter ϕ = 2π/3
and t = 1. We take into account the Hilbert constraint to a maximum of
two bosons per site. The three lowest bands have degeneracy 3. and the
labels correspond to the Chern number of each band.

levels i, . . . , i+ k is defined as

∆i,i+k =
i+k−1
∑

j=i

∆ǫj . (4.6)

4.3.1 Case of one excess particle

We start our analysis with the tunnelling of a system with one particle more
than the number of sites. That is, in our 3× 3 lattice we consider N = 10
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Figure 4.4: Same description as in Fig. 4.3, but with the dynamical gauge
field replaced by an external magnetic field with a flux per plaquette ϕ =
4π/3. That is, Ĥ (φ) → Ĥst (2φ).

bosons. On the strongly interacting side, this is equivalent to having a
single particle on top of a fluctuating vacuum. For large U , fluctuations are
strongly suppressed, and the kinetic Hamiltonian (4.2) reduces to the one of
a particle in a static magnetic field, Eq. (4.1), with flux 2ϕ. Accordingly, the
physics of a single particle in a magnetic field should describe the low-energy
behaviour of our system. Indeed, no difference is seen between the shape of
the single-particle spectrum of the Hamiltonian (4.1), Fig. 4.2 a), and the
(low-energy part) of the one of the many-body spectrum of Hamiltonian
(4.3) at large U , Fig. 4.2 e). In both cases, we find the energy spectrum
to be split into three gapped manifolds, each of them consisting of three
states. In the many-body system, a gapless high-energy manifold lies above
the third band.



4.3. Energy gaps 83

 0

 1

 2

 3

 4

 5

 6

θ y

U=0.0 U=0.5 U=1.0  0.1

 1

U=1.5

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

θ y

θx

U=2.0

 0  1  2  3  4  5  6

θx

U=2.25

 0  1  2  3  4  5  6

θx

U=2.5

 0  1  2  3  4  5  6

θx

 0.1

 1

U=3.0

Figure 4.5: Energy difference between the third and fourth states in the
spectrum of a system under Ĥ with 10 particles in a 3×3 lattice, signalling
the gap between the ground state manifold and next excited state. The
different panels correspond to different values of U . In all cases, ϕ = 2π/3
and t = 1.

Deviations from this structure appear when U is decreased, see Fig. 4.2(b–
e) and Fig. 4.3. The dynamical mechanism is the following. As U is
decreased, the number of holon-doublon excitations increases, the single-
particle picture described above is no-longer valid. First, for U ≈ 15, the
gap between the third band and the high-energy manifold closes, as the first
doublon-holon excitations have the same energy as the third single particle
state. Subsequently, at U ≈ 10, also the gap to the second band is closed.
These gap closings indicate phase transitions in excited states. At U ≃ 2.25,
also the gap to the lowest band is closed. Thus, up to U ≃ 2.25 the ground
state manifold has a topological structure similar to the case of a single
particle subjected to an external magnetic field of 2ϕ. This value of U is a
bit higher than the value at which we found a gappless phase for the filling
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one case described below. Thus, the main picture of a single particle on top
of a Mott insulating background is consistent.

Remarkably, further lowering the value of the interaction another threefold-
degenerate gapped manifold appears for 0.67 . U . 2.25. Only for U .

0.67 the system enters in a gapless phase. We note that for 0.67 . U . 2.25
the gap is small, of the order of 10% of the involved energy scales. It is a
merit of the twisted boundary conditions that the three lowest states are
clearly identified as an adiabatically connected manifold, separated from
the other levels by a gap. In fact, if we look at the system for a fixed value
of θx and θy, or alternatively for open boundary conditions, the gap cannot
be distinguished from the energy splitting between states in the degenerate
manifold. The evolution of the gap between the ground state manifold and
the next excited state for the all values of θx and θy is given in Fig. 4.5. The
gap above a manifold as function of U is shown in Fig. 4.3 . For U ≃ 0.67
the gap closes at (θx, θy) ≃ (π, π). The next closing, for U ≃ 2.25 ap-
pears close to (θx, θy) ≃ (0, π). This could diminish the prospects for an
experimental detection of this phase in the plane geometry, but since an ex-
periment would realize a much bigger system, there is hope that finite-size
degeneracy splitting would be sufficiently small to identify the finite gap.

In Fig. 4.4, we contrast our findings to the scenario with static magnetic
field. As expected, at large U the differences between Fig. 4.3 and 4.4 are
minor. Also for a static magnetic field, increasing U subsequently closes
the gaps above the third and the second band. However, the gap above the
ground state remains finite up to U ≃ 1 and, for U < 1, it vanishes.

4.3.2 Mott insulator

At precisely filling one, for 9 particles on 9 lattice sites, see the upper panel
of Fig. 4.6, we find a unique gapped ground state for U & 2.1, which is
connected to the Mott insulator as an exact solution for U → ∞. This
phase is trivial in the sense that it corresponds to a vacuum, where devia-
tions from integer filling exist only as fluctuations. For U . 2.1, we find a
gapless phase, that is, despite the presence of the dynamical gauge field, no
topological structure protected by an energy gap emerges in this scenario.
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Figure 4.6: Energy gap, see Eq. (4.6), between consecutive eigenstates of Ĥ
as function of the on-site interaction parameter U . We take into account
the Hilbert constraint to a maximum of two bosons per site. The upper and
lower panels are for N = 9 and N = 8, respectively.

The first and second excited bands are three- and six-fold degenerate,
respectively. They are topologically non-trivial and their Chern numbers are
+1 and +4. This excited bands coincide, in degeneracy and topology, with
the lowest band of the non-interacting systems with one and two particles in
the same lattice, as they are explained in Section 4.4. These excited bands
can be understood as one and two particle-hole excitations on the top of
the Mott insulator, when the particle feels an effective static magnetic field
and the hole do not.
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4.3.3 Case of one hole

We also study the tunnelling of a single hole. That is, in our 3×3 lattice we
consider N = 8 bosons. The gap structure we find is shown in Fig. 4.6 b).
As expected, we find that increasing the interaction up to U ≃ 10t, a gap
opens between the nine-fold degenerate manifold, understood as one hole
moving in the Mott-insulating background, and the rest of the states. The
ground state manifold is found to have a trivial topological order.

4.4 Topological phases

In the previous section we have discussed the energy gaps appearing for the
case of one excess particle, the filling one, and the one hole case. The only
case in which we have found non-trivial topological structures is for the
case of one excess particle. In the following we present the Chern number
obtained compared to the case of an external field of flux 4π/3.

4.4.1 Single particle and non-interacting cases

First, we calculate the Chern numbers of the single-particle system described
by ĤLandau, that is, of the bands shown in Fig. 4.2 a). We obtain the values
{1,−2, 1}. In this case, the calculation can either be done via Fourier trans-
formation, taking the parameters k1 and k2 to be components of the wave
vector [144], or with twisted boundary conditions, taking the twist angles θx
and θy as parameters k1 and k2 [145]. In the latter case, the discretization
of parameter space is arbitrary, but we observe quick convergence of the
Chern numbers to fixed numbers upon refining the discretization.

The non-interacting case can be related to the single particle case al-
though some caution should be exercised. For instance, direct computation
of the Chern number of the ground state manifold for N = 2, 3, and 4
particles in the 3×3 lattice we consider gives c = 4, 10 and 20, respectively.
These can be obtained by noting that due to the bosonic symmetry, we have
a combinatorial factor stemming from the number of times the Fock basis
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Figure 4.7: Squared coefficients of the ground state of the density dependent
Ĥ for θx = θy = 0 in the Fock basis in lexicographical order. A few notable
states, one particle on top of a Mott insulator, are marked. The three panels
corresponds to three values of the interaction, U = 1, 3 and 20. For these
values, the Chern number of the ground state manifold is −1, +1 and, +1,
respectively.

covers the threefold degenerate band. This can be evaluated giving,

c
(N)
0 =

N

3

(

N + 3− 1

N

)

c
(1)
0 = c

(1)
0

(

N + 2

3

)

, (4.7)

where c(1)0 is the single particle Chern number of the GS manifold, c(1)0 = 1.
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4.4.2 Interacting many-body case

To calculate the Chern numbers of many-body states, we exclusively re-
sort to the twisted boundary conditions. For the three gapped manifolds
appearing at U . 15, see Fig. 4.3, we obtain the same Chern numbers as
for the single particle bands: {1,−2, 1}. These numbers remain constant
for each manifold until the closing of the corresponding gap. Upon clos-
ing the gap, the second and the third bands simply merge with the energy
continuum, for which no Chern number can be computed. This is easily
understood as for large enough interactions the many-body ground state
is well described as consisting on a Mott-insulating background plus one
particle. The lower band is given by the energy of the extra particle in the
presence of an external field with flux 4π/3. The closing of the bands in the
higher part of the spectrum comes from the first particle-hole excitations
which eventually degenerate with excitations of the excess particle. Note
that even though this simple picture provides a compelling explanation it
is quite remarkable that albeit the many-body state changes, as shown in
Fig. 4.7, as U is decreased, the topology of the band does not change for a
broad range of U .

In contrast with the above, the gap closing of the ground state at U ≈
2.25 separates two gapped regions, see in particular the inset of Fig. 4.3.
Interestingly, we find that upon closing the band gap, the ground state
Chern number changes its sign from 1 to −1. This demonstrates that a
topological phase transition between two distinct, but topologically non-
trivial phases is taking place. The second gap closing, at U ≈ 0.67, merges
the ground state manifold with the energy continuum which, in this sense,
is a transition to a topologically trivial (gapless) phase.

4.4.3 Static field case

Finally, we note also that the three gapped manifolds found for a sys-
tem with static magnetic field, with φ = 4π/3, are characterized by the
same Chern numbers {1,−2, 1}, without any transitions to distinct gapped
phases. As seen in Fig. 4.4, the arguments exposed above also apply to
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this case and the picture of a single particle on top of a Mott-insulator
is perfectly valid. The only relevant difference appears for low interaction
energies. In this case, the Mott insulating phase seems to survive down
to lower values of the interaction as compared to the density dependent
case. Thus, density dependence phases favour the existence of superfluid
regimes at larger interactions than in the static case. Also we find no trace
of the first excitation being a topological phase with c1 = +1 in the re-
gion 2.25 & U & 0.67. In this case the limit U = 0 can be understood
from the single-particle calculation: The ground states for N bosons are
just arbitrary distributions on the M = Ns/q states belonging to the lowest
energy band in a lattice with Ns sites at magnetic flux 2π/q. This leads to a
macroscopic ground state degeneracy (of 63 states in our case with N = 10,
Ns = 9, and q = 3), for which no meaningful Chern number can be defined.
Recent “Chern number” measurements in non-interacting bosonic quantum
gases [131] consider the Hall drift for unique but gapless many-body states,
and define as a “Chern number” the average over different states.

4.5 Mean field Phase diagram

In order to get a picture of the phase diagram, we have adapted the Mean-
field calculation of Ref. [136] to the Hamiltonians of interest. At first, we
include a chemical potential term −µ∑i,j n̂i,j. With the convenient substi-
tutions ĉi,j ≡ eiφjn̂i,j b̂i,j and d̂i,j ≡ e−iφjn̂i,j b̂i,j, the Hamiltonian in Eq. (4.3)
looks like,

Ĥ =
∑

k,l

{

− t
(

d̂†k,lĉk+1,l + b̂†k,lb̂k,l+1 + h.c.
)

+ n̂k,l

[

(n̂k,l − 1)
U

2
− µ

]

}

. (4.8)

At t = 0, all the sites are independent and the GS can exactly be
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represented with a Gutzwiller ansatz,

|Ψ0〉 =
Ns
⊗

k,l

|ψ〉k,l, |ψ〉k,l =
∞
∑

m=0

f
(m)
k,l |m〉k,l, (4.9)

where m is the number of particles in a site. Then, the energy due to each
site filled with m particles is ǫm = U

[

1
2 (m− 1)− µ

U

]

m. and the energy of
adding and subtracting one boson is,

ǫm+1 − ǫm = U
(

m− µ

U

)

, ǫm−1 − ǫm = U
( µ

U
−m+ 1

)

, (4.10)

respectively.
The MF is obtained by decoupling the hopping terms as d̂†i,j ĉi+1,j ≈

α∗
3,j ĉi+1,j+α2,j d̂

†
i,j−α∗

3,jα2,j and b̂†i,j b̂i,j+1 ≈ α∗
1,j b̂i,j+1+α1,j+1b̂

†
i,j−α∗

1,jα1,j+1,
with the order parameters α1,j ≡ 〈b̂i,j〉, α2,j ≡ 〈ĉi,j〉 and, α3,j ≡ 〈d̂i,j〉.
Then, the Hamiltonian in Eq. (4.8) becomes,

Ĥ =−Nxt
∑

j

(

α∗
3,jα2,j + α∗

1,jα1,j+1 + h.c.
)

+
∑

k,j

ĥk,j, (4.11)

with the local Hamiltonian

ĥk,j ≡ n̂k,j [U (n̂k,j − 1) /2− µ]− tT̂k,j, (4.12)

where T̂k,j ≡ α∗
3,j ĉk,j +α2,j d̂

†
k,j +α∗

1,j−1b̂k,j +α1,j+1b̂
†
k,j +h.c. and Nx is the

size of the system in the x-direction. The Hamiltonian ĥk,j has a trivial
solution when αγ,j = 0, γ = 1, 2, 3 since the particle number fluctuations
vanish at the Mott insulating phase.

When the kinetic term is negligible (t ≪ U), the entire system is de-
scribed with the basis of states with m particles per each site (k, j), |m〉.
The GS is determined by µ: it is the local state |m〉 when m− 1 < µ < m.
Since we want to draw the Mott lobes, we include the single Fock state
and particle-hole excitations in that region of the diagram. Then, since we
search the boundaries close to the trivial solution, |αγ,j | ≪ 1, and the ki-
netic term can be treated perturbatively. Up to first perturbation order, the
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local wavefunction |Ψ〉 can be written as |ψ(0)〉+ |ψ(1)〉, being |ψ(0)〉 = |m〉
and

|ψ(1)〉 =− t
∑

m′

〈m′|T̂k,j|m〉
ǫm′ − ǫm

|m′〉

=
t

U

√
m
[

α∗
3,je

iφj(m−1) + α∗
2,je

−iφj(m−1) + α∗
1,j−1 + α∗

1,j+1

]

µ
U − (m− 1)

|m− 1〉

+
t

U

√
m+ 1

[

α3,je
−iφjm + α2,je

iφjm + α1,j−1 + α1,j+1

]

m− µ
U

|m+ 1〉

(4.13)

The first order perturbation about the solution αγ,j = 0 is conve-
nient here, since the self-consistency equations define a linear map αγ,j =

Λγ
′,j′

γ,j αγ′,j′. Then, when the largest eigenvalue of Λ, λ0, is larger than 1,
the trivial solution is no longer stable. So, the boundary is found to be at
λ0 = 1. The self-consistency relations α1,j = 〈Ψ|b̂k,j|Ψ〉, α2,j = 〈Ψ|ĉk,j|Ψ〉
and, α3,j = 〈Ψ|d̂k,j |Ψ〉 give,

α1,j =
t

U
[A (α1,j−1 + α1,j+1) + fj (φ)α2,j + fj (−φ)α3,j ]

α2,j =
t

U
[fj (φ) (α1,j−1 + α1,j+1) + fj (2φ)α2,j +Aα3,j ]

α3,j =
t

U
[fj (−φ) (α1,j−1 + α1,j+1) +Aα2,j + fj (−2φ)α3,j ] (4.14)

with

fj (φ) ≡
[

A+B
(

e−iφj − 1
)]

e−iφjm

A ≡
µ
U + 1

[ µ
U − (m− 1)

] [

m− µ
U

] , B ≡ m
µ
U − (m− 1)

.

For the case of the static magnetic field, the corresponding function f stj (φ)

reduces to Ae−iφj .



92 CHAPTER 4. Topological phases of lattice bosons . . .

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.02  0.04  0.06  0.08  0.1

µ/
U

t/U

Mott (f=0)

Mott (f=1)

Mott (f=2)

Mott (f=3)

SF

Static
Dyamic

Figure 4.8: Phase boundary between the Mott insulator phase and the
superfluid phase for the external and dynamical magnetic fields according
to the Gutzwiller ansatz with the MF approach in the 1st perturbation
order in the hopping t.

The Fock space populations of the GS of the system, Fig. 4.7, have re-
vealed its structure: the Fock states which have a particle on top of a MI in
the same row are equally populated. Then, we have tried an ansatz which
is translationally invariant along the x-direction and have a 3-unit cell in
the y-direction. So, in Eq. (4.14), j = 1, 2, 3, without periodic boundary
conditions. Then, those relations define a linear system of nine coupled
linear equations, being αγ,j the variables. Once the matrix of the system
is diagonalized as function of t, for a numeric value of U , µ (and its corre-
sponding integer m), the expression of λ0 is set to 1 and then the equation
is solved for t. Finally, the phase boundary is obtained as a collection of
points (µ, t).

We find the Mott lobes, shaped as usual in the MF approach, see Fig. 4.8.
The values of the boundary do not correspond to the ones of the MF for the
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2D lattice, but they are closer to the ones of the 1D case, see Ref. [69]. The
structure of the GS state has revealed this to be closely related to the fact
that the magnetic fields are in the Landau gauge. Our analysis also shows
that the trial state is slightly more robust upon decreasing hopping t/U
in the dynamic field case than in the static one. This finding qualitatively
agrees with our results for the gap separation in the exact diagonalization
analysis: As seen in Figs. 4.3 and 4.4, the SF regime corresponds to the
gapless phase at small U , which extends to U = 0.8 in the dynamic case,
and U = 1.2 in the static case. For µ < 0, the boundaries of the dynamic
field case and the 2D non-magnetic case coincide, as expected.





CHAPTER 5

MODIFIED SPIN-WAVE THEORY

OF COLD BOSONS ON AN

INHOMOGENEOUS

TRIANGULAR LATTICE

5.1 Introduction

Quantum spin liquids (QSL) constitute one of the holy grails of contempo-
rary quantum many body physics. In contrast to ferromagnetic or antifer-
romagnetic systems, QSL do not break the SU(2) symmetry; still similarly
as spin glasses, they do exhibit some kind of long-ranged, hidden order. It is
believed nowadays that gapped spin liquids exhibit exact topological order.
The interests of the Quantum Optics Theory group in QSL started with the
studies of antiferromagnets in kagomé lattices [146–148]. In 2009, our group
realized that lattice shaking might lead to the change of tunnelling matrix

95
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elements in the optical lattices. We proposed to use this effect to realize QFL
and spin liquids in the anisotropic triangular lattice [149]. Klaus Sengstock
group in Hamburg started then in collaboration with us a series of works
on shaken triangular lattices that has led to several publications in Science,
Nature Physics, Physics Review Letters and others [130, 149–152]. So far,
spin liquids in those systems has not been yet observed. Maybe, due to
undesired heating effects and possible other complications. It became thus
extremely important to understand what is the critical temperature and
what are the phase boundaries of the spin liquid region. Philipp Hauke,
in a series of papers [149, 153–155], demonstrated that boundaries of the
SQL regions can be found by analysing generalized spin-wave theory. The
breakdown of the spin-wave theory signalizes the appearance of exotic SQL
phase in the system.

Hauke’s works, although very important, did not include important ele-
ments of the experiments, namely the presence of the loose harmonic trap,
keeping the atoms in the lattice together. In order to understand the effects
of the trap, one has to generalize the spin-wave theory to the inhomogeneous
situations. Technically, it is a very challenging task, and the present section
is devoted to its analysis. The section start with extensive introduction to
the QSL physics.

The chapter is structured in the following way: After introducing the
system and model in Section II, we construct the modified spin wave theory
in Section III. From this theory, we obtain a phase diagram in Section IV.
In Section V, we consider first a small lattice using exact diagonalization.
Then, we show that quasi-exact results can be obtained for much larger lat-
tices using DMRG. The main conclusion drawn from our study, summarized
in Section VI, regards the co-existence of spin liquid behaviour at different
filling factors smaller than 1/2. Thus, the spin liquid phase is expected to
be robust against inhomogeneities due to a trapping potential. Our find-
ing should facilitate the experimental observation of spin liquids in optical
lattice systems.

Although the present chapter focuses on a generalized mean field method
and on an analytic calculation, it contains nevertheless, some comparison
with exact diagonalization, obviously very restricted for straightened an-
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tiferromagnetic systems. The analytic methods used here have a lot in
common with the ones that are used for preparation of exact diagonaliza-
tion calculations in other systems. This chapter is an important part of the
thesis, since it extends it to another type of complex quantum systems and
quantum phases.

5.2 Basics of SQL physics

Quantum spin liquids (QSL)s are at the center of interest of contemporary
condensed matter physics and quantum many body theory (cf. [156]) for
several reasons. P. W. Anderson proposed them as a new kind of insulator:
a resonating valence bond (RVB) state [157]. The interest in these state was
clearly stimulated by the fact that they were soon associated with high Tc
superconductivity [158]. Immediately it was realized that RVB spin liquids
might exhibit topological order [159] and are related to fractional quantum
Hall states [160] and chiral spin states [161].

Frustrated anti-ferromagnets (AFM) provide paradigm playground for
RVB states and spin liquids (for the early reviews see [162–164]). The most
prominent example is Heisenberg spin 1/2 model in a kagomé lattice. Un-
fortunately, they are notoriously difficult for numerical simulations, since
due to the (in)famous sign problem quantum Monte Carlo methods cannot
be applied. Still, a lot of information can be extracted from exact diagonal-
ization studies (for seminal early studies see Ref. [165]). There was a lot
of effort to describe QSLs with various approximate analytic approaches,
such as large N expansion [166], or appropriate mean field theory [167,
168]. These studies suggested that QSLs described by RVB states represent
topologically ordered states with finite energy gap, analogous to those of
the famous Kitaev’s Toric Code model [169].

In parallel to AFM in kagomé lattice, the so called dimer model in
triangular lattice was studied intensively [170] – it was also found that it is
expected to exhibit a gapped RVB phase (see also [171, 172]).

The first experimental indications of QSLs comes from studies of Mott
insulator in the triangular lattices [173], and power law conductivity inside
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the Mott gap in certain materials [174]. More recently observations (cf.
[175–177]) combine various standard and non-conventional detection meth-
ods in kagomé Heisenberg AFM, including measurements of fractionalized
excitations [176]. There are also reports of QSL behavior in the, so called,
Herbertsmithites (cf. [178]).

Recently great progress was achieved in numerical simulations of the
gapped QSLs, based on the the use 1D density matrix renormalization
group (DMRG) codes, “wired” on 2D tori/cylinders. This approach allowed
for better insight into the properties of the ground state of the Heisenberg
AFM in the kagomé lattice [179, 180]. More importantly, it allowed ob-
taining convincing signature of its topological Z2 nature . This was based
on numerical estimate for the, so called, topological entanglement entropy
(TEE) – the quantity that unambiguously characterizes topological gapped
QSLs [181, 182]. Calculations of TEE were earlier applied to the quantum
dimer model in the triangular lattice [183] and to the Bose-Hubbard spin
liquid in the kagomé lattice [184]. They were extended to critical QSLs [185],
Toric Code [186] and lattice Laughlin states [187]. Since these calculations
aim at sub-leading term in entanglement entropy, it is quite challenging to
achieve good accuracy (see for instance [186, 188].

Recently, studies of AFM in kagomé lattice were extended to novel
proposals for characterizing/detecting topological excitations and dynam-
ical structure factor [189]. Several papers discuss inclusion of the chiral
terms and Dzyaloshinsky-Moriya interactions, resulting in formation of chi-
ral QSLs [190, 191]. Considerable interest was devoted also to the J1 − J2
Heisenberg model in the kagomé lattice [192] and in the square lattice [193],
to the J1 − J2 − J3 Heisenberg model in the kagomé lattice [194, 195] , and
to the Kitaev-Heisenberg model [196, 197] in triangular lattices [198, 199].

Systems of ultracold atoms and ions provide a very versatile playground
for quantum simulation of various models of theoretical many body physics
[2, 200] – QSLs have in this context also quite long history. The first
proposals for quantum simulators of the Kitaev model in the hexagonal
lattice [201], and AFM in the kagomé lattice [146–148] were formulated
more than ten years ago; all of them were based on smart designs and use
of super-exchange interactions in optical lattices. More feasible and perhaps
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are experimentally less demanding proposals based on ultracold ions [202],
or ultracold atoms in shaken optical lattice [149]. The latter schemes were
originally designed to control the value and sign of the tunneling in Bose-
Hubbard models – for original theory proposal see [203], and for the first
experiments in the square lattice see [204]. They should be regarded as
specific examples of generation of synthetic gauge fields in optical lattices [2,
205], or more precisely synthetic gauge fields in periodically-driven quantum
systems [153].

Change of sign of tunneling in the triangular lattice is know to be equiv-
alent of the introduction of the π-flux synthetic “magnetic” field in the Bose-
Hubbard model [149, 160]. In the hardcore boson limit one obtains then an
XX AFM model in the triangular lattice, which for isotropic bonds is known
to have a planar Néel ground state. If, however, the bonds are anisotropic
and their values t1, t2 = t3 = t t1 can be controlled, then as anisotropic
parameter t goes from infinity to zero the model interpolates between an
AFM in a rhombic lattice (with the conventional Néel ground state) to an
AFM in the ideal triangular lattice (with the planar Néel ground state),
and finally to an AFM in an array of weakly coupled 1D chains (with the
conventional Néel ground state again). Exact diagonalizations and tensor
network states simulations (PEPS) indicate that between these three Néel
phases there exists two quite extended regions of gapped QSLs [202].

Interestingly the presence and the location of the QSL phases can be
determined quite accurately using the generalized spin wave theory, which
signals instability at the QSL boundaries [153, 202]. The spin wave method
is impressively powerful and has been generalized and applied to frustrated
bosons and Heisenberg model with completely asymmetric triangular lattice
[154, 155].

We should stress that the proposal of Ref. [149] is in principle very
promising, since it requires temperature of order of (t/U)U ≃ t which is
achievable in realistic experimental conditions, here U denotes atom-atom
on site interaction energy. In fact, initial experiment demonstrated feasi-
bility of the scheme, but were conducted far from hardcore boson limit. In
these experiments a triangular array of cigar shaped Bose-Einstein conden-
sates was realized, corresponding to a frustrated quasi-classical AFM [150],
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described by a classical XX spin model with the U(1) symmetry, and Gaus-
sian Bogoliubov-de Gennes quantum, or better to say quasi-classical fluctu-
ations. In the further investigations, by exploiting control over the temporal
shape of the periodic modulation, one could realize arbitrary Peierl’s phases,
i.e. arbitrary fluxes of the synthetic “magnetic” field through the elementary
plaquette of the lattice ([151], see also [152]). This allowed for realization of
a quasi-classical spin model with competing U(1) and Ising Z2 symmetries
[130]. The route toward the strongly correlated regime and hardcore limit
seem to be obscured, however, by uncontrolled heating mechanisms, most
probably intrinsically associated with the periodic modulation scheme [205].

Even if this difficulty is overcome, another experimental aspect might
prevent the observation of QSLs in such systems. Indeed the overall har-
monic trapping of the atomic ensemble leads to non-constant filling factor
over the optical lattice. We should expect thus formation of wedding cake
structure, formed by the different quantum phases (cf. [2] and references
therein). How does the phase diagram look like or change in the presence
of such “experimental imperfections”? This is the question we want to an-
swer in this chapter. To this aim we apply exact diagonalization on small
lattices with open and periodic boundary conditions. On large lattices we
apply modified spin-wave theory, adopted to the spatially inhomogeneous
situation, which turns out to be technically much more demanding than the
one pertaining to the spatially homogeneous lattice with half-integer filling.
Specifically, we derive for the first time a modified spin-wave theory that
works for generic homogeneous filling, which allows to study large weakly
trapped systems in local density approximation. Our work provides a start-
ing point for the future applications of tensor network state approaches like
Projected Entangled Pair States (PEPS) to a moderate size lattices. These
future calculations will aim at estimations of topological entropy, which so
far for the considered model in the triangular lattice has not yet been ac-
complished even in the spatially homogeneous case with periodic boundary
conditions. Studying the influence of the spatial inhomogeneities, induced
by the presence of the trap or disorder, on topological entanglement entropy
is a fascinating question in itself – it goes, however, beyond the scope of the
present paper. While inhomogeneity due to confinement are instrinsict to
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ultracold atoms, our approach may be also relevant for searching QSLs in
other quasi-2D condensed matter systems that present residual magnetiza-
tion or inhomogeneities, for instance, due to the presence of a substrate.

The chapter is structured in the following way: After introducing the
system and model in Section II, we construct the modified spin wave the-
ory in Section III. From this theory, we obtain a phase diagram in Section
IV. In Section V, we consider small systems (N ≤ 24) using exact diag-
onalization. The main conclusion drawn from our study, summarized in
Section VI, regards the co-existence of spin liquid behavior at different fill-
ing factors smaller than 1/2. Thus, the spin liquid phase is expected to
be robust against inhomogeneities due to a trapping potential. Our find-
ing should facilitate the experimental observation of spin liquids in optical
lattice systems.

5.3 Description of the atomic model and map to

the spin model

Ultracold bosons in deep optical lattices are very well described by the Bose-
Hubbard model. Therefore, we will take the Bose-Hubbard Hamiltonian as
a starting point for our analysis:

Ĥ =
∑

〈ij〉
tij(b̂

†
i b̂j + H.c.) +

U

2

∑

i

n̂i(n̂i − 1) +
∑

i

Vin̂i. (5.1)

Here, the b̂†i , b̂i are the creation and annihilation operator at the site i of
the triangular lattice, and n̂i = b̂†i b̂i is the number operator of the Fock
space. The first term is a possibly anisotropic nearest-neighbor hopping,
with tunneling amplitudes tij . In the standard case, one would have a mi-
nus sign in front of the tunneling term. However, it is possible to control
the sign (or even phase) of the tunneling, which is a crucial ingredient to
generate frustration in the triangular lattice. As here we will exclusively
be interested in such scenario of reversed hopping amplitude, we absorbed
the sign in the definition of tij, such that standard hopping would corre-
spond to tij < 0, while we will consider tij > 0. The second term in H
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describes repulsive on-site interactions of strength U > 0. The last term is
the trapping potential Vi = V r2i − µ0, V = 1

2mω
2. Although it is present

in any realistic experiment, it is often neglected in theoretical studies. The
positions of a boson on site i is denoted by ri.

If interactions U are strongly repulsive, fluctuations in particle number
is suppressed. It is then justified to restrict the local Hilbert space to a
subspace formed by the states with occupation number two. These states
may change throughout the trap, but within a local density approximation,
we may keep them fixed within a circular area in the center of the trap, and
ring-shaped areas further outside, as illustrated in Figure 5.1. Each region
is denoted by an integer I, according to the possible occupation within the
region, nI = {I − 1, I}.

This approach allows to map the Bose-Hubbard Hamiltonian onto a spin
model, using a Holstein-Primakoff transformation [206]. Within each region
I, the transformation is defined as

Ŝzi = (−1)I
(

I − 1

2
− n̂i

)

,

Ŝ+
i =

(b̂†)I√
I

, Ŝ−
i =

(b̂)I√
I

, (b̂†)2 = (b̂)2 = 0. (5.2)

The vanishing of squared creation or annihilation operators is due to the
restriction of the local Hilbert space to two states. Using the definition of
spin operators the tunneling part of the original tight-binding Hamiltonian
gets transformed to I

∑

〈i,j〉 tijŜ
+
i Ŝ

−
j +H.c.. The interaction part transforms

to U(Ŝz)2 + 2U(−1)I+1Ŝz(I − 1) + U(I2 − 2I + 3/4). The trap potential
gives rise to a term ViŜ

z
i . With (Ŝz)2 = 1/4, and neglecting the terms which

are constant within a given region I, the dynamical part of the transformed
Hamiltonian is an XX model in an inhomogeneous transverse field:

ĤI = I
∑

〈ij〉
tijŜ

+
i Ŝ

−
j + H.c. +

∑

i

ViŜ
z
i . (5.3)

Before studying this Hamiltonian in the next sections using modified
spin wave theory and exact diagonalization, let us briefly discuss the pa-
rameter regimes which are of interest experimentally. As mentioned before,
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Figure 5.1: Local density approximation. The harmonic potential, which
for simplicity we assume to have cylindrical symmetry, is decomposed in two
contributions: a step-like profile and a smoothly varying term. Each plateau
extends between the radii rI and rI−1, defined as the distances where
the average occupation takes two consecutive integer values, 〈n̂rI 〉 = I,
〈n̂rI−1

〉 = I − 1. The height of the plateau is taken to be the one corre-
sponding to half filling. The smooth terms can be then treated as a per-
turbation, on the same footing as the hopping term. The effective model
in each plateau is thus equivalent to an anisotropic XX-spin model with an
smoothly varying magnetic term.

being interested in frustration and spin liquids, the spin-spin interactions
in Eq. (5.3) should be antiferromagnetic, that is, tij > 0. To simplify
the scenario, tij should only depend on the direction of the hopping, with
amplitudes along horizontal links denoted t1, while the two links with non-
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i i+1

i+R

R = 4

Figure 5.2: (a) A triangular lattice of N = 24 sites with a hexagonal shape.
Horizontal hopping amplitudes are given by t1, while hopping in the other
directions have an amplitude t2 = t t1, where t parametrizes the anisotropy
of the lattice. (b) A triangular lattice of up to N = 24 sites with a rhombic
shape. For studying the behavior upon scaling the system size (cf. Sect.
5.6.1), we use this structure. In order to conveniently define the form factor
(5.39), the spins are identified by unique position index i = 1, . . . , N , start-
ing from the bottom left. As displayed, i increases by one while moving on
the right, and by the length of the row, R, while moving up right.

zero vertical component shall have an amplitude t2 = t t1, see Figure 5.2.
The anisotropy of the lattice is then characterized by a single parameter
t, which we will tune from 0, corresponding to an effective 1D system, to
values greater than 2, where the lattice geometry is dominated by a rhombic
structure. The energy difference between neighboring spins is of the order
∆Vi = V a2 ≡ η t1, where a is the lattice constant, and η is a dimensionless
parameter. We Assume the lattice is loaded with 87Rb atoms, which has
lattice constant a = 553 nm and a trap frequency ω = 2π × 40Hz; we have
∆Vi/~ = 15Hz. This is about an order of magnitude weaker than typical
interactions strengths, t1/~ ≈ 150Hz. In the modified spin wave approach,
we will therefore take Vi = 0, while the effect of non-zero values will be
addressed within the exact diagonalization study.
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5.4 Modified spin-wave theory

Let us start by analyzing the spin system for constant non-zero magnetiza-
tion, which corresponds to fillings different from 1

2 . Classically, we expect
the spin oriented along a cone around the z-axis,

Si = (sin ρ cos(Q · ri), sin ρ sin(Q · ri), cos ρ). (5.4)

Here, Q = (Qx, Qy) is a vector in the xy-plane while ρ is the azimuthal angle
related to the magnetization along the z-axis, i.e. to the filling of the original
bosons ν = 〈n̂〉 − [〈n̂〉], where [x] = integer part of x. For ρ = π

2 , (5.4)
reduces to the ansatz considered by [153, 207] at half filling. If we follow
the standard spin-wave approach, we should choose the local basis in such
a way that the new local z-axis is parallel to the vector (5.4). In this way,
by applying the bosonization of the local spin we would model fluctuations
along the classical ordering represented by (5.4). Now, such fluctuations
would have component also along the z-axis. In other words, they would
renormalize the filling factor. Such behavior is not acceptable from the
physical point of view. Indeed, in the original bosonic Hubbard model the
filling factor is a well defined quantity: the hopping term conserves the
particle number, and, thus, the expectation value of the particle density
which is the filling. The same argument holds for the same physical model
as described as a spin system. In practice, the acceptable fluctuations are
restricted to the xy-plane, and, precisely, are along the projection of the
ordering vector on the xy-plane. That is to say that corrected choice for
the quantization axis is the same as at half filling.

What is then the difference with respect to the half-filling case? The
difference resides in the magnitude of the spin projection. If we do the
reasonable assumption that the fluctuations are proportional to such length
we can relate n, the local density of bosonic excitations, to the filling. As
originally proposed by Takahashi [208], such density at half filling should be
taken equal to the total spin, n = S, that to say also the bosonic excitations
are at half-filling. Here, we propose a generalized Takahashi condition,

n = S| sin ρ|, (5.5)
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where the angle ρ is related to the filling by the relation 〈Sz〉 = ν − S =
S cos ρ which implies | sin ρ| = 1

S

√

ν(2S − ν). This choice has further phys-
ical justification. First, it is symmetric around half filling as it should be:
reversing the quantization axis ẑ in the Dyson-Maleev transformation [209,
210] is equivalent to the replacement ν → 2S − ν. Second, fluctuations
are maximal at half-filling and are suppressed in the paramagnetic (Mott)
phases, which correspond to filling ν = 0 and 2S.

As derived in previous sections, the filling factor ν is smoothly changing
in the trap and relates to the harmonic potential as ν = [ µU + 1

2 ], where [x] =
fractional part of x (the hopping term has zero mean). Thus, our analysis
can be applied in local density approximation to trapped systems.

We define the local spin operators Ŝ′ ≡ (Ŝx
′
, Ŝy

′
, Ŝz

′
) that are related

to the global ones Ŝ = (Ŝx, Ŝy, Ŝz) through the rotation

Ŝ = R(θi)Ŝ
′ ≡ R(Q · ri)Ŝ′, (5.6)

where

R(θi) = Rz(θi)Ry(−π/2)Rz(θi) =





0 − sin(θi) − cos(θi)
0 cos(θi) − sin(θi)
1 0 0



 ,

is the rotation that sends the vector (0, 0,−1) to (cos θi, sin θi, 0), i.e. along
the projection of ordering vector on the xy-plane.

By composing with the Dyson-Maleev transformations

Ŝz
′

i → −S + a†iai,

Ŝ+′

i →
√
2Sai,

Ŝ−′

i →
√
2S(1− a†iai

2S
)ai, (5.7)

we find that in the original spin basis, the bosonization is

S±
i = e±iθi

(

±
√

S

2
(a†i − (1− n̂i

2S
)ai) + S(1− n̂i

S
)

)

, (5.8)
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where n̂i = a†iai, θij = Q · rij, and rij = rj − ri. The effective Hamiltonian
reads (up to fourth order in a or a†)

H =
1

2

∑

<ij>

tij

(

S+
i S

−
j + S−

i S
+
j

)

=
∑

<ij>

tij cos θij

(

S2 − S(n̂i + n̂j)−
S

2
(a†ia

†
j + aiaj) +

S

2
(a†iaj + aia

†
j)

+n̂in̂j −
1

4
(a†i n̂jaj + a†j n̂iai) +

1

4
(n̂jajai + n̂iaiaj)

)

− i
∑

<ij>

tij sin θij

(

S

√
2S

2
(a†i − a†j − ai + aj) +

√
2S

4
(n̂iai − n̂jaj)

−
√
2S

2
(n̂ja

†
i − n̂ia

†
j − n̂jai + n̂iaj)

)

. (5.9)

Note that this expression does not coincide with [153][Eq. 5]: indeed,
the odd terms in sin θij are absent there as they have zero expectation
value on a thermal gas of excitations. It is worth noticing that the terms
in cos θij and sin θij are manifestly symmetric and antisymmetric under the
exchange of indices, i ↔ j, respectively. Indeed, by construction the whole
expression is invariant under such exchange of summed indices. Further-
more, the Hamiltonian (5.9) can be rewritten in an explicit translational
invariant fashion by noticing that the sum over the links can be performed
as a sum over there links coming out of a site, and then summing over all
the sites. As these three lattice vectors on a triangular lattice we choose
τ 1 = (1, 0), τ 2 = 1

2(1,
√
3), τ 3 = 1

2(−1,
√
3). As H in Eq. (5.9) is non-

Hermitian, following Takahashi [208], we use it in order to construct a free
Energy for a gas of bosonic excitations in a generic Bogoliubov basis at
temperature T , i.e.

F = E − TS + µ(n− S| sin ρ|), (5.10)
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where E is the expectation value of H,

E =
1

N

∑

k

〈νk|H |νk〉 , νk ≡ 〈α†
k
αk〉 =

1

exp[wk/T ]− 1
, (5.11)

with αk denoting the Bogoliubov modes, see Eq. ( 5.16 ). The entropy S
of the bosonic gas is defined as

S =
1

N

∑

k

[(νk + 1) ln(νk + 1)− νk ln νk]. (5.12)

The last term in Eq. (5.10) is the modified Takahashi constraint over the
density of fluctuations n = 〈n̂i〉, with µ the corresponding Lagrange mul-
tiplier or chemical potential. Here, wk is energy of each mode. From the
functional form of the entropy it follows that wk is also the rate at which
the entropy changes with changing occupation, i.e. wk = T ∂S

∂νk
.

It seems natural to adopt this strategy since the expectation value E is
in general bounded from below and depends only on the average value of the
bilinears a†iaj, a

†
ia

†
j , and their complex conjugates. This happens because

the Bogoliubov transformation is by definition linear and only the quadratic
bilinears above can have non-zero matrix elements while preserving the ex-
citation number. This physical consideration is equivalent to state that E
can be calculated using Wick theorem and that linear and cubic terms give
zero contribution. For convenience, we define

〈a†iaj〉 ≡ F (rij)−
1

2
δij ,

〈aiaj〉 ≡ G(rij). (5.13)

In this notation, the generalized Takahashi constraint reads

F (0) = 〈a†a〉+ 1

2
= S| sin ρ|+ 1

2
, (5.14)

where | sin ρ| relates to the filling ν of the original spin system, 0 ≤ ν ≤ 2S,
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as | sin ρ| = 1
S

√

ν(2S − ν). From (5.9) we find

E

N
= S2 C − 2S C

[

F (0) − 1

2

]

− S

2

∑

J

[cJ · (GJ +G∗
J − FJ − F ∗

J )]

+ C

[

F (0) − 1

2

]2

+
∑

J

cJ(|FJ |2 + |GJ |2)

+
1

4
cJ

{

(G(0)(FJ + F ∗
J − 2G∗

J )− 2

[

F (0) − 1

2

]

(FJ + F ∗
J − 2GJ)

}

. (5.15)

Here, we adopt the notation FJ ≡ F (τJ), GJ ≡ G(τJ ), and we define
(c1, c2, c3) ≡ (cos(Q · τ1), t cos(Q · τ2), t cos(Q · τ3)), C ≡ c1 + c2 + c3. For
convenience, we fix the energy scale such to have t1.

If we assume that the Bogoliubov transformation is real as in [153]

ak =
(

cosh θk αk + sinh θk α
†
−k

)

,

a−k =
(

cosh θk α−k + sinh θk α
†
k

)

, (5.16)

we have that FJ = F ∗
J , GJ = G∗

J , the expectation value of energy density
reduces to

E

N
=

1

2

∑

J

cJ

[

(

S +
1

2
− F (0) + FJ

)2

+

(

S +
1

2
− F (0) −GJ

)2

+G(0)(FJ −GJ) + F 2
J +G2

J

]

, (5.17)

which differs from the expression [153, Eq.6] not only due to the mismatch
between our (5.9) and [153, Eq.5]: in fact the term G(0)(FJ−GJ) is omitted
as considered negligible. This approximation is justified at half filling for
large S as FJ ∼ GJ ∼ S.

It is worth noticing that the structure of the minimal solution is not
affected by the explicit form of E, while the consistency equations obviously
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are. Indeed, due to (5.16) the expectation values have the form

F (r) =
1

N

∑

k

cosh(2θk)e
−ikr

(

νk +
1

2

)

=
1

N

∑

k
′

cosh(2θk′) cos(k′r)(2νk′ + 1),

G(r) =
1

N

∑

k

sinh(2θk)e
−ikr

(

νk +
1

2

)

=
1

N

∑

k
′

sinh(2θk′) cos(k′r)(2νk′ + 1), (5.18)

where we use explicitly the symmetry k → −k: the prime indicates that
now the sum is performed over half of the first Brillouin zone. The condition
for F to be minimal reduces to

0 =
∂F
∂wk

=
∂F
∂νk

=
3
∑

µ=0

[

∂E

∂Fµ
cos(kτµ) cosh(2θk) +

∂E

∂Gµ
cos(kτµ) sinh(2θk)

]

− wk + µ cosh(2θk), (5.19)

0 =
∂F
∂θk

=
∂F
2∂θk

=
3
∑

µ=0

[

∂E

∂Fµ
cos(kτµ) sinh(2θk) +

∂E

∂Gµ
cos(kτµ) cosh(2θk)

]

+ µ sinh(2θk). (5.20)

Here, τ 0 = (0, 0) while τ J , J = 1, 2, 3, have been introduced above.
The condition (5.20) is always equivalent to

tanh(2θk) =
Ak

Bk

, (5.21)
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and the condition (5.19) to

wk =
√

B2
k
−A2

k
, (5.22)

where

Ak ≡ −
3
∑

µ=0

cos(kτµ)
∂E

∂Gµ

=
1

2

∑

J

cJ (GJ − FJ + cos(kτ J) (1 + 2S − 2F0 +G0 − 4GJ ))

=
1

2

∑

J

cJ (GJ − FJ + cos(kτ J) (2S(1− | sin ρ|) +G0 − 4GJ )) ,

Bk ≡ µ+

3
∑

µ=0

cos(kτµ)
∂E

∂Fµ

= µ+
∑

J

cJ (−2S − 1 + 2F0 +GJ − FJ

+cos(kτ J)

(

S +
1

2
+

1

2
G0 − F0 + 2FJ

))

= µ+
∑

J

cJ (−2S(1− | sin ρ|) +GJ − FJ

+cos(kτ J)

(

S(1− | sin ρ|) + 1

2
G0 + 2FJ

))

, (5.23)

in the second lines of the expression forAk and Bk we impose the generalized
Takahashi constraint.

Thus, one is getting the same result as for diagonalization of quartic
Hamiltonian that in momentum space is real and symmetric under k ↔ −k.
This can be the case when the expectation value E is real, but not otherwise.
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At the formal level, we can use (5.21) and (5.22) that imply

cosh(2θk′) =

√

B2
k
′

B2
k
′ −A2

k

,

sinh(2θk′) =
Ak

′

Bk
′

√

B2
k
′

B2
k
′ −A2

k
′

, (5.24)

to write an implicit equation for the correlation functions

F (r) =
1

N

∑

k
′

√

B2
k
′

B2
k
′ −A2

k

cos(k′r)(2νk′ + 1),

G(r) =
1

N

∑

k
′

Ak
′

Bk
′

√

B2
k
′

B2
k
′ −A2

k
′

cos(k′r)(2νk′ + 1). (5.25)

The following physical considerations are in order. In the zero tempera-
ture limit we are interested in, the gas of Bogoliubov excitations is expected
to condense. Such condensation is consistent with the spin ordering only if
the zero mode condenses, as such condensation translate into infinite range
correlation in the original atomic system. The requirement of zero mode to
become macroscopically occupied at low temperature, M0 =

∫

|k|<ǫ νk ∼ Nn,
implies that wk=0 → 0, which also corresponds to |θk=0| → ∞. Thus, this
condition can be realized only for Bk=0 ∼ Ak=0, which implies that in the
phase we are interested in, the chemical potential has to be set to zero,
µ = 0. Note that this also means the occupation of each mode νk is much
smaller than 1

2 (at least for S = 1
2). Thus, by singling out the the zero

mode and using νk+ 1
2 ∼ 1

2 in the expression for correlation functions, they
become

F (r) ∼M0 +
1

N

∑

k
′ 6=0

cosh(2θk′) cos(k′r),

G(r) ∼M0 +
1

N

∑

k
′ 6=0

sinh(2θk′) cos(k′r), (5.26)
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and the constraint (5.14) reads

M0 +
1

N

∑

k
′ 6=0

cosh(2θk′) = S| sin ρ|+ 1

2
. (5.27)

After having singled out the zero mode and constrained the occupation
the function Ak and Bk should be redefined in form accordingly. In fact
only Bk gets redefined. Indeed, by recalculating the consistency condition
for an extremum of the F for the new definition of the correlation functions
–that to say taking into account the dependence of M0 on νk and θk, as
well as µ = 0– we have

0 =
∂F
∂wk

=
∂F
∂νk

=
3
∑

µ=0

[

∂E

∂Fµ
(cos(kτµ)− 1) cosh(2θk)

+
∂E

∂Gµ
(cos(kτµ) sinh(2θk)− cosh(2θk))

]

− wk, (5.28)

0 =
∂F
∂θk

=
∂F
2∂θk

=

3
∑

µ=0

[

∂E

∂Fµ
(cos(kτµ)− 1) sinh(2θk)

+
∂E

∂Gµ
(cos(kτµ) cosh(2θk)− sinh(2θk))

]

. (5.29)

The above equations again imply

tanh(2θk) =
Ak

Bk

,

wk =
√

B2
k
−A2

k
,
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or alternatively

cosh(2θk′) =

√

B2
k
′

B2
k
′ −A2

k

,

sinh(2θk′) =
Ak

′

Bk
′

√

B2
k
′

B2
k
′ −A2

k
′

. (5.30)

The expression for Ak remains the same as in (5.23),

Ak = −
3
∑

µ=0

cos(kτµ)
∂E

∂Gµ
, (5.31)

while Bk becomes

Bk =

3
∑

µ=0

(

∂E

∂Fµ
(cos(kτµ)− 1)− ∂E

∂Gµ

)

. (5.32)

It is easy to check that the classical order is recovered in the limit of S
large. At leading order, the minimum of the free energy is just determined
by the minimum of C: the Q-order found is the classical result, QCl =

(2 arccos(−t/2), 0), which corresponds to (c1, c2, c3) = ( t
2−2
2 ,− t2

2 ,− t2

2 ). At
the next order in 1

S , which corresponds to the linear spin wave (LSW)
calculation, we recover the ordinary spin-wave result:

Ak → S
∑

J

cJ cos(kτ J),

Bk → S
∑

J

cJ (cos(kτ J)− 2) , (5.33)

which imply

wk = 2S

√

√

√

√C

(

C −
∑

J

cJ cos(kτ J)

)

,
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in particular wk=0 = 0 as expected. It is easy to check that, for the classical
order QCl, wk is always real and that is by construction an extreme. In
fact, as it can be checked numerically that it is also the minimal energy
solution also then the terms in 1

S , which corresponds to the case in which
quadratic fluctuations are included. Taking into account all the terms in
(5.17), which include also 1

S2 corrections and is known as modified spin
wave (MSW) approach, the minimum condition is no longer algebraic. As
in [153], we will search for solutions recursively, starting from the ordinary
spin wave solution above. The absence of a pronounced minimal value
will signal the existence of possible spin-liquid phase. In order to find the
optimal Q = (Qx, Qy), we have to impose that the gradient is zero

0 =
∂F
∂Qx

=
∑

J

∂E

∂cJ

∂cJ
∂Qx

,

0 =
∂F
∂Qy

=
∑

J

∂E

∂cJ

∂cJ
∂Qy

. (5.34)

5.5 Result from the modified spin wave analysis

In the previous section, we have derived a modified spin wave theory for
the XX spin model on a triangular lattice. We will now extract concrete
results from this theoretical framework. This amounts for a minimization
problem of the free energy, which is complicated due to the large amount of
variables. Using the procedure described in the subsection below, we man-
age to perform minimization even for large lattices with hundreds of sites.
As the result, we then obtain the phase diagram for a realistic experimental
system as a function of the hopping anisotropy t.

5.5.1 Optimization and stability

In search for a long-range order in the quartic case, we adopt an iterative
procedure. We start from the ordinary spin-wave (5.33) solution with Q =
QCl as initial configuration. The recursive procedure works as follows. First,
the values of Ak, Bk at the cycle m are used to get the new correlation
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functions Fµ, Gµ, using Eq. (5.26). Once the correlations are substituted in
the free energy, which at zero temperature reduces to the expectation value
of the energy (5.17), the latter becomes a function of the ordering vector Q
only, E = E(Q). The new value at the cycle m of Q is, thus, determined
by minimizing the E(Q) in the neighborhood of optimal value of Q at the
cycle m. Finally, (5.31) and (5.32) are used to update Ak and Bk as a
function of the correlation functions and of the order vector. Convergence
of the iterative process is assumed when the difference between the old and
the updated values of Ak and Bk are below a certain threshold.

We have benchmarked the performance of this iterative approach against
brute force minimization of the energy as function of the free parameters
θk and Q for different shapes and sizes of lattices with periodic boundary
conditions. While the success and efficiency of the iterative approach, i.e.
the number of iterations needed for achieving convergence, strongly depends
on the shape of the lattice, it performs generally better than a brute force
minimization and the scalability with the lattice size is pretty good. Best
performance is achieved for rhombic lattices, see Figure 5.3. Converge or
failure occurs after few tens of iterations. The latter manifests when |Ak|
becomes greater than |Bk| for some k, which corresponds to wk becoming
imaginary. In fact, more than a real instability, the absence of convergence
signals that the approximation we have used of neglecting the occupation νk
of the modes k 6= 0 is not respected. That is to say, the physical assumption
of the existence of an ordered phase behind the spin-wave analysis is not
verified. The comparison between the iterative approach and the brute force
minimization of the free energy, which we have performed without assuming
νk ≪ 1 on L×L rhombic lattices with L up to 10, confirmed this scenario.

Next we have extended our iterative minimization to larger lattices. We
have first studied the half-filling case for L = 24, 100 and for the infinite L
limit, obtained by replacing the sum over k with an (numeric) integral over
the first Brillouin zone.
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Figure 5.3: Expected phase diagram as function of the filling within the
MSW approach. The two ordered phases are spiral order, 0.2 . t . 1.55,
and 2D-Néel order. Inset: a 6 × 6 lattice of rhombic shape with periodic
boundary conditions.

5.5.2 Phase diagram predicted by spin wave at half-filling

We have first started by studying the half filling case, ρ = π
2 . Our results

are very close to the one of [153] and display the same qualitative behavior
(see Figure 5.3). In particular, we observe a failure of convergence around
t ∼ 0 and for t between 1.55−1.8. The first region is easily explained: in the
limit t→ 0 the system reduces to disconnected 1D-XX chains that can order
separately in 1D-Néel orders with arbitrary relative phases. Thus, there is a
huge degeneracy in the groundstate that should correspond to a gapless spin-
liquid phase. The region around t ∼ 1.65 appears at the interface between
two classically ordered phases, the spiral order and a 2D-Néel order, which
appear at lower and higher values of t, respectively. Both phases are well
described by the classical order ansatz we used. It is worth noticing that the
initial condition and the reflection symmetry of the Hamiltonian around the
x-axis implies that our solution is respecting such symmetry i.e. the ordering
vector remains parallel to the x-axis and the correlation functions respect
the relations F2 = F (τ 2) = F (τ 3) = F3, G2 = G(τ 2) = G(τ 3) = G3. This
implies that we can work at fixed Qy = 0. For this choice, the 2D-Néel order
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corresponds to Qx = 2π, while the spiral order corresponds to Qx smoothly
interpolating between 2π and π for decreasing values of the anisotropy t.
While at the classical level, the 2D-Néel order is predicted to be stable for
t ≥ 2, the quantum corrections incorporated by MSW approach stabilize
it also for lower values of t, as displayed in Figure 5.4. Similar results are
obtained by exact diagonalization, see Figure 5.17(a). By reducing further
the values of t the system enters in a non-ordered phase signaled by the
absence of points from MSW. While in the neighboring regions above and
below the no-convergence window the occupancy of the zero-momentum
states remains large, see Figure 5.5, the values of the relative susceptibility
ρxx is small in the vicinity of such window, Figure 5.6. Similarly to [153], we
estimate the susceptibility by calculating the Hessian of the energy for fixed
correlation functions at the minimum. In order to get an adimensional
quantity we divide by the absolute value of the energy minimum, thus,
ρxx = 1

E
∂2E
∂Q2

x
, and ρyy = 1

E
∂2E
∂Q2

y
. Note that ρxy = 1

E
∂2E

∂Qx∂Qy
is identically

zero because of the symmetry argument given above. As expected ρyy is
not signaling any instability for 1.5 ≤ t ≤ 2 –the optimal Qy is identical
for the spiral and 2D-Néel order– while it detects the instability at t ∼ 0,
see Figure 5.6. While for all the observables represented in Figure 5.4-5.6
the MSW results deviate considerably from the ones predicted by the LSW,
they are quickly converging to a stable behavior for moderate size-lattices
– for a rhombic shape lattice L× L the deviation between L = 24 and the
continuous limit are tiny.

5.5.3 Phase diagram predicted by spin wave at generic fill-
ing

Then, we have considered lower values of ρ between 0 and π
2 , corresponding

to lower densities of Bogoliubov excitations n = 1
2 sin ρ = 1

2

√

ν(1− ν),
where ν is the filling. We have considered the same observables as in the
half-filling case. We have found again that the results quickly saturate to a
stable value for growing size of the lattices. For simplicity, we present here
the results L×L rhombic-shaped lattices with periodic boundary conditions
for L = 100. First, we notice that the values of the optimal order vector Q
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Figure 5.4: Values of the optimal Qx: comparison of results from LSW and
from MSW for different sizes of the rhombic-shape lattices with periodic
boundary conditions.

remains substantially unchanged with respect to the half-filling case. While
by construction Qy = 0, the x-component of the order vector Qx displays
a moderate dependence on n only close to the non-convergence window,
Figure 5.7. In fact, the non-convergence window changes: while it remains
centered around t ∼ 1.65, its extension shrinks smoothly while n decreases.
Indications of such behavior can be detected both in the condensate fraction
and in the susceptibility. Indeed, the shrinking of the non-convergence
window is well evident in Figure 5.8(a) where the occupation of the zero
mode M0 is depicted. As expected M0 is directly proportional to n, that is
to say the condensate fraction M0

n depicted in Figure 5.8(b) is independent
of n. This behavior supports the picture that the nature of the ordered
phases is unchanged while their stability increase by moving away from half
filling n = 1

2 . Further confirmation comes from the calculation of the relative
susceptibilities ρxx and ρyy. While ρyy does not display a strong dependence
on n, Figure 5.10, ρxx displays a sizable dependence on n only around
the non-convergence window. In particular, ρxx weakly increases when n
decreases, showing that the ordered phase gets smoothly more stable, Figure
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Figure 5.5: Occupation of the ground state at zero momentum correspond-
ing to the ordered solution: comparison of results from LSW and from MSW
for different sizes of the rhombic-shape lattices with periodic boundary con-
ditions.

5.9. Thus, we conclude that by moving out of half-filling the conjectured
spin-liquid phase signaled by the non-convergence window of MSW does not
disappear but shrinks rather gently.

5.6 Exact diagonalization study

In this section we will study the Hamiltonian (5.3) by means of exact di-
agonalization. Therefore, we first note that it conserves the z-component
of total spin, Sz ≡ 1

N

∑

i S
z
i . This symmetry reflects conservation of parti-

cles, and allows to work in Hilbert space blocks with fixed spin polarization.
Using this symmetry, we are able to exactly diagonalize systems of up to
24 sites. We mostly consider open boundary conditions (i.e. hard walls),
which not only mimicks best the trapped scenario we have in mind, but also
allows for arbritrary ordering vectors. We have studied different geometries,
in particular the highly symmetric arrangement depicted in Figure 5.2(a),
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Figure 5.6: Values of the rescaled susceptibility ρxx and ρyy: comparison of
results from LSW and from MSW with different lattice dimensions. Around
the non-convergence window ρxx is small, signaling instability of the order.
Around the non-convergence window ρyy is large as expected because the y-
component of the order vector Qy is the same for spiral and 2D-Néel order.
Instead, ρyy signals the instability that leads to 1D-Néel order for t ∼ 0.

but also rhombic arrangements shown in Figure 5.2(b), which can system-
atically be scaled from 12 to 24 by adding rows of four spins.

As in the spin-wave analysis, we will first consider the system within a
local density approximation, assuming homogeneity within shells of different
Sz. Our exact diagonalization study is exptected to capture the system
behavior in the center of the trap, and we set Vi = 0. Afterwards, we
study effects of the trapping potential on small scales, diagonalizing Eq.
(5.3) at finite Vi. The exact diagonalization study presented here covers the
case at half filling (Sz = 0) known from Refs. [153, 202], with a possible
quantum spin liquid for t ≈ 0.5 and t ≈ 1.5. We extend this study to other
polarization sectors, which become relevant if the trap leads to an increased
density in the center.
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Figure 5.7: The value of the optimal Qx depends in sizable way on the filling
only close to the transition to the non-ordered region.

5.6.1 Homogeneous system (Vi = 0)

As an experimentally accessible quantity which allows to chararacterize the
order of the system, we have calculated the magnetic structure factor S(Q):

S(Q) =
2

N

∑

i,j

exp [iQ · (ri − rj)] 〈S+
i S

−
j + h.c.〉. (5.35)

Here 〈·〉 denotes the quantum average of the ground state. This quantity
is the Fourier transform of the total magnetization in the Sx-Sy-plane, and
therefore magnetic order is signalled by a pronounced peak. The momentum
space position Q of the peak further characterizes the spatial ordering of the
magnetization. Based on S(Q), we define magnetization M as a relevant
order parameter

M =
√

S(Q)/N. (5.36)

At all fillings and for all anisotropies, M has a global maximum for Qy = 0,
with the corresponding Qx varying between π and 2π as a function of t, see
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Figure 5.8: (a) Occupation of the the state at zero momentum for different
filling: the non-ordered region shrinks smoothly with the filling. (b) The
condensate fraction is independent of the filling in the ordered regions.

Figure 5.11(a). The two limiting values Qx = π and Qx = 2π, obtained
for t = 0 and t & 1.6, correspond to an intrachain Néel order, and to
a square-lattice Néel order, respectively. Remarkably, for most values of
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Figure 5.9: The value of the rescaled susceptibility ρxx depends sizably on
the filling only close to the transition to the non-ordered region. A slighter
increase of ρxx at lower n translates in an increased stability of the ordered
phases.

t, the peak momentum Qx hardly depends on the spin polarization, with
the exception of a small region around t ≈ 1.5, where dQx/dt tends to
infinity. This means that in a trapped system, composed of subsystems
with different Sz, each subsystem would produce the same signal when the
magnetic structure factor is measured. As a result, one would measure same
peak as in the homogeneous system, except for a possible broadening of the
peak near t ≈ 1.5.

In Figure 5.11(b), we show the order parameter M for different polariza-
tion sectors. In comparison to Qx, there are some quantitative dependencies
on the polarization, but qualitatively, the curves still share many qualitative
properties: With few exceptions, M always increases with t, but typically
regions of rapid increase are followed by rather flat regimes. A strong ten-
dency for rapid increase occurs at t ≈ 0.6 and for t &≈ 1.5. For most Sz,
a small region in which M decreases with t, is found within a small region
at t . 1.5. Note that for Sz = 0 this dip is absent, but instead the curve
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Figure 5.10: The value of the rescaled susceptibility ρyy does not depend
considerably on the filling. Indeed, it is sensitive only on the transition at
very low t to the the 1D behavior, which is unaffected by the filling, while
is order 1 around the transition at t ∼ 1.65.

exhibits a kink at t ≈ 1.5, with dM/dt = 0. These dips/kinks might be
interpreted as a signal for quantum spin liquid behavior, as they indicate
the loss of the magnetic order.

We also note that, based on a PEPS study in Ref. [153] in a 20×20
lattice, another spin liquid regime is expected around t ≈ 0.5, that is, just
before the first rapid increase of M . This expectation is based on a dip in
M(t) near t ≈ 0.5, which is found in larger systems. Within our study on
the N = 24 lattice, though, the magnetic order parameter does not signal
spin liquid behavior in this region.

Additional information regarding the presence or absence of magnetic
order can be obtained from the dependence of the order parameter on the
number of spins N . For such scaling analysis, we perform exact diagonal-
ization at half filling on a graph as shown in Fig. 5.2(b). The results are
shown in Fig. 5.12. Before analyzing the size dependecies in Fig. 5.12, we
may focus on the curve for N = 24 and compare it with the corresponding
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Figure 5.11: In different polarization sectors Sz, we evaluate (a) the position
of peak of structure factor S(Q) as a function of anisotropy t, and (b) the
magnetic order parameter M , as defined in Eq. (5.36) from the peak value
of S(Q). We consider a homogeneous system (Bi = 0) with N = 24 spin,
arranged in the hexagonal geometry shown in Figure 5.2(a).
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Figure 5.12: Magnetic order parameter M as a function of lattice anisotropy
t, for different number of spins N in the rhombic arrangement depicted in
Figure 5.2(b). The inlays show the results of extrapolating the data to
1/N → 0 using the fit function f(N) = αN−β +m, with m > 0. For t ≤ 1,
we get m = 0 and an exponent β ≈ 0.5, as shown in the left inlay. For
1 < t < 1.35, the data extrapolates to finite values of m, see right inlay. In
the shaded region, 1.35 < t < 1.56, the system is disordered in the sense
that the data does not behave monotonically with N . For larger t, the data
converges quickly to a size-independent value which approaches the value
M0 = 0.437 for a Neel-ordered square lattice [cf. Ref. [211]].

in Fig. 5.11(b). As finite-size effects should strongly depend on the geom-
etry of the system, such comparison may help to distinguish bulk behavior
from edge effects. We find that, for t & 1, the magnetization M exhibits
very similar behavior in both geometries, in particular regarding the kind
at the t ≈ 1.5 followed by a sharp increase. For larger values, t & 1.6, the
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magnetization saturates. As discussed before, the kink could be the sign
of a spin liquid phase, and strikingly, this feature does not depend on the
geometry of the system. Also the flat regime for large t is barely affected by
the geometry, and is interpreted the Neel ordered phase in a square lattice
(equivalent to the rhombic lattice structure for t → ∞). A striking obser-
vation which backs this interpretation is the value of M obtained at large
t in the rhombic geometry: it approaches precisely the value M = 0.437
expected for a square lattice [211].

Next, we will analyze size dependecies which play an important role for
t .< 1.6. The whole region can be divided into two regimes: While for
t < 1.35 the order parameter M behaves monotically with N , this is not
the case for 1.35 < t < 1.6. We may interpret this non-monotonic behavior
as a signal for the lack of magnetic order. The finite value of M can then be
seen a random effect due to the limited system size. Such scenario agrees
with a spin liquid phase, however, we cannot rule out complicated orderings
which are, in a non-monotonic way, sensitive to the finite size of the system.

For t < 1.35, the monotonic behavior of M(N) allows for a quantitative
scaling analysis. Using the fit function f(N) = αN−β +m with real fit pa-
rameters α, β, and m, we obtain the unphysical result m < 0 for t < 1. We
conclude that in this regime, no magnetization survives in the thermody-
namic limit, and set m = 0. We then find an exponent β ≈ 0.5 as shown in
the left inlay of Fig. 5.12. The exponent 1/2 agrees with exponential decay

of correlations, S(Q)/N ∼
∫

√
N

0 dr r exp(−r/ξ) ∼ 1/N , with ξ denoting
the correlation length. For t > 1, we obtain finite positive values of m, as
shown in the right inlay of of Fig. 5.12, indicating that the system remains
magnetized in the thermodynamic limit.

Another relevant quantity which can be obtained from the magnetic
structure factor is the width of the peak. To account for difference in height,
we normalize S(Q) with S(Qpeak). For simplicity, let us assume that the
peak of the structure factor has a Gaussian shape. The width of the peak
is then given by the standard deviation σ which can be obtained from the
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second derivative at the peak. Along the Qx-direction we have

σ =

(

1

S(Qpeak)

[

d2

dQ2
x

S(Qx, Qy)

]

Q=Qpeak

)−1/2

. (5.37)

We have evaluated this quantity for rhombic systems as shown in Fig. 5.13.
The most remarkable feature is the rapid increase of σ near t = 1.5, i.e.
a significant broadening of the peaks for N = 16 and N = 20, indicating
a loss of magnetic order. For N = 24, however, the data shows a slightly
different behavior: Although a global maximum is still exhibited at t = 1.5,
the extremum is less pronounced than in the other cases. Interestingly, no
size dependence of σ occurs in the two limits t→ 0 and t→ ∞.

To shed more light onto the regime 1.35 < t < 1.6, we will now con-
sider the possibility of non-magnetized order. A clear candidate for a non-
magnetized but ordered phase is the so-called valence-bond crystal (VBC).
In this phase, nearest-neighbor spins are dimerized, and the dimers form
a regular pattern. Since t > 1, dimerization should preferably occur along
the two diagonal directions (i.e. those with strength t2). We assume the
simplest case, in which (spontaneously or due to the finite size) one of these
two direction is chosen by all dimers. In our case, the rhombic shape in Fig.
5.2(b) enhances dimerization along the links pointing to the upper neighbor
on the right. Denoting each spin with a single index i, possible dimers might
be formed between spin i and spin i + R, where R is the number of spins
in a row, see also Fig. 5.3 for an illustration of this notation. Correlations
between these dimers are measured by the following structure factor:

SD(Q) =
1

N

∑

i 6=j
eiQ·(ri−rj)

[

〈(Si · Si+R)(Sj · Sj+R)〉 (5.38)

− 〈Si · Si+R〉〈Sj · Sj+R〉
]

.

Again we define an order parameter D by considering the peak value of SD:

D = SD(Qpeak)/N. (5.39)
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Figure 5.13: Width σ of the structure factor peak as a function of t, for a
rhombic arrangement of the spins. A broadening of the peak near t ≈ 1.5
is observed for all system sizes, but is most pronounced for smaller systems
(N = 16 and N = 20).

Both the vector Qpeak as well as the behavior of D as a function of t depend
sensibly on the size of the system, and on the geometry, see Fig. 5.14 show-
ing results for a rhombic system with open or periodic boundary conditions
(i.e. hard walls or period). We conclude that the small finite values of D are
random finite-size effects, and the flatness of most curves suggest that at no
value of t VBC order is established. A single exception occurs for N = 16
with open boundary. However, as other sizes (in particular N = 24 with
even number of rows) does not show any sign of a similar peak, we shall
not interpret this as a sign for VBC order. Note that, due to the boundary
conditions, there is only a single way of perfectly covering the whole lat-
tice with nearest-neighbor dimers (for even number of rows). Alternative
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coverings leave few spins without dimer, with an energy cost which plays
the biggest role in small systems. This might cause enhanced VBC order in
very small systems, while does not give rise to any effects in systems with
larger bulk.
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Figure 5.14: Dimer order parameter D as a function of lattice anisotropy
t, for different number of spins N in the rhombic arrangement depicted in
Figure 5.2(b). We consider both open boundaries (a), and periodic bound-
aries (b). Most curves are relatively flat at a constantly small value of D,
suggesting that there is no VBC-ordered regime. The peak around t ≈ 1.5
for N = 16 in an open geometry seems to be a finite-size effect, as this effect
is not present for other values of N . It may be due to the limited number
of perfect dimer coverings possible in small lattices.

The order parameters M and D discussed so far directly measure certain
types of order, or, by excluding the corresponding order, they can give hints
for spin liquid behavior. However, they cannot positively detect a spin liquid
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and its topological order. It is subject to current research which quantities
may serve as topological order parameters, and the entanglement spectrum
has been shown to be a promising candidate. In fact, Ref. [212] demon-
strates that for the Haldane phase of a S = 1 chain, the entanglement
spectrum is doubly degenerate due to a hidden symmetry. The presence
of magnetic order can be detected by the entanglement spectrum through
tower-of-states structures, which have been shown to be in correspondence
with the low energy spectrum in a DMRG study of the J1 − J2 Heisenberg
model on the triangular and the kagomé lattice [213]. Here, we restrict our
discussion in the following to degeneracies of the entanglement spectrum,
which does not require the determination of the quantum numbers of each
entanglement eigenvector. Although degeneracies of the entanglement spec-
trum are not a robust criterion for topological order, it will be interesting
to see whether degeneracies occur in those regimes which we have identified
above as possible spin liquid phases.

The entanglement spectrum is obtained from the eigenvalues of the re-
duced density matrix ρL ≡ TrR |Ψ〉 〈Ψ|. Here, TrR denotes a trace over half
spins, localized on the right side of the lattice. The entanglement spectrum
is then defined as λi = − log ρi, where ρi denote the eigenvalues of ρL. In
Figures 5.15 and 5.16, we plot the eight lowest values of the entanglement
spectrum as a function of the anisotropy t in a homogeneous system of 24
spins. In Fig. 5.15, we consider a hexagonal spin arrangement and study
the dependence of the entanglement spectrum on the spin polarization Sz.
In Fig. 5.16, we focus on a rhombic system and consider different ways of
cutting it into two subsystems. While in general the entanglement eigen-
values are not universal, certain properties of the entanglement spectrum,
like degeneracies of levels, may reflect certain symmetries, and should thus
be independent from the cut.

Comparing the entanglement spectra at different spin polarizations, the
most interesting behavior is exhibited at Sz = 0. Here, the number of
degeneracies strongly depends on the parameter t. In contrast, for odd
polarization sectors (as illustrated in Fig. 5.15 for Sz = 1), each level is
doubly degenerate for any t. For Sz = 2, the ground state level remains
unique for all t, and only higher levels exhibit some t-dependent degenera-
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cies. For Sz = 0, in Fig. 5.15, the most notable feature is a degenerate
regime for t ≤ 0.5 with an exact double degeneracy of each level. Dou-
bly degenerate levels give further rise to quasi-degenerate manifolds: The
ground-state level is has a four-fold quasi-degeneracy, followed by quasi-flat
manifolds containing 24, 76, 176 levels. Note that the regime in which the
entanglement spectrum exhibits degeneracies coincides with the regime in
which a spin liquid phase was suspected by Ref. [153]. In contrast, for
0.5 < t < 1.48, the entanglement spectrum exhibits a unique ground state
level, with double degeneracies present in the excited levels. Strikingly, at
t = 1.48, a level crossing leads to double degeneracy not only of the ground
state, but crossings also occur between other levels at the same (or a similar)
value of t. This leads to the scenario that, around t ≈ 1.48, levels are pair-
wise quasi-degenerate (or degenerate). Interestingly, this region coincides
with the regime where, based on our previous analysis of order parameters
M and D, we expect to have a spin liquid.

In Fig. 5.16 we focus on the fully unpolarized system (Sz = 0), and
investigate the dependence of the entanglement spectrum for different cuts
through a rhombic system, as illustrated in Fig. 5.16(a). The most natural
cuts are the ones parallel to one side of the rhombus. Clearly, in one of
these two cases, the entanglement between the subsystems fully vanishes in
the highly anisotropic regime t→ 0, because different rows do not interact.
With our choice of having an even number of spins per row, also the other
cut produces low entanglement, since in each row the two spins on the left
and right side produce dimers, with little entanglement between the second
and the third spin. Accordingly, these two cuts do not reproduce the exact
two-fold degeneracy which we had found in the hexagonally shaped lattice
at small t. However, the unsymmetric cut shown in Fig. 5.16 again leads
to a four-fold quasidegeneracy of the ground state up to values of t as large
as 0.8.

A clearer picture arises around t ≈ 1.4. Independent of the cut, we find
a sizable interval 1.38 . t . 1.55, in which all levels are exactly two-fold de-
genrate. This finding gives a much stronger support for a spin liquid phase
than the quasi-degeneracies due to level crossings which we had found for
t ≈ 1.48 in the hexagonal system. We also stress that the lowest entangle-
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Figure 5.15: Entanglement spectrum (8 lowest values) for different spin
polarizations (b–d), obtained in a N = 24 hexagonally shaped lattice with
the cut shown in (a). DEG denotes the number of (quasi-)degenerate levels
in the ground state.

ment eigenvalue barely depends on neither the cut nor the system geometry,
suggesting that the system forms a uniform liquid in this region of t.

5.6.2 Inhomogeneous system (Vi 6= 0)

In the previous paragraph, we have shown that the system, to some ex-
tent, behaves similarly in different polarization sectors upon tuning the
anisotropy t. This allows one to argue that the same behavior should per-
sist in a shallow trap, where the system is approximated by homogeneous
subsystems of different polarizations. In the present paragraph, we go a
step further, and analyze the effect of a trap on short scales by diagonaliz-



5.6. Exact diagonalization study 135

(a)

 0

 2

 4

 6

 0  0.5  1  1.5  2

λ

t

(c)  Cut 2

DEG=1

 0  0.5  1  1.5  2

t

DEG=4

(d) Cut 3

0

2

4

6

λ

(b) Cut 1

DEG=1

Figure 5.16: On a rhombic shaped lattice (N = 24 sites), we evaluate the
entanglement spectrum for different cuts shown in (a). The eight lowest
values of each entanglement spectrum are shown in b–d. The spin polar-
ization is fixed to Sz = 0. DEG denotes the number of (quasi-)degenerate
levels in the ground state. The grey area around t ≈ 1.4, mark the regime
where each level exhibits a two-fold degeneracy.

ing Hamiltonian (5.3) for Vi = m
2 ω

2r2i = ηr2i , with η = 0.1 (in units t1/a2)
for typical trapping frequencies of 40 Hz. We will focus on the Sz = 0
sector, corresponding to half filling.

On the small lattice studied here, the inhomogeneities introduced by
the trap, are rather weak: For the isotropic system, t = 1, we find an
average population of 0.46 atoms on the 14 sites at the edge of the lattice,
while the remaining 10 sites have an average population of 0.56 atoms.
Accordingly, also the structure factor is barely modified: as shown in Figure
5.17(a), the peak position Qx is practically indistinguishable for the two
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cases η = 0 and η = 0.1. Also the magnetic order parameter M , shown in
Figure 5.17(b), exhibits a similar shape, though slightly smoothened near
t = 1.5. Also the entanglement spectrum, plotted in Figure 5.18, shares
important qualitative features with the one of the homogeneous system
shown in Figure 5.15(a): For small values of t the ground state level has
a perfect twofold degeneracy, and a fourfold quasidegeneracy. Again, the
lifting of the degeneracy occurs abruptly near t ≈ 0.5, although the precise
value of the anisotropy is slightly increased by the trap. However, the level
crossing observed in the homogeneous case around t ≈ 1.5 does not take
place in the trapped scenario. Whether this result questions the presence
of a spin liquid phase in the trapped system, or whether degeneracies in the
entanglement spectrum provide a relevant criterion for spin liquid behavior,
cannot be decided here. Here, we find it interesting to notice that, while
the behavior of the magnetic order parameter is hardly affected by the trap,
the entanglement spectrum changes considerably.
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Figure 5.17: (a) Position Qx of peak of structure factor S(Q) as a function
of anisotropy t at Sz = 0 in a homogeneous system and for η = 0.1. (b)
Order parameter M as defined in Eq. (5.36).
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Figure 5.18: Entanglement spectrum (8 lowest values) at Sz = 0 in a
trapped system at η = 0.1. D denotes the number of degenerate levels
in the ground state.

To shed more light onto the role of the trap, we finally turn our attention
to the excitation spectra. For selected t, we compare the spectra of the
trapped and the homogeneous system in different polarization sectors in
Figure 5.19(a–d). For the spectra of the homogeneous system, a tower-of-
state feature [214, 215] has been noticed in Ref. [153]: In all polarization
sectors, around t = 1 and t = 2 a small number of states at low energy
is separated from states at higher energy by a large gap. This low-energy
manifold is the basis from which Néel or spiral order can arise. In the
thermodynamic limit, low-energy states at different Sz approach the same
energy, and U(1) symmetry can spontaneously be broken. In contrast to
this, relatively homogeneous level spacings are observed around t ≈ 0.6 and
t ≈ 1.4 in all polarization sectors. Accordingly, a tower-of-state argument
cannot be applied to those spectra, giving some evidence that no ordered
phase will occur in these regions.



138 CHAPTER 5. Modified spin-wave theory . . .

✥

✥�✁

✥�✂

✥�✄

✥�☎

✥ ✆ ✁ ✝ ✂ ✞ ✄ ✟ ☎ ✠ ✆✥

❉
❊
✡☛
✶

❙③

✭☞✌ t ✍ ✆�✞

✥ ✆ ✁ ✝ ✂ ✞ ✄ ✟ ☎ ✠ ✆✥

❙③

✭✎✌ t ✍ ✁�✥

✥

✥�✁

✥�✂

✥�✄

❉
❊
✡☛
✶

✭✏✌ t ✍ ✥�✞ ❤✍✥

❤✍✥�✆
✭✑✌ t ✍ ✆�✥

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

<
s

m
ax

>

t

(e)

η=0
η=0.1

Figure 5.19: (a–d) Energy versus spin polarization at different t’s for Sz = 0
in a trapped system for η = 0.1 and η = 0. (e) Largest level spacing
smax amongst ten lowest levels averaged over all polarization sectors, for a
trapped system at η = 0.1 and for η = 0.

To quantify this different behavior we shall look at the gap in each polar-
ization sector. However, quasi-degeneracies make it difficult or impossible
to distinguish between levels which still should be considered gound states
and excited states. For this reason, we will simply consider the largest level
spacing smax(Sz) within the ten lowest states. The “tower of states” ar-
gument is applicable, if smax is large in many or most polarization sectors.
This would result in a large average value 〈smax〉, where the average is taken
with respect to different spin polarizations. We further normalize this value
by dividing by full spacing between the ten levels, such that smax is maximal
(= 1) if the ten states are divided into two degenrate manifolds, while it is
minimal (= 0.1) if the levels are spaced homogeneously and the spectrum
lacks a clear separation between low- and high-energy manifolds. Accord-
ingly, a breakdown of the tower-of-state argument is indicated by minima
of smax. This average is shown in Figure 5.19(e), for both a trapped and a
homogeneous system. In both cases, it exhibits one pronounced minimum
near t ≈ 0.6. A second, less pronounced minimum is found around t ≈ 1.65,
which becomes further washed out in the presence of a trap.
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5.7 Conclusions and Outlook

In this chapter we have studied the fate of QSL phases in realistic exper-
imental conditions, namely, in presence of an harmonic confinement. The
modified spin wave theory, which was previously formulated for bosons in
a triangular lattice at half filling, has been re-derived for arbitrary filling
factors. With this generalization, it can be used to capture, within a local
density approximation, the physics of inhomogeneous systems. We have
shown that the prediction of spin liquid behavior for an anisotropy t ≈ 1.65
does not depend much on the filling factor, and should therefore survive in a
trapped gas. This expectation has been backed by results from exact diag-
onalization in lattices of different sizes and geometries, up to 24 sites. Our
exact diagonalization analysis has also ruled out the presence of an ordered
non-magnetic phases like VBC that could explain the breaking of magnetic
order in alternative to a QSL phase. These results support the existence of
another QSL region at lower anisotropy, t ≈ 0.6, which is not detected by
MSW. Such discrepancy is not surprising. It is reasonable to expect that
the MSW is able to detect a QSL phase only between two classical ordered
phases –the QSL phase at t ≈ 1.65 appears between spiral and 2D-Néel
phases– while it is blind to transitions that are purely quantum. One may
wonder that this happens only because the optimization is done starting
by the classical solution. In fact unbiased direct searches of global minima
provided the same or more energetic metastable solutions. Apparently, the
optimal solution of the MSW is always a deformation of the classical one:
perhaps, this is not so surprising because the spin wave approach is an ex-
pansion in n

2S and the terms in ( n2S )
2 included in the MSW are corrections to

the terms considered in the LSW. The exact diagonalization approach have
allowed us also to go beyond the local density approximation, and to study
inhomogeneities on small scales. On this level, we have found no essential
effect due to the trap for realistic choices of the trapping frequency. While
the finite-size corrections are certainly expected to affect the exact diago-
nalization results, they should not exceed the 10-20 %. As the observables
computed are global one would argue that the QSL behavior extends at
least to entire lattice (of 24 spins) considered. The finite-size scale analysis
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we have performed in the homogeneous case further supports this picture.
While final-size effects are not directly visible in the MSW because we have
used periodic boundary conditions, they enter by determining the quality of
local density approximation. Until the trap is not steep, and at the center
is never so, the MSW suggests that, by taking optimal value of t ≈ 1.65
at the center of the QSL region, the QSL phase should be visible even if
the filling is changing considerably. Suppose, for instance, that the trap is
tuned to have an occupation of around 3.7 atoms per site at the center, that
to say 20% above the half-filling condition. Then, we could conclude that
if we reach an occupation of 3.3 atoms per site –20% below half filling– at
10 lattice sites or more from the center, at the same time, we are within
validity of local-density approximation in the QSL phase as predicted by
MSW theory, and we limit the corrections due to the finite size as they are
expected to go down as the inverse of the diameter of the region considered.
Our study therefore provides strong hints for a robust QSL phase of bosons
in anisotropic triangular lattices with antiferromagnetic tunnelings, which
is not affected by weak trapping potentials as used in experiments.

The robustness of the QSL phase in presence of a weak harmonic con-
finement allow for the experimental investigation of these exotic quantum
phases. The realization of the XX Hamiltonian for bosons in the strongly
correlated regime relies on the periodic driving of the triangular optical lat-
tice, which allows inverting the sign of the tunneling matrix elements as well
as controlling their amplitude. The ability to tune the tunneling amplitude
independently from the on-site interaction allows reaching strongly corre-
lated phases where U ≫ |Jeff | without increasing the lattice depth. Indeed,
as the effective tunneling Jeff follows a zeroth-order Bessel function as the
shaking amplitude is increased, the system shall first enter a Mott-insulating
phase before reaching the anti-ferromagnetic side of the phase diagram and
thus the quantum spin liquid phase. Such a trajectory has allowed for a
reversible crossing of the superfluid to Mott-insulator phase transition in
a driven cubic lattice [204]. One limiting factor however are multiphoton
resonances to higher lying Bloch bands, which critically reduce the coher-
ence of the bosonic gas [216]. These resonances occur when a multiple of
the shaking frequency matches the gap between the renormalized bands.
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Therefore an optimized scheme for crossing the quantum phase transition
while avoiding such resonances has to be developed.





CHAPTER 6

QUANTUM ANNEALING FOR

THE NUMBER PARTITIONING

PROBLEM USING A TUNABLE

SPIN GLASS OF IONS

6.1 Introduction

Systems of trapped ultracold ions are probably the best controlled quantum
systems of few or even many body particles. Ions in the trap at very low
temperatures interact via quantum phonons, that is quantum fluctuations of
ions positions. Since each of the ions have several internal states, these ion-
phonon interactions lead effectively to realization of various, quite exotic,
quantum spin models.

The spin-spin interactions in these models depend directly on the phononic
eigenmodes of the system. If the latter are disordered or quasi-disordered,
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then the spin-spin interactions are disordered as well. The trapped ions
system in this situation might behave as a spin glass. In this chapter we
study that situation in detail, in particular we show that when we induce
the spin-spin interactions with the addition of a laser field, we can achieve
a situation where only one of the disordered, delocalized, phonon modes
dominates the spin-spin interactions. This corresponds to an instance of
the so called Mattis glass, which from the statistical physics point of view
is equivalent to a ferromagnet, ergo relatively simple. From a mathematical
point of view, however, the search of the GS of the Mattis Glass realizes an
instance of NP-Hard partition problem.

This chapter has two parts, in the first one, we analyse how we can
realize the NP-hard partition problem with trapped ions. In the second
part, we answer a more fundamental question. We study how well is the
spin-spin model describing the original spin-phonon model, equivalent to the
many-particle generalization of the Jaynes-Cummings model. The focus of
the study is in the comparison of the dynamical behaviour predicted by the
two models.

This chapter is organized as follows. In Sec. 6.2 we explain how quantum
annealing can be used in a spin glass system of ions. In Sec. 6.3 we present
the main results. In Sec. 6.4, we provide further details on our semiclassical
approximation. In Sec. 6.5 we show the results of the semiclassical approach
applied to finite temperature. Here, we set the initial phonon population to
non-zero thermal values. Finally, in the appendix we provide some further
tests to our numerical integration method (appendix A.4), and a brief study
of the optimal bias for the annealing protocol (appendix A.5).

6.2 Quantum annealing in spin glass systems of

trapped ions

Spin models are paradigms of multidisciplinary science: They find several
applications in various fields of physics, from condensed matter to high en-
ergy physics, but also beyond the physical sciences. In neuroscience, the
famous Hopfield model describes brain functions such as associative mem-
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ory by an interacting spin system [217]. This directly relates to computer
and information sciences, where pattern recognition or error-free coding
can be achieved using spin models [218]. Importantly, many optimization
problems, like number partitioning or the travelling salesman problem, be-
longing to the class of NP-hard problems, can be mapped onto the problem
of finding the ground state of a specific spin model [219, 220]. This implies
that solving spin models is a task for which no general efficient classical
algorithm is known to exist. In physics, analytic replica methods have been
developed in the context of spin glasses [221, 222]. A controversial devel-
opment, supposed to provide also an exact numerical understanding of spin
glasses, regards the D-Wave machine. Recently introduced on the market,
this device solves classical spin glass models, but the underlying mecha-
nisms are not clear, and it remains an open question whether it provides a
speed-up over the best classical algorithms [223–225].

This triggers interest in alternative quantum systems designed to solve
general spin models via quantum simulation. A noteworthy physical sys-
tem for this goal are trapped ions: Nowadays, spin systems of trapped ions
are available in many laboratories [226–231], and adiabatic state prepara-
tion, similar to quantum annealing, is experimental state-of-art. Moreover,
such system can exhibit long-range spin-spin interactions [232] mediated by
phonon modes, leading to a highly connected spin model. The aim of this
chapter is to demonstrate how to profit from these properties, using trapped
ions as a quantum annealer of a classical spin glass model.

Quantum computers and quantum simulators are nowadays becoming
a reality thanks to the advances in ion trapping and integrated supercon-
ducting technology [6, 233–236].

A possible device which is quickly being developed are quantum anneal-
ers. Annealing, as opposed to quenching, is a method to produce the ground
state of a target Hamiltonian by slowly deforming/adjusting a well-known
ground state of a different Hamiltonian. Annealing is in fact a concept
originating from classical metallurgy, extended in the 1980s to classical op-
timization problems, and known as simulated annealing [237, 238]. In the
current quantum versions, quantum annealing is very much analogous to
quantum adiabatic computing, but is typically targeted towards the clas-
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sical optimization problems. The idea is to add a simple, non-interacting,
but non-commuting term to the original classical Hamiltonian. This simple
additional term should dominate the system at the initial time, so that the
ground state will be easy to find, since it will correspond to a non-interacting
system. The non-commuting nature of the additional term ensures that the
initial and target ground states are not symmetry protected. Then, the
additional term is adiabatically removed and the ground state is expected
to go slowly from the initial one to the one of the Hamiltonian of inter-
est [239–241], see also the recent review [242]. This scheme is nowadays
plausible with a large number of possible platforms, including trapped ions,
cavity QED, circuit QED, superconducting junctions [243] and atoms in
nanostructures. The first commercially accessible quantum annealers are in
the market [223, 244, 245].

We have considered recently the exact quantum dynamics of few ion
systems to demonstrate the robustness of chiral spin currents in a trapped-
ion quantum simulator using Floquet engineering [246]. Our earlier works
include studies of dual trapped-ion quantum simulators as an alternative
route towards exotic quantum magnets [247], and studies of ion chains with
long range interactions forming “magnetic loops” [248]. Topological edge
states in periodically-driven trapped-ion chains [249], trapped ion quantum
simulators of Rabi lattice models with discrete gauge symmetry [250], and
hidden frustrated interactions and quantum annealing in trapped ion spin-
phonon chains [251] were also considered recently. Novel ideas for spin-boson
models simulated with trapped ions can be found in Ref. [252].

In Ref. [253], it has been proposed to use trapped ions for solving dif-
ficult optimization problems via quantum annealing. Such scheme, applied
to the concrete example of number-partitioning, has come under scrutiny
in Ref. [61] and it is exposed in the first part of this chapter. The idea is
to profit from the known mapping between the number partitioning prob-
lem and the ground state of spin Hamiltonians [219]. In the interesting
domain, where the number partitioning problem is notably difficult, the
system is actually in the spin-glass-like phase, which renders finding the
actual ground state an involved task for classical methods. The anneal-
ing method proposed was found to work well for small number of ions at
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zero temperature. In the second part of this chapter, we explore in detail
a semiclassical approximation to the original problem, where the quantum
correlations between the spins and the phonon bath are neglected. This,
however, allows us to solve the Heisenberg equations of motion in an effi-
cient way for much larger ion systems. Notably, the approach allows us to
explore finite temperature effects on the annealing protocol.

We consider a setup described by a time-dependent Dicke-like model:

H0(t) =
∑

m

~ωma
†
mam +

∑

i,m

~Ωi

√

ωrecoil

ωm
ξim sin(ωLt)

× σix(am + a†m), (6.1)

with am annihilating a phonon in mode m with frequency ωm and charac-
terized by the normalized collective coordinates ξim. The second term in
H0 couples the motion of the ions to an internal degree of freedom (spin)
through a Raman beam which induces a spin flip on site i, described by
σix, and (de)excites a phonon in mode m. Here, Ωi is the Rabi frequency,
~ωrecoil the recoil energy, and ωL the beatnote frequency of the Raman
lasers. Before also studying the full model, we consider a much simpler ef-
fective Hamiltonian, derived from Eq. (6.1) by integrating out the phonons
[232, 254–256]. The model then reduces to a time-independent Ising-type
spin Hamiltonian

HJ = −~

∑

ij

Jij σ
i
x σ

j
x. (6.2)

Each phonon mode contributes to the effective coupling Jij in a factorizable
way, proportional to ξimξjm, and weighted by the inverse of the detuning
from the mode δm = ωm − ωL :

Jij = ΩiΩj
ωrecoil

2ωL

∑

m

ξim ξjm
δm

. (6.3)

The ξim imprint a pattern to the spin configuration, similar to the asso-
ciative memory in a neural network [217, 257]. The connection between
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multi-mode Dicke models with random couplings, the Hopfield model, and
spin glass physics has been the subject of recent research [258–260], and the
possibility of addressing number partitioning was mentioned in this con-
text [260].

Before proceeding, we remind the reader that the concept of a spin glass
used in the literature may have different and controversial meanings (cf.
[261–264]): i) long-range spin glass models [221] and neural networks [265,
266], believed to be captured by the Parisi picture [267, 268] and replica
symmetry breaking. These lead to hierarchical organization of the expo-
nentially degenerated free energy landscape, breakdown of ergodicity and
aging, slow dynamics due to a continuous splitting of the metastable states
with decreasing temperatures (cf. [269]). ii) Short-range spin glass models
believed to be captured by the Fisher-Huse [270] droplet/scaling model with
a single ground state (up to a total spin flip), but a complex structure of the
domain walls. For these models, aging, rejuvenation and memory, if any,
have different nature and occurrence [269, 271]; iii) Mattis glasses [272],
where the huge ground state degeneracy becomes an exponential quasi-
degeneracy, for which finding the ground state becomes computationally
hard ([273], see Subsection “Increasing complexity”). Note that exponential
(quasi)degeneracy of the ground states (or the free energy minima) charac-
terizes also other interesting states: certain kinds of spin liquids or spin ice,
etc.

Here we analyse the trapped ion setup. Even without explicit random-
ness (Ωi = Ω = const.), the coupling to a large number of phonon modes
suggests the presence of glassy behaviour. This intuition comes from the
fact that the associative memory of the related Hopfield model works cor-
rectly if the number of patterns is at most 0.138N , with N the number of
spins [265]. For a larger number of patterns, the Hopfield model exhibits
glassy behavior since many patterns have similar energy and the dynamics
gets stuck in local minima. However, it is not clear a priori how the weight-
ing of each pattern, present in Eq. (6.3), modifies the behavior of the spin
model. In certain regimes the detuning suggests to neglect the contributions
from all but one mode, leading to a Mattis-type model with factorizable cou-
plings [272], Jij ∝ ξimξjm. Strikingly, the possibility of negative detuning,
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i.e., antiferromagnetic coupling to a pattern, drives such system into a glassy
phase, characterized by a huge low-energy Hilbert space. The antiferromag-
netic Mattis model is directly connected to the potentially NP-hard task of
number partitioning [273, 274]. Its solution can then be found via quantum
annealing, i.e. via adiabatic ramping down of a transverse magnetic field,
see also the proposal of Ref. [251] for a frustrated ion chain.

We start by giving analytical arguments to demonstrate glassy behaviour
in the classical spin chains. Using exact numerics, we then focus on the
quantum Mattis model. By calculating the magnetic susceptibility, and
an Edward-Anderson-like order parameter, we distinguish between glassy,
paramagnetic, and ferromagnetic regimes. The annealing dynamics is in-
vestigated using exact numerics and a semi-classical approximation. We
demonstrate the feasibility of annealing for glassy instances. Finally, we
show that the memory in the quantum Hopfield model is real-valued rather
than binary. This property might be useful for various applications of quan-
tum neural networks such as pattern recognition schemes.

6.3 Results

6.3.1 Tunable spin-spin interactions

We start our analysis by inspecting the phonon modes. For a sufficiently
anisotropic trapping potential, the ions self-arrange in a line along the z-
axis [275, 276]. The phonon Hamiltonian Hph is obtained by a second-
order expansion of Coulomb and trap potentials around these equilibrium
positions zi: Hph = (m/2)

∑

ij Vijqiqj, with qi the displacement of the ith
ion from equilibrium. For the transverse phonon branch, Vij is given by [232]

Vij =







ω2
⊥ − e2/m

4πǫ0

∑

i′′(6=i)
1

|zi−zi′′ |3
, i = j

e2/m
4πǫ0

1
|zi−zj |3 . i 6= j

(6.4)

Our exact numerical simulations have been performed for six 40Ca+ ions in a
trap of frequency ω⊥ = 2π×2.655 MHz, as used in a recent experiment [230].
In order to maximize the bandwidth of the phonon spectrum and thereby
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Figure 6.1: We plot the coupling constants Jij (in units of Jrms ≡
1

N(N−1)

∑

i 6=j |Jij |2), for a system of six ions at different detunings δ =

ωN −ωL. Rabi frequencies are taken as constants Ωi = const. (a) For nega-
tive detuning, δ = −2π×159 kHz, interactions have a power-law decay. (b)
For positive detuning, δ = 2π× 796 kHz, the coupling constants resemble a
spin glass.

facilitate the annealing process, we choose the radial trap frequency ωz as
large as allowed to avoid zig-zag transitions, ωz . 1.37ω⊥ · N−0.86. Diag-
onalizing the matrix Vij leads to the previously introduced mode vectors
ξm = (ξ1m, . . . , ξNm), which are normalized to one, and ordered according
to their frequency ωm:

ξTm′V ξm = ω2
mδm,m′ . (6.5)

The mode ξN with largest frequency, ωN = ω⊥, is the center-of-mass mode,
ξiN = N−1/2. Parity symmetry of Vij is reflected by the modes, ξim =
±ξ(N+1−i)m, and even (+) and odd (−) modes alternate in the phonon
spectrum. We focus on even N , for which all components ξim are non-zero.
Except for the center-of-mass mode, all modes fulfil

∑

i ξim = 0.
Previous experiments [227–230, 277] have mostly been performed with

a beatnote frequency ωL several kHz above ωN , leading to an antiferromag-
netic coupling Jij < 0 with power-law decay, see Fig. 6.1(a). Despite the
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presence of many modes, the couplings Jij then take an ordered structure.
This work, in contrast, focuses on the regime ωL < ωN , where modes with
both positive and negative ξim contribute, and ferro- and antiferromagnetic
couplings coexist, cf. Fig. 6.1(b). This reminds of the disordered scenario
of common spin glass models like the Sherrington-Kirkpatrick model [221].
In the following we study the properties of the time-independent effective
spin model, before considering the full time-dependent problem involving
spin-phonon coupling.

6.3.2 Classical Mattis model

Close to a resonance with one phonon mode, simple arguments allow for de-
ducing the spin configurations of the ground states. In this limit, we can ne-
glect the other modes, leading to a Mattis model. A single pattern ξm then
determines the coupling, Jij ∝ ξimξjm. The sign of Jij depends on the sign
of the detuning: Below the resonance, we have sign(Jij) = sign(ξimξjm), and
accordingly the energy −~Jijσ

i
xσ

j
x is minimized if σix and σjx are either both

aligned or both anti-aligned with ξim and ξjm. Thus, we have a two-fold
degenerate ground state given by the patterns ±[sign(ξ1m), . . . , sign(ξNm)].
We refer to this scenario as the ferromagnetic side of a resonance.

Crossing the resonance, the overall sign of the Hamiltonian changes.
Naively, one might assume that this should not qualitatively affect the
physics, since we have 1

N

∑

i 6=j ξimξjm = − 1
N → 0, that is, there is an

equal balance between positive and negative Jij . This expectation, how-
ever, turns out to be false. Recalling the relation between the Mattis model
and number partitioning [220, 273, 274], the antiferromagnetic model maps
onto an optimization problem in which the task is to find the optimal bi-
partition of a given sequence of numbers (ξi)i, such that the cost function

E =
(

∑

i∈↑ ξi −
∑

j∈↓ ξj
)2

is minimized. Here, the two partitions are de-

noted by ↑ and ↓. For a Hamiltonian of the form H =
∑

ij ξiσ
i
xξjσ

j
x =

(
∑

i ξiσ
i
x)

2, eigenvectors of σix are Hamiltonian eigenstates with an energy
precisely given by the cost function E. Thus, in the limit of just one anti-
ferromagnetic resonance, the ground state of H is exactly the configuration
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that minimizes the cost function.

With this insight, the ground states of the spin model are easily found
exploiting the system’s parity symmetry: For even modes, ξim = ξ(N+1−i)m,
and we simply have to choose 〈σix〉 = −〈σN+1−i

x 〉 to minimize the cost
function. For odd modes, ξim = −ξ(N+1−i)m, and we must choose 〈σix〉 =
〈σN+1−i
x 〉. In both cases, this implies that we can choose half of the spins

arbitrarily, leading to at least 2N/2 ground states.

The important observation is that an exponentially large number of
ground states exists in the limit of being arbitrarily close above a reso-
nance. This is a characteristic feature of spin glasses, yet it does not lead to
computational hardness. In fact, as pointed out in Ref. [274], the number
partitioning problem with exponentially many perfect partitions belongs to
the “easy phase”. How to reach hard instances will be explained in the
section below.

Pushing our arguments further we consider the influence of a second
resonance: In between two resonances, the exponential degeneracy of the
antiferromagnetic coupling on one side is lifted by the influence of the fer-
romagnetically coupled mode on the other side. Interestingly, this does
not lead to frustration, since even- and odd-parity modes alternate in the
phonon spectrum, and the pattern favoured by the ferromagnetic coupling is
always contained in the ground state manifold of the antiferromagnetic cou-
pling. Accordingly, between two modes the ground state pattern is uniquely
defined by the upper mode.

Beyond this two-mode approximation, we rely on numerical results.
Taking into account all modes, exact diagonalization of a small system
(N ≤ 10) shows that the two-mode model captures the behaviour correctly:
At any detuning, the degeneracy due to the nearest antiferromagnetic cou-
pling is lifted in favour of the pattern of the next ferromagnetic coupling.
In Fig. 6.2(a), we plot the cumulative density of states ρcum(E), that is,
the number of states with an energy below E. The corresponding phonon
resonances ωm are marked in Fig. 6.2(b). The curves clearly reflect the very
different behaviour in the red- and blue-detuned regimes: Fig. 6.2 illustrates
the quick increase of ρcum(E) at low energies, when the laser detuning is
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chosen on the antiferromagnetic side of a phonon resonance. In contrast, a
low density of states characterizes the system on the ferromagnetic side of
a resonance. In intermediate regimes, as shown for δ = 2π × 199 kHz, the
spectrum is symmetric.

A breakdown of the two-mode approximation is expected for large num-
bers of spins: Since the distance between neighbouring resonances approx-
imately scales with 1/N (at fixed trap frequencies), the influence of addi-
tional modes grows with the system size. The combined contribution of
all antiferromagnetically coupled modes tries to select the fully polarized
configurations as the true ground state, while all ferromagnetically coupled
modes, except for the center-of-mass mode, favour fully unpolarized con-
figurations. As a consequence, it is a priori unclear which pattern will be
selected in the presence of many modes.

This observation is crucial from a point of view of complexity theory.
In the presence of parity symmetry neither the one-mode problem (i. e. the
number partitioning problem), nor the two-mode approximation are hard
problems, as they can be solved by simple analytic arguments. However,
when many modes lift the degeneracy of the exponentially large low-energy
manifold in an a priori unknown way, one faces the situation where a true
but unknown ground state is separated only by a very small gap. Identifying
this state then usually requires scanning an exponentially large number of
low-energy states, and classical annealing algorithms can easily get stuck in
a wrong minimum. Below, we discuss how a transverse magnetic field opens
up a way of finding the ground state via quantum annealing. Moreover, we
will discuss strategies to make also the one-mode model, i.e. the number
partitioning problem, computationally complex.

6.3.3 Increasing complexity

As discussed above, the instances of the number partitioning problem real-
ized in the ion chain are simple to solve due to parity symmetry. This is
a convenient feature when testing the correct functioning of the quantum
simulation, but our goal is the implementation of computationally complex
and selectable instances of the problem in the device. One strategy is the
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Figure 6.2: (a) For six ions and at trap frequency ωz = 2π × 770 kHz, we
plot the number of states (divided by the total Hilbert space dimension)
below the normalized energy threshold (0: ground state energy, 1: energy
of highest state), for different detunings from the center-of-mass mode. The
density of states at low energies is seen to strongly increase when the de-
tuning is slightly above a phonon resonance. In (b), the position of the
resonances (measured from the center-of-mass mode at δm = 0) are shown.

use of microtraps to hold the ions [278]. The equilibrium positions of the
ions can then be chosen at will, opening up the possibility to control the
values of the ξim. The computational complexity of the number partitioning
problem then depends on the precision with which the ξim can be tuned. If
the number of digits can be scaled with the number of spins, one enters the
regime where number partitioning is proven to be NP-hard [274]. Thus, the
number of digits must at least be of order log10N , which poses no problem
for realistic systems involving tens of ions.

Another way of enhancing complexity even within a parity-symmetric
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trap would be to “deactivate” some spins by a fast pump laser. For exam-
ple, if all spins on the left half of the chain are forced to oscillate, σjx →
σjxeiωpumpt, the part of the Hamiltonian which remains time-independent
poses a number partitioning problem of N/2 different numbers.

Another promising approach was recently suggested in Ref. [279]: Oper-
ating on the antiferromagnetic side of the center-of-mass resonance, single-
site addressing allows one to use the Rabi frequency for defining the instance
of the number-partitioning problem. This could indeed be the step to turn
the trapped ions setup into a universal number-partitioning solver, where
arbitrary user-defined instances can be implemented.

If one is not interested in the number-partitioning problem itself, one
might also increase the system’s complexity via resonant coupling to more
than one mode. Equipping the Raman laser with several beatnote frequen-
cies ω(µ)

L and Rabi frequencies Ω
(µ)
i , it is possible to engineer couplings of

the form [280]:

Jij ∝
µmax
∑

µ=1

Ω
(µ)
i Ω

(µ)
j

N
∑

m=1

ξimξjm

ωm − ω
(µ)
L

. (6.6)

With an appropriate choice of Rabi frequencies and detunings, this allows
for realizing the Hopfield model, Jij ∝

∑µmax

µ=1 ξimµξjmµ , where each coupling
µ is assumed to be in resonance with one mode mµ. For ferromagnetic
couplings, the low-energy states again are determined by the signs of the
ξimµ , but in general the different low-energy patterns are not degenerate,
and a glassy regime is expected for large µmax [265].

6.3.4 Quantum phases

So far, we have considered classical spin chains lacking any non-commuting
terms in the Hamiltonian. Quantum properties come into play if we either
add an additional coupling

∑

ij σ
i
yσ

j
y, or a transverse magnetic field:

HB = ~B
∑

i

σiz. (6.7)
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Figure 6.3: Upon varying the laser detuning δ and the transverse magnetic
field B, we mark, for N = 6 ions and ωz = 2π × 770 kHz, those regions
in configuration space where the ferromagnetic order parameter νFM, the
spin glass order parameter νSG, or the longitudinal magnetic susceptibility
χ take larger than average values (νFM = 0.13, νSG = 5, χ = 1.6). Below
each phonon resonance (marked by the dashed horizontal lines), there is a
regime where large values of νSG and χ indicate spin glass behaviour for
sufficiently weak transverse field B. In order to break the Z2 symmetry of
the Hamiltonian, all quantities were calculated in the presence of a biasing
field ǫσ1x (with ǫ = −Jrms).

The latter has been realized in several experiments [228, 230, 277], and
is convenient for our purposes, as the field strength B, if decaying with
time, provides an annealing parameter: For large B, all spins are polarized
along the z-direction, whereas for vanishing B one obtains the ground state
of the classical Ising chain. As argued above, the latter exhibits spin glass
phases with an exponentially large low-energy subspace. Even in those cases
where the true ground state is known theoretically, finding it experimentally
remains a difficult task. Our system hence provides an ideal test ground for
experimenting with different annealing strategies.
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Before presenting results for the simulated quantum annealing, let us
first discuss the different phases expected for the effective Hamiltonian
Heff = HJ +HB + ǫσ1x. The last term is a bias introduced to break the Z2

symmetry. Our distinction between phases is based on certain quantities
which combine thermal and quantum averages

〈

〈·〉α
〉

T
≡
∑

λ 〈λ| · |λ〉α exp(−Eλ/kBT )
∑

λ exp(−Eλ/kBT )
, (6.8)

with |λ〉 denoting Hamiltonian eigenstates at energy Eλ. For α = 1, 〈〈·〉α〉T
reduces to the normal thermal average. We will use low, but non-zero
temperatures T of the order of the coupling constant, accounting in this way
for the huge quasi-degeneracy in the glassy regime. The thermal average 〈·〉T
plays a role somewhat similar to the disorder average, as it averages over
various quasi-ground states (pure thermodynamic phases). We therefore
expect 〈〈σix〉〉T to go to zero in the glassy phase. In contrast, a non-zero
average 〈〈σix〉〉T detects the ferromagnetic phase of the Mattis model, while
it vanishes in the paramagnetic state. Taking its square to get rid of the
sign, we obtain a global ferromagnetic order parameter by summing over all
spins:

νFM =
1

N

∑

i

〈〈σix〉〉2T . (6.9)

On the other hand, in the spirit of an Edwards-Anderson-like parameter,
we consider thermal averages of squared quantum averages, i.e.

νEA =
1

N

∑

i

〈〈σix〉2〉T . (6.10)

At sufficiently low temperature this average would still be zero for a para-
magnetic system, but now it remains non-zero for both ferromagnetic and
glassy systems. Accordingly, a parameter which is “large” only for glassy
systems is given by the ratio νSG = νEA

νFM
, used in Fig. 6.3 to detect glassy

regions.
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Thermal averages are difficult to measure, but the contained information
is also present in linear response functions at zero temperature. Therefore,
we have calculated the longitudinal magnetic susceptibility χ, i.e. the re-
sponse of the system to a small local magnetic field hjx along the σx direction
(in units Jrms):

χ =
Jrms

N

∑

ij

(

∂〈σix〉
∂hjx

)2

. (6.11)

Due to the (quasi)degeneracy in the glass, one expects a huge response even
from a weak field, and thus a divergent susceptibility.

We have calculated νFM, νSG, and χ, for N = 6 between 0 ≤ 2π× δ ≤ 8
MHz, and 0 ≤ B ≤ 4Jrms. For the thermal averaging, we have chosen a tem-
perature kBT = Jrms. The results are summarized in Fig. 6.3, indicating the
regions where these quantities take larger values than their configurational
averages νFM, νSG, and χ, defined as f ≡

∫

dB
∫

dδf(B, δ)/(Bmaxδmax).
In this way, we identify and distinguish ferromagnetic behaviour below,
and glassy behaviour above each resonance. Regions of large susceptibil-
ity χ overlap with regions of large νSG, attaining numerical values which
are three orders of magnitude larger than the corresponding averages. For
sufficiently strong field B, in contrast, none of these parameters is large,
indicating paramagnetic behaviour.

Note that the existence of the purported glassy phase in the quantum
case is an open problem. We provide here the evidence only for small
systems, since it is numerically feasible and corresponds directly to current
or near-future experiments. If we increase the complexity of our system by
resonant coupling to many phonon modes, as discussed in the last paragraph
of the previous subsection, the glassy behavior will result from the interplay
of contributions of many modes – similarly as in the Hopfield model with
Hebbian rule and random memory patterns. Here the beautiful results by
Strack and Sachdev [258] –the “quantum” analog of the Amit et al. [266]
machinery– can be applied directly to obtain the phase diagram for large
N . If, however, we increase the complexity by random positioning of the
ion traps, then the resonance condition will pick up the contribution from
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one dominant (random) mode, and the Hebbian picture will apply.

6.3.5 Simulated quantum annealing

We will now turn to the more realistic description of the system in terms of a
time-dependent Dicke model, described by the Hamiltonian H0 in Eq. (6.1)
with an additional transverse field HB(t) from Eq. (6.7). We assume an
exponential annealing protocol B(t) = Bmax exp(−t/τ). Again we apply
a bias field hbias = ~ǫσix, lifting the Z2 degeneracy of the classical ground
state. We study the exact time evolution under the Hamiltonian H(t) =
H0(t)+HB(t)+hbias, using a Krylov subspace method [281], and truncating
the phonon number to a maximum of two phonons per mode.

Initially, the system is cooled to the motional ground state, and spins
are polarized along σz. Choosing Bmax ≫ ǫ, Jrms, this configuration is close
to the ground state of the effective model HJ +HB + hbias at t = 0. If the
decay of B(t) is slow enough, and if the entanglement between spins and
phonons remains sufficiently low, the system stays close to the ground state
for all times, and finally reaches the ground state of HJ .

We have simulated this process for N = 6 ions, as shown in Fig. 6.4.
As a result of the annealing, we are not interested in the final quantum
state, but only in the signs of 〈σix〉, which fully determine the system in the
classical configuration. This provides some robustness. We find that for a
successful annealing procedure, yielding the correct sign for all i, the number
of phonons produced during the evolution should not be larger than 1. At
fixed detuning, we can reduce the number of phonons by decreasing the Rabi
frequency, at the expense of increasing time scales. As a realistic choice [231,
282], we demand that annealing is achieved within tens of milliseconds.

Fig. 6.4(a) shows that one can operate at a detuning δ = 2π× 239 kHz,
that is, at the onset of a glassy phase according to Fig. 6.3. The mode vector
which selects the ground state is ξ5 = (0.61, 0.34, 0.11,−0.11,−0.34,−0.61),
and the corresponding pattern can be read out after an annealing time
t ≥ 15 ms. On the other hand, even for long times, 〈σi=4

x 〉 saturates only at
−0.15, which is far from the classical value −1. As shown in Fig. 6.4(b), a
slower annealing protocol leads to more robust results (|〈σix〉| > 0.52 ∀ i).
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Figure 6.4: Unitary time evolution of the full system (N = 6) for different
δ between the 4th and 5th resonance. The exact evolution (thick lines)
compared to the semi-classical approximation (thin lines). In (a,b), we
operate at the onset of glassiness, δ = 2π × 239 kHz and the panel (c)
considers a ferromagnetic instance, δ = 2π × 143 kHz. In (a) we have
Bmax = 50Jrms and τ = 3 ms. In (b) we have, Bmax = 80Jrms and τ = 6
ms. Fast annealing, with Bmax = 50Jrms and τ = 1 ms, is possible in the
ferromagnetic instance in (c). In all simulations, we have chosen Ω = 2π×50
kHz, ωrecoil = 2π × 15 kHz, and ǫ = −10 kHz.

In Fig. 6.4(c), a much simpler instance in the ferromagnetic regime is con-
sidered. Good results (|〈σix〉| > 0.36 ∀ i) can then be obtained within only
a few ms.

In addition, dephasing due to instabilities of applied fields and sponta-
neous emission processes disturb the dynamics of the spins. In Ref. [279]
a master equation was derived that takes into account such noisy environ-
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ment. To study the evolution of the system in this open scenario we have
applied the Monte Carlo wave-function method [283]. As quantum jump
operators are hermitian, σix for dephasing and σiz for spontaneous emission,
the evolution remains unitary, but is randomly interrupted by quantum
jumps. Each jump has equal probability Γ, and the average number of
jumps within the annealing time T is given by njumps = 2NΓT , which we
chose close to 1.

Since a faithful description requires statistics over many runs, we restrict
ourselves to a small system, N = 4, with short annealing times. In a sample
of 100 runs, we noted 94 jumps (42 σx and 52 σz jumps). In 39 runs, no
jump occurred. Amongst the 61 runs in which at least one jump occurred,
26 runs still produced the correct sign for all spin averages 〈σix〉. The full
time evolution, averaged over all runs, is shown in Fig. 6.5. On average,
the final result is (0.65, 0.50,−0.41,−0.68), that is, our annealing with noise
still produces the correct answer, but with lower fidelity.

Whether an individual jump harms the evolution crucially depends on
the time at which it occurs: While a spin flip (σz noise) is harmless in the
beginning of the annealing, a dephasing event (σx noise) at an early stage of
the evolution leads to wrong results. Oppositely, at the end of the annealing
procedure, dephasing becomes harmless while spontaneous emission falsifies
the result. An optimal annealing protocol has to balance the effect of dif-
ferent noise sources against non-adiabatic effects in the unitary evolution.

6.3.6 Scalability

Above we have demonstrated the feasibility of the proposed quantum an-
nealing scheme in small systems. The usefulness of the approach, however,
depends crucially on its behaviour upon increasing the system size. While
the exact treatment of the dynamics becomes intractable for longer chains,
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Figure 6.5: We consider Γ = 0.03Jrms ≈ 120 Hz and a total annealing time
T = 1 ms, which produce on average one jump per run, njumps = 0.96.
We plot expectation values of the spins and total number of phonons as
a function of time. Here, we have operated in the ferromagnetic regime
between the second and third phonon resonance, δ = 2π × 159 kHz. Other
parameter values are Ω = 2π×50 kHz, ωrecoil = 2π×15 kHz, ωz = 2π×876
kHz, Bmax = 50Jrms ≈ 200 kHz, ǫ = −10 kHz, and τ = 0.1 ms. Results
correspond to averaging 100 runs.

an efficient description can be derived from the Heisenberg equations:

i~
d

dt
〈am〉 = 〈[am,H(t)]〉, (6.12)

i~
d

dt
〈σiα〉 = 〈

[

σiα,H(t)
]

〉,

withH = H0(t)+HB(t)+hbias. To solve this set of 5N first-order differential
equations, we make a semi-classical approximation 〈amσix〉 ≈ 〈am〉〈σix〉, and
then proceed numerically using a fourth order Runge-Kutta algorithm. The
semi-classical approximation is justified as long as the system remains close
to the phonon vacuum. A direct comparison with exact results for six
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ions (see Fig. 6.4) shows that the semiclassical approach, while slightly
overestimating fidelities, accurately reproduces all relevant time scales.

This approach allows us to extend our simulations up to N = 22 ions,
at trap frequency ωz = 2π × 270 kHz. We operate between the first and
second resonance where the level spacing is largest, at a beatnote frequency
ωL = ω1 + 0.2(ω2 − ω1), that is with a fixed relative detuning between
the two modes. This choice corresponds to δ = 2π × 1.2 MHz in Fig. 6.3,
characterized as a glassy instance of the system.

Our aim is to find the relation of annealing time, measured by the decay
parameter τ , and systems size while the fidelity F is kept constant. For a
practical definition we demand that F is zero when the annealing fails, that
is when the sign of the spin averages 〈σix〉 does not agree with the classical
target state for all i. If the annealing finds the correct signs, the robustness
still depends on the absolute values of the spin averages. The fidelity is
then defined as the smallest absolute value, F = mini|〈σix〉|. Our results are
summarized in Fig. 6.6: Firstly, this figure shows that for all sizes N ≤ 20
large fidelities F ≥ 0.5 can be produced within experimentally feasible time
scales, τ ≤ 30 ms. Secondly, the time scale τ needed for a fidelity F = 0.5
fits well to a fourth-order polynomial in N (with subleading terms of the
order exp(1/N)):

τ(N) = N4τ0 exp(γ/N), (6.13)

with τ0 and γ being free fit parameters. Although the sample of 22 ions is
too small to draw strong conclusions, it is noteworthy that the polynomial
fit is more accurate than an exponential one. This suggests that the pro-
posed quantum simulation is indeed an efficient way of solving a complex
computational problem. One should also keep in mind that our estimates,
based on a semi-classical approximation, neglect certain quantum fluctua-
tions which could further speed-up the annealing process.

To study the scaling of dissipative effects, we have extended the Monte
Carlo wave function approach to larger systems, which is feasible if the
phonon dynamics is neglected. The unitary part of the evolution is then
described by the effective Ising Hamiltonian Heff = HJ+HB(t)+hbias. The
dissipative part consists of random quantum jumps described by σix and σiz.



164 CHAPTER 6. Quantum annealing for the number partitioning problem . . .

0 10 20 30
τ [ms]

0

0.2

0.4

0.6

0.8

1

Fi
de

lit
y

N=6
N=8
N=10
N=12
N=14
N=16
N=18
N=20

10
N

1

10

100

τ 
[m

s]

Figure 6.6: We solve the equations of motion, Eq. (6.12), for a glassy
instance at different system sizes N , and plot the fidelity of the outcome as
a function of the annealing time τ . In the inset, we investigate the scaling
behaviour by plotting (in double-logarithmic scale) the value of τ which is
needed for a fidelity F = 0.5 as a function of N . A fourth-order polynomial
fit agrees very well with the data (black dashed line). The fit parameters,
as defined by Eq. (6.13), are τ0 = (90 ± 40) ms and γ = 12.0 ± 1.2. For all
calculations, we have chosen a beatnote frequency between the two lowest
resonances, ωL = 0.8ω1 + 0.2ω2, ωz = 2π × 270 kHz, and ǫ = −1 kHz. The
initial value of the transverse field was Bmax = 10 kHz.

The results for a glassy instance (δ = 2π × 198 kHz at ωz = 2π × 700
kHz) are summarized in Table 6.1 for N = 4, 6, 8. The noise rate is chosen



6.3. Results 165

such that on average one quantum jump occurs in the system with four
ions, while accordingly the system with eight ions suffers on average from
two such events. In all cases, the annealing produces the correct pattern,
F > 0. As expected, F decreases for larger systems, but fortunately rather
slowly (from F = 0.25 at N = 4 to F = 0.16 at N = 8). If the total
amount of noise is kept constant, i.e. Γ ∝ 1/N , the annealing is found to
profit from larger system sizes, since a quantum jump at spin i is unlikely
to affect the sign of 〈σjx〉 for j 6= i. We note that the spin values produced
by the Monte Carlo wave function method cannot be described by a normal
distribution. Importantly, the peak of each distribution, roughly coinciding
with its median, is barely affected by the noise. Thus, larger fidelities can
be obtained from the median rather than from the arithmetic mean of 〈σix〉.

6.3.7 Spin pattern in the quantum Mattis model

The quantum annealing discussed above exploits quantum effects in or-
der to extract information encoded in the classical model. Now we search
for information which is encoded in the quantum, but not in the classical
model. Therefore, we focus on the ferromagnetic Mattis model, which in
the classical case keeps a binary memory of a spin pattern, that is, of N
bits. Our considerations can also be generalized to the Hopfield model [217],
which memorizes multiple patterns. We will show how quantum effects can
increase the amount of information encoded by these models.

Recall that in the classical case, the spin pattern was defined by a
resonant mode in terms of the sign of each component. In the quantum
case, however, one cannot simply replace classical spins by quantum aver-
ages, sign(〈σix〉). Even in a weak transverse field B, this quantity vanishes
due to the Z2 symmetry, σx → −σx. Instead, the pattern is reflected by
λi = 〈Ψ1|σix |Ψ2〉, where |Ψ1〉 and |Ψ2〉 are the ground and first excited
state. For small B, we find numerically sign(λi) = sign(ξim). For large B,
the stronger relation λi = ξim holds approximately, see Fig. 6.7. Thus, the
former binary memory has become real-valued.

To show this behaviour, we note that for strong B, the ground state is
fully polarized along z, and the first excited state is restricted to the N -
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Figure 6.7: From binary to real-valued patterns. The spin expectation
values λi approach the real values of the mode vector ξim when a sufficiently
strong transverse magnetic field B is present. The shown data was obtained
from the effective spin Hamiltonian for N = 6 ions in the ferromagnetic
regime, δ = 2π × 143 kHz. Deviations from the equality λi = ξim are
smaller than 0.04.

dimensional subspace with one spin flipped, that is, Sz =
∑

i σ
i
z = N − 2.

Within this subspace the Hamiltonian HJ is given by an N × N matrix
approximately proportional to J̃ij = −ξimξjm for i 6= j, and J̃ii = constant.
Here we neglect all but the mth mode close to resonance.

It is easy to see that the vector ξm is a ground state of the matrix
−ξimξjm, which differs from J̃ij only by the diagonal elements, which ap-
proach unity for large N . The first excited state reads |Ψ2〉 =

∑N
i=1 ξim |i〉,

where |i〉 denotes the state in which spin i is flipped relatively to all oth-
ers (in the σz basis). This shows that λi ≈ ξim, and the small deviations
decrease quickly with N .

Measuring λi experimentally is possible by full state tomography. The
absolute value of λi can be obtained via a simple σiz measurement. In the
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limit of strong B-fields we have λi = [(1− 〈σiz〉)/2]1/2.
Many applications are known for the classical spin system with couplings

defined by spin patterns, reaching from pattern recognition and associative
memory in the Hopfield model [217] to noise-free coding [218, 284]. Our
analysis suggests that patterns given by real numbers could replace patterns
of binary variables by exploiting the quantum character of the spins.

6.4 Details of the semiclassical approximation

Since the original proposals [232, 254] trapped ions quantum simulators
are the subject of intensive theoretical and experimental research. Start-
ing from realization of the simple instances of quantum magnetism [277],
they have reached quite a maturity in the recent experimental developments
(cf. [282, 285–290]). The recent paper by Bollinger’s group [291], in addition
to the excellent experimental work, contains also an outstanding analysis of
quantum dynamics of the relevant Dicke model, in which the ions interact
essentially with one phononic mode.

Quantum dynamics in general, and in particular for the Dicke-like ion-
phonon models, are very challenging for numerical simulations. Exact treat-
ments are possible for small systems only, so that various approximate meth-
ods have to be used. One of them is the truncated Wigner approximation,
in which both ionic and phononic operators are replaced by complex num-
bers, the dynamics becomes “classical”, and only the initial data mimic the
"quantumness" of the problem [292]. This approach was used in Ref. [293] to
study the quantum non-equilibrium dynamics of spin-boson models. More
sophisticated “mean-field” approaches decorrelate ions from phonons, but
treat at least either ions or phonons fully quantum mechanically – this ap-
proach is in particular analysed in the present chapter. Quantum aspects
of the models in question were studied in the series of papers [294–296].

In this section we will develop a semiclassical approximation to the exact
dynamics described above. This approximation will allow us to consider
much larger systems.
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6.4.1 Hamiltonian

Recalling the previous section, we study a chain of N trapped ions inter-
acting by effective spin-spin interactions subjected to a transverse time-
dependent magnetic field. Interactions are generated by Raman coupling
the pseudo-spin degrees of freedom to the phonon modes which are obtained
expanding the Coulomb force between the ions around their equilibrium
positions [232]. The phonon spectrum is defined through its natural fre-
quencies ωk and modes ξik. The dynamics of the system is described by a
time-dependent Hamiltonian that in the Schrödinger picture reads,

HS (t) /~ =

M
∑

k

ωkâ
†
kâk +

N,M
∑

i,k

Ωη
(i)
k sin (ωLt)

(

â†k + âk

)

σ(i)x

+
N
∑

i

B (t)σ(i)z + εσ(p)x , (6.14)

where âk(â
†
k) is the annihilation (creation) operator of one phonon in the kth

mode and ωk is the frequency of that mode. The operators σ(i)x , σ(i)y , and σ(i)z
are the spin operators in the ith position. The frequencies Ω and ωL are the
Rabi frequency and the beatnote frequency of the laser, respectively. The
dimensionless parameters η(i)k are the Lamb-Dicke parameters proportional
to the displacement of an ion i in the vibrational mode k, see Ref. [232].
As usual, t is time, and a time-dependent magnetic field B(t) allows us to
perform the quantum annealing. A small bias term, proportional to ε, has
been added in the pth position to remove the Z2 degeneracy. The upper
limit of the sum over the ions i is N , the number of ions. The upper limit
of the sum in modes k is M , the number of modes. The total number
of phonon modes is 3N , but the Raman beam couples to only N modes,
selected by the wave vector difference of the lasers. At this point, we may
keep our analysis general by making no assumption about the number M
of modes. However, all phonons which are considered are assumed to be
coupled to the spin in the same way. Hereinafter, the upper limits of the
sums will be omitted for brevity.
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6.4.2 Equations of motion

We compute the Heisenberg equations of motion for the quantum average
of every operator in the Hamiltonian, âk, â

†
k, σ

(i)
x , σ(i)y , and σ(i)z . Given that

these are time independent operators, the calculation reduces to commuta-
tors. Additionally, we replace â†k + âk by 2Re [âk] and âk − â†k by 2i Im [âk].
The equations of motion (all with real coefficients) read,

d〈Re [âk]〉
dt

= ωk〈Im [âk]〉 (6.15)

d〈Im [âk]〉
dt

= −ωk〈Re [âk]〉 − sin (ωLt)
∑

j

Ωη
(j)
k 〈σ(j)x 〉,

d〈σ(i)x 〉
dt

= −2B (t) 〈σ(i)y 〉,

d〈σ(i)y 〉
dt

= −4
∑

l

Ωη
(i)
l sin (ωLt)〈Re [âl]σ(i)z 〉

+2B (t) 〈σ(i)x 〉 − 2ε〈σ(i)z 〉δp,i,
d〈σ(i)z 〉
dt

= 4
∑

l

Ωη
(i)
l sin (ωLt)〈Re [âl]σ(i)y 〉+ 2ε〈σ(i)y 〉δp,i .

6.4.3 Annealing protocol

The functional form and value of Ω, B (t) and ε determine the annealing
protocol. In these annealing schemes, the initial value of the transverse
magnetic field B (t = 0) must be sufficiently strong to initialize the system
in the paramagnetic phase, that is, B must be larger than the effective spin-
spin interactions J ∼ Ω2ωrec/(δωrad), where ωrec is the recoil energy of the
photon-ion coupling, ωrad is the radial trap frequency, and δ the detuning
from the nearest phonon mode. For typical values, e.g. Ω ∼ δ ∼ 100 kHz,
ωrec ∼ 25 kHz, ωrad ∼ 5 MHz, we obtain effective interactions J ∼ 1 kHz,
so we need an initial field strength B(0) ∼ 10 kHz. The annealing scheme
proceeds by turning down the magnetic field according to some functional
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form in order to adiabatically achieve the ground state of the Hamiltonian of
interest. Given the adiabatic theorem, for a closed system initialized in the
ground state, the final system is guaranteed to be in the ground state as long
as the system is gapped along the annealing path, and the variation is slow
enough. Generalization to open systems has been proposed in Ref. [297].

We have used a decreasing exponential form for the transverse magnetic
field, B (t) = B(0) e−

t
τ with a decay rate τ . The other parameters, Ω and

ε, remain constant. An example of the evolution of the system under this
protocol is shown in Fig. 6.8. Initially,

〈

σ̂
(i)
x

〉

= 0 for all i, and the total
phononic population is set to 0. Within tens of microseconds the phononic
modes are populated. Not surprisingly, the mode next to the resonance
becomes the most populated one, with a population being orders of mag-
nitude larger than the population of the other modes. In contrast to these
rapid changes of the phonon state, the spin dynamics is much slower. The
spin expectations

〈

σ̂
(i)
x

〉

remain mostly clustered around zero for hundreds

of microseconds. When B (t) ≃ ε, the values
〈

σ̂
(i)
x

〉

start to deviate from
zero, and some acquire positive values, while others become negative. Thus,
the spin curves separate from each other, and we call the time at which this
happens the separation time. At some point after the separation time, the
spin curves saturate, that is, from then on

〈

σ̂
(i)
x

〉

remain constant in time.

We define the waiting time as the time when all
〈

σ̂
(i)
x

〉

have stopped vary-
ing. At the waiting time, the phononic populations stabilize around certain
values, although their oscillations do never vanish.

The quantum annealer produces final values of
〈

σ̂
(i)
x

〉

which are not

fully polarized , that is, |
〈

σ̂
(i)
x

〉

| < 1. Thus, the final state differs from the
classical ground state of the target Hamiltonian, that is, the Hamiltonian in
the absence of a transverse field. Thus, we take as readout of the annealing
protocol the average spin values [298–300]. This is not a problem, as long as
for all spins the sign matches with the one in the classical state. As explained
in detail in Ref. [61], the spin configuration of the target Hamiltonian is
determined by the dominant mode, defined as the one with frequency just
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Figure 6.8: (Upper panel) Evolution of
〈

σ̂
(i)
x

〉

in a system with 4 spins,
with initial populations of phononic modes set to 0. The biased spin is the
pink one, see text for details. (Lower panel) Evolution of the populations
of the phononic modes in a system with 4 spins, with initial populations of
phononic modes set to 0. δ = 1 MHz.

below the beatnote frequency ωL. There are different reasons why the final
ground state might show a different spin pattern: Either, the annealing was
too fast, that is, the value of τ was chosen too small, or the effective spin
model is not valid. This is the case when ωL is too close to a resonance ωk.

6.4.4 Fidelity of the annealing protocol

In order to quantify the success of the annealing protocol, that is, the ability
of the method to identify the target ground state of the spin system, we will
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define the following fidelity,

F =







min
i

∣

∣

∣

〈

σ
(i)
x

〉∣

∣

∣ if sign
[〈

σ
(i)
x

〉]

= sign
[

η
(i)
kd

]

,∀i
0 Otherwise

, (6.16)

where ηij is the ith component of the dominant mode kd for a fixed value
of the beatnote frequency ωL. That is, the fidelity is zero if the signs of
〈σix〉 do not match the signs of ηi of the dominant mode. If the signs are
reproduced, the value of the fidelity is defined as the smallest expectation
value of the spins of the ions. Note that with this definition, any non-zero
fidelity is good enough for correctly identifying the ground state pattern,
assuming the absence of noise in the system.

6.4.5 Semiclassical approximation

Now we will develop a semiclassical approximation to the exact equations of
motion, Eq. (6.15), that will allow us to study larger systems of ions and the
effects of temperature on the annealing protocols. We make the following
approximations:

〈âkσ(i)µ 〉 ≃ 〈âk〉〈σ(i)µ 〉
〈â†kσ(i)µ 〉 ≃ 〈â†k〉〈σ(i)µ 〉 (6.17)

with µ = {x, y, z}. These approximations ignore the quantum correlations
in the coupling between bosonic and spin modes.

Additionally defining the auxiliary variables Sk (t) ≡ sin (ωLt)
∑

j Ωη
j
k〈σ

(j)
x 〉

and J (i) (t) ≡ sin (ωLt)Ω
(

2
∑

l η
i
l 〈Re [âl]〉

)

+εδp,i, we obtain the approximate
equations of motion,

d〈Re [âk]〉
dt

= ωk〈Im [âk]〉, (6.18)

d〈Im [âk]〉
dt

= −ωk〈Re [âk]〉 − Sk (t) ,

d〈~σ(i)〉
dt

= −2





0 B (t) 0

−B (t) 0 J (i) (t)

0 −J (i) (t) 0



 · 〈~σ(i)〉
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Figure 6.9: Quantum (a,c) and semiclassical (b,d) evolution of
〈

σ̂
(i)
x

〉

. The
figure is computed with N = 4 ions with a detuning δ = 2900 kHz. Panels
(a) and (b) correspond to τ = 0.35 ms and panels (c) and (d) to τ = 0.7
ms.

where a spin vector notation, 〈~σ(i)〉 =
(

〈σ(i)x 〉, 〈σ(i)y 〉, 〈σ(i)z 〉
)

, has been used.
This is a system of 2×M+3×N non-linear first-order ordinary differential
equations. Hence, it is numerically solved with a first order, ordinary dif-
ferential equation solver that uses the Gragg–Bulirsch–Stoer method, step
size control and order selection, called ODEX [301].

6.4.6 Comparison to full quantum evolution

To benchmark the semiclassical method, we have compared it against a full
quantum evolution of the system using Krylov subspaces. The latter is a
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method to study the dynamical evolution under time-dependent Hamilto-
nians that computes a reduced evolution operator omitting contributions
smaller than a certain threshold, that is, transitions to irrelevant states.
Despite this disregard, the Krylov evolution can be considered an exact nu-
merical simulation, as it iteratively determines which part of the Hilbert
space is irrelevant at a given accuracy.

In both cases, semiclassical and full quantum, the evolution of a given
initial state under a time-depending Hamiltonian is calculated with time
steps in a recurrent way. In the fully quantum calculation, the time steps
are of the order of 1 ns, while in the semiclassical description they are
variable, but can be orders of magnitude larger. In the quantum case, we
have to specify a quantum state —a complex vector in the joint Fock basis
of phononic and spin modes—, containing the amplitudes of every state of
the basis. In the semiclassical case, we only have to supply the initial mean
values of every operator.

It should be noted that the exact quantum evolution requires truncating
the maximum phonon number which in our case was set to two phonons
per mode. Such truncation of the Hilbert space requires sufficiently cool
systems. And even with this truncation, the quantum evolution is restricted
to a small number of ions. Considering only one transverse phonon branch,
i.e. N phonon modes, with a maximum population of two phonons per
mode, the Hilbert space dimension is 2N ×3N , that is, a dimension of 46656
for N = 6 ions. The semiclassical approach, in contrast, allows us to explore
larger systems.

Time evolution of
〈

σ̂
(i)
x

〉

The semiclassical model captures well the qualitative behaviour of the evo-
lution of

〈

σ̂
(i)
x

〉

, as exemplified in Fig. 6.9. In the figure we compare the
semiclassical evolution with the exact dynamics forN = 4 ions for two differ-
ent decay times. The discrepancy between semiclassical and exact evolution
is smallest for shorter times (t . τ), where the semiclassical model is able
to correctly capture the details of the dynamical evolution, most notably



176 CHAPTER 6. Quantum annealing for the number partitioning problem . . .

Figure 6.10: Evolution of
〈

n̂3σ̂
(i)
x

〉

(a) and of the relative difference

(
〈

n̂3σ̂
(i)
x

〉

− 〈n̂3〉
〈

σ̂
(i)
x

〉

)/
〈

n̂3σ̂
(i)
x

〉

for a system of four spins with initial
populations of phonons set to zero for a detuning δ = 1000 kHz.

little wiggles in the evolution of the biased ion, i = 1. Importantly, the
semiclassical model also agrees with the exact evolution regarding general
features such as the separation time, and the sign of each

〈

σ̂
(i)
x

〉

in the
long-time limit. As discussed in more detail in the next paragraph, this en-
ables a quite accurate prediction of annealing fidelities, despite the fact that
the approximation disregards some quantum properties. Thus it provides a
computationally efficient way to study the behaviour of larger systems.

For a better understanding of the errors in the semiclassical approach,
we have exactly calculated the evolution of 〈n̂3σ(i)x 〉, see Fig. 6.10(a), and
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of 〈n̂3〉〈σ(i)x 〉. As our semiclassical approximation is based on substituting
the former correlator by the latter one, the discrepancy between both ex-
pressions is an indicator for the quality of the semiclassical approach. In
Fig. 6.10(b), we plot the relative difference as a function of time: Initially,
the phonon and spin degrees of freedom are taken as uncorrelated, thus,
the semiclassical and the exact description coincide at t = 0. On short time
scales, both correlators have small absolute values, but their relative differ-
ence becomes large. For times larger than the separation time, the absolute
values of the correlators increase, and the relative errors decrease. On long
time scales, the errors oscillate around mean values of the order 0.1. This
observation suggests that the main errors made in the semiclassical approx-
imation are introduced at short times, where the transverse magnetic field
and its temporal derivative takes large values.

Fidelity

As we have seen the semiclassical approximation provides a reasonable de-
scription of the dynamics in many configurations. Let us now explore in
more detail in which parameter regions it predicts the correct fidelity for
the annealing protocol. In Fig. 6.11 we present a comparison of the fi-
delities obtained from the exact time evolution and from the semiclassical
approach for a system of four ions. We tune through a broad range of beat-
note frequencies ωL, and vary the decay time τ of the magnetic field. The
overall agreement is very good: Both methods predict a small fidelity when
the field decays too fast (small τ), or when the system is too close to one
of the phonon resonances. The semiclassical evolution, however, slightly
overestimates the fidelity for small τ , and also slightly below each phonon
resonance, that is, on the ferromagnetic side of the resonance. Notably,
the semiclassical approach works quite well in the glassy regimes above the
resonances, where it estimates correctly the regions in which the annealer
fails for any annealing time.

As discussed earlier, the failure of the annealing protocol for small τ is
due to non-adiabatic behaviour in the fast varying field. The failure near
the resonance, though, cannot be fixed by increasing τ , and has its origin
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Figure 6.11: Fidelity obtained with the full quantum evolution FE (a), the
semiclassical model FSC (b), and the difference between the semiclassical
model and the full quantum (c). In both cases, we consider a system of four
ions, and we plot the magnitudes as a function of ωL and τ . The fidelity is
readout after a time 20 τ .

in the deviation from of the Dicke dynamics from the effective spin model.
Although such deviations are expected on both sides of a phonon resonance,
the region of zero fidelity is seen only on the glassy side of each resonance.
From that perspective, the size of the spin gap seems to play a role as well,
although in this regime we should not compare it to ~/τ , but to those spin-
phonon energy scales which are neglected in the effective spin model, that
is, the first order term in a Magnus expansion, see Ref. [227].

The main advantage of the semiclassical model is that it can easily be
applied to larger systems. In Fig. 6.12, we consider systems of six and eight
ions. Notably, a broad region of zero fidelity occurs for eight ions between
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Figure 6.12: Fidelity of a system of six ions (a) and a system of eight ions
(b) as a function of ωL and τ using the semiclassical approximation. Final
times are 20τ .

ω5 and ω6. Its origin is unclear to us, and further calculations on the fully
quantum evolution would be needed in order to discriminate whether they
are true effects or merely calculation artefacts.

We finish this section by discussing the factor which limits the scalability
of the quantum annealer. As seen above, below a critical detuning from the
resonance the fidelity drops to zero. This sets a limit to the scalability of the
quantum annealer, because, with the number of modes being proportional
to the number of ions, the mode spacing decreases when the system size is
increased. However, we note that phonon spectra are not equidistant, and
within the transverse branch, the phonon spacing is largest at the lower
energetic end of the phonon spectrum. Thus, to achieve finite fidelity in
an up-scaled system, one may need to operate in the regime of low-energy
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phonons. The semiclassical estimates in Ref. [61] suggest that the quantum
annealing still works in systems with more than twenty ions, presumably
large enough to detect quantum speed-up.

6.5 Finite temperature effects on the annealing pro-

tocol

Finite temperature effects are expected to reduce the quality of the an-
nealing protocol, recently, however, thermal effects are shown to aid the
annealing protocol for a 16-qubit problem in a superconducting setup [302].
In this section we study the robustness of the annealing protocol when the
phonons are initially at finite temperature. To do so, we consider an initial
state with phonon mode populations set as follows: we fix the temperature
T of the phonons, then, the mean values of the number of phonons for each
mode are sampled according to the a bosonic thermal bath probability dis-
tribution at T . With these initial conditions, the system is then evolved
semiclassically according to Eqs. (6.18). This process is repeated with dif-
ferent initial values of the population of phonons, sampled appropriately.
After the evolution, the statistical moments are calculated in order to infer
the thermal properties of the system at the final time.

It should be noted that our dynamical model only captures the coher-
ent Hamiltonian evolution, but no decoherence processes due to interactions
with the environment. Thus, in order to account for all thermal effects, heat-
ing events, as they occur for instance due to trap inhomogeneities, should
be taken into account by considering an increased initial temperature.

6.5.1 Classical thermal phonons

We assume that the initial populations of the phononic modes are deter-
mined by a phonon temperature. In the canonical ensemble, the expected
value of the number operator of the phonons in the kth mode is,

〈n̂k〉 =
1

eβ~ωk − 1
. (6.19)
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The corresponding Hamiltonian of the symmetrized phonon field is Ĥph =

~
∑

k ωk
â†
k
âk+âk â

†
k

2 . The expected value of the annihilation operator αk ≡
〈âk〉 is sampled as,

P (αk) =
1

π〈n̂k〉
e
− |αk |2

〈n̂k〉 . (6.20)

The complex-valued Gaussian probability distribution function (PDF) for
the random variable αk is a product of two Normal PDFs —one real the
other purely imaginary—for the random variables Re [αk] and Im [αk]. Both
distributions have a mean µ = 0 and variance σ2 = n̂k/2. We thus use for
convenience,

P (αk) = N (Re [αk] ; 0, 〈n̂k〉/2)N (Im [αk] ; 0, 〈n̂k〉/2) , (6.21)

being N
(

x;µ, σ2
)

the Normal PDF of the random variable x with mean µ
and variance σ2.

6.5.2 Effects of temperature on the protocol

To evaluate the effects of temperature on the proposed annealing protocol
we will consider different initial temperatures and detunings. In all cases
we will fix the decay time τ = 10 ms. Fig. 6.13 shows the fidelity and
the total phononic population per mode in the system. In the figure we
compare results obtained with several values of ωL and a broad range of
temperatures of the phonons. Quite generally, panels (a) and (b) show that
up to a certain temperature the fidelity is not affected by thermal phonons,
but above this temperature the fidelity drops to zero. The value of this
temperature strongly depends on the detuning, and decreases by several
orders of magnitudes when we change from a far-detuned configuration to
a near-resonance scenario. For instance, in the far-detuned regime at ωL =
ω2 − 902.41 kHz (solid squares) the critical temperature is of the order 0.1
K, while close to the resonance at ωL = ω2−35.33 kHz (small triangles), the
fidelity drop occurs at a temperature of the order 10−4 K. Such behaviour
is seen both when we approach the phonon resonance from above (panel
(b))or below (panel (a)), but we remind that above the resonance there is
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Figure 6.13: We plot the fidelity (a,b) and the square of the phonon co-
herences (c,d), as a function of the initial phonon temperature, as obtained
from the semiclassical calculation for a system of four ions. Different lines
correspond to different detunings. Panels (a) and (c) consider cases where
the second phonon resonance is approached from below (where the mag-
netic order is ferromagnetic), while panels (b) and (d) consider cases where
the same resonance is approached from above (where a glassy regime occurs
near the resonance). In our system, the second resonance occurs at a fre-
quency ω2 = 14332.7 kHz. All calculations were done for τ = 10 ms. Each
point is obtained by sampling over 1,000 runs. The ascribed error is 2σ.
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a finite region in which the fidelity is zero even at T = 0, cf. the discussion
of Fig.( 6.11) in Sec. 6.4.6.

Regarding the phonon population, we assume that a reasonable estimate
of 〈n̂k〉 is given by |αk|2, as would be the case if the phonon field remains
coherent. In Fig. 6.13(c,d), we may distinguish two different regimes: At
low temperatures, i.e. for T . 10−5 K, the final phonon population is dom-
inated by those phonons which are produced by the spin-phonon coupling.
The number of those phonons is independent from the temperature, and
as shown earlier in Fig. 1(b), such phonons are generated also at T = 0.
The proximity to the resonance induces a larger population of the domi-
nant mode, resulting in a larger value for the population as we approach
the resonance. In contrast, for high temperatures, the phonon population is
dominated by thermal phonons present already in the beginning of the evo-
lution. In this case, the phonon population is more or less constant during
the evolution, and the population number strongly depends on the temper-
ature, according to the initial values from the Boltzmann distribution. As
in this case, the time evolution does not noticeably change the phonon dis-
tribution, initial and final distribution are very close, and so are initial and
final temperature. Between the low- and high- temperature phase, there
is a narrow crossover regime, where the number of dynamically generated
phonons is similar to the number of thermal phonons. The temperature at
which this happens generally depends on the detuning, i.e. on ωL. In all
cases, the fidelity drop occurs only in the high-temperature regime, that is,
the number of thermal photons must be large compared to the dynamically
generated phonons in order to negatively affect the spin evolution.

6.5.3 Thermal tolerance of the Lamb-Dicke regime

The Hamiltonian in Eq. 6.14 describes the trapped ion system when it is
in the Lamb-Dicke regime, that is, for kx ≪ 1. In a harmonic oscillator
with frequency ω, we have〈x2〉 = ~

mω

(

〈n〉+ 1
2

)

. With k =
√

2mωrec/~,
and introducing the Lamb-Dicke parameter η =

√

ωrec/ω, we re-write the
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Lamb-Dicke condition as

η
√

2〈n〉+ 1 ≪ 1 . (6.22)

All phonon frequencies ω are of the order of the radial trap frequency,
ωrad = 2π × 2, 655 kHz. In our simulation, the recoil frequency is taken as
ωrec = 2π×15 kHz, so we obtain a Lamb-Dicke parameter η ≈ 0.075. Thus,
the Lamb-Dicke regime requires

√

〈n〉+ 0.5 ≪ 10, which is fulfilled by a
phonon occupation 〈n〉 . 1. From that perspective, we have to disregard
those calculations where the phonon population exceeds this number. From
Fig. 6.13(c,d) we find that, for the Rabi frequency we have used, phonon
numbers above 1 occur in the thermally dominated regime, independent
from the detuning. This regime is characterized by temperatures > 10−4

K.



CHAPTER 7

CONCLUSIONS

In this thesis we have covered a broad set of problems relevant in con-
temporary quantum many-body physics which can be tackled with exact
diagonalisation tools. In this final chapter we present a brief summary and
the main conclusions which can be drawn from this thesis following the
different chapters.

Chapter 2: Cold bosons in optical lattices: a tutorial

for exact diagonalisation

In Chapter 2 we presented in some detail the exact diagonalisation method-
ology which is common to most of the work presented in the thesis.

We have provided a comprehensive study of Bose-Hubbard models com-
posed of a small number of atoms, ≃ 10 populating a small number of sites,
≃ 10. First, we have introduced the Bose-Hubbard model together with a
detailed description of the exact diagonalization technique employed. Then

185
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we have concentrated in the Mott insulator to superfluid transition, first
discussing its characterisation by means of exact overlaps with trial wave
functions and secondly by performing finite size scaling of the gap.

We have also studied a highly biased lattice, in which one site is consid-
erably deeper than the others. In this case, the system undergoes several
transitions, from a fully localized state to a MI phase, going through par-
tial superfluid phases, in which more and more atoms delocalized prior to
localizing in the MI. The way the MI phase grows in population has been
shown to proceed stepwise as the interaction is increased.

In the attractive interactions case, we have considered a small biased
case, to understand the competition between attraction and localization.
For sufficiently large attractive interactions, the system fully localizes due
to the bias. At lower attractions, the system develops a cat like structure.
Prior to this, the system goes through a state in which the number of
populated Fock states is maximal.

Chapter 3: Quantum Hall phases of two-component

bosons

In Chapter 3 we studied a system composed of two different kind of bosons
in a 2D disc geometry subjected to an artificial perpendicular magnetic
field. In this framework we discussed the different quantum Hall phases
which appear as we vary the strength of the magnetic field. The results
obtained from the exact diagonalisation calculations are well understood in
terms of the trial wave functions derived in the composite fermion picture.

In particular we are able to identify the integer quantum Hall phase for
bosons, which appears at ν = 2, from the structure of the edge states. This
phase could be realized in experiments with cold atoms, and detected by
measuring pair-correlation functions.
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Chapter 4: Topological phases of lattice bosons in a

dynamical gauge field

In Chapter 4 we made an incursion into the physics of dynamical gauge
fields. In contrast with the previous chapter, where the artificial perpendic-
ular magnetic field was static, in this chapter we consider a model where
the gauge field is dynamic.

We have studied topological properties of a bosonic quantum gas with
an experimentally feasible, synthetic dynamical gauge field. The different
topological phases have been identified by computing the Chern number.
The Mott insulating phase provides a trivial vacuum, above which we study
the one-particle excitations, forming gapped energy bands. Decreasing the
interactions, we first observe transitions in the excited bands, from topo-
logically non-trivial phases to gapless phases. In this respect, the system
behaviour does not differ from the one of a system with static magnetic
field. A particular feature of the dynamic gauge field is a topological transi-
tion in the ground state, in which the sign of the Chern number is inverted.
In principle these kind of models could be implemented in ultracold atomic
gases experiments. As in our proposal the length of the system in one di-
mension is very small a way to build it in a experimental set-up would be
using synthetic dimensions.

Chapter 5: Modified spin-wave theory and spin liq-

uid behaviour of cold bosons on an inhomogeneous

triangular lattice

In this Chapter we have studied the fate of quantum spin liquid phases in
realistic experimental conditions, namely, in presence of an harmonic con-
finement. The modified spin wave theory, originally formulated for bosons
in a triangular lattice at half filling, was re-derived for arbitrary filling fac-
tors. With this generalization, it can be used to capture, within a local
density approximation, the physics of inhomogeneous systems.

We have shown that the prediction of spin liquid behaviour for an
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anisotropy t ≈ 1.65 does not depend much on the filling factor, and should
therefore survive in a trapped gas. This expectation was backed by results
from exact diagonalization in lattices of 24 sites. These results support
the existence of another quantum spin liquid region at lower anisotropy,
t ≈ 0.6, which is not detected by modified spin wave. Such discrepancy is
not surprising. It is reasonable to expect that the modified spin wave is able
to detect a quantum spin liquid phase only between two classical ordered
phases while it is blind to transitions that are purely quantum. Our study
provides strong hints for a robust spin liquid phase of bosons in anisotropic
triangular lattices with antiferromagnetic tunnellings, which is not affected
by weak trapping potentials as used in experiments.

The robustness of the spin-liquid phase in presence of a weak harmonic
confinement allow for the experimental investigation of these exotic quan-
tum phases. The realization of the XX Hamiltonian for bosons in the
strongly correlated regime relies on the periodic driving of the triangu-
lar optical lattice, which allows inverting the sign of the tunnelling matrix
elements as well as controlling their amplitude. The ability to tune the tun-
nelling amplitude independently from the on-site interaction allows reaching
strongly correlated phases where U ≫ |Jeff | without increasing the lattice
depth. Indeed, as the effective tunnelling Jeff follows a 0th order Bessel
function as the shaking amplitude is increased, the system shall first en-
ter a Mott-insulating phase before reaching the anti-ferromagnetic side of
the phase diagram and thus the quantum spin liquid phase. Such a trajec-
tory has allowed for a reversible crossing of the superfluid to Mott-insulator
phase transition in a driven cubic lattice [204]. One limiting factor however
are multiphoton resonances to higher lying Bloch bands, which critically
reduce the coherence of the bosonic gas [216]. These resonances occur when
a multiple of the shaking frequency matches the gap between the renormal-
ized bands. Therefore an optimized scheme for crossing the quantum phase
transition while avoiding such resonances has to be developed.
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Chapter 6: Quantum annealing for the number par-

titioning problem using a tunable spin-glass of ions

In Chapter 6 we present a proposal to solve the number partitioning prob-
lem by means of a quantum annealer made of a spin-glass of ions. Our
work demonstrates the occurrence of Mattis glass behaviour in spin chains
of trapped ions, if the detuning of the spin-phonon coupling is chosen be-
tween two resonances. In these regimes, the effective spin system has an
exponentially large number of low-energy states, and finding its ground state
corresponds to solving a number-partitioning problem. This establishes a
direct connection between the properties of a physical system and the so-
lution of a potentially NP-hard problem of computer science. Given the
state-of-art in experiments with trapped ions, the physical implementation
is feasible: In comparison to previous experiments with trapped ions [227–
230, 277], only the detuning of the spin-phonon coupling needs to be ad-
justed. Differently from other approaches to spin glass physics, our scheme
does not require any disorder. In its most natural implementation, parity
symmetry allows one to analytically determine the ground state. Different
ways to break this symmetry can be implemented to increase the complexity
of the problem.

We have considered a chain of trapped ions with an internal state (“spin”)
coupled to vibrational modes via Raman lasers. The couplings are such
that the effective model describing the ions is a long range spin model with
tunable, pseudo-random couplings, leading to a spin-glass-like phase. The
goal of our approach is the adiabatic distillation of the ground state in
the glassy phase starting from a completely paramagnetic state. To this
aim we consider the addition of a time-dependent transverse magnetic field.
Our procedure goes as follows: At the initial time, the magnetic field is
strong enough to ensure the ground state of the spins is a ferromagnetic
state, with all spins aligned in the transverse direction. As time evolves we
slowly, ideally adiabatically, remove the magnetic field such that the final
Hamiltonian is our effective long-range spin model in the spin-glass-like
phase.
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The ion chain then becomes an ideal test ground for applying quantum
simulation strategies to solve computationally complex problems. By apply-
ing a transverse field to the ions, quantum annealing from a paramagnet to
the glassy ground state is possible. The ionic system may be used to bench-
mark quantum annealing, which has become a subject of very lively and
controversial debate since the launch of the D-Wave computers [223, 224].
Exact calculations for small systems (N = 6) and approximative calcula-
tions for larger system (N = 22) demonstrate the feasibility of the proposed
quantum annealing, and suggest a polynomial scaling of the annealing time.
Accordingly, this approach may offer the sought-after quantum speed-up.
In view of sizes of 30 and more ions already trapped in recent experiments
(cf. Ref. [303]), a realization of our proposal could not only confirm our
semi-classical results, but also go beyond the sizes considered here.

We have simulated our annealing protocol using the exact evolution by
means of a Krylov subspace method which is feasible for a small number
of ions. In order to consider larger systems as well as to study the effect
of temperature on the time evolution we have developed a semiclassical
formalism which ignores the quantum correlations between the ions and the
phonons. The quality of this method has been benchmarked by comparing
its predictions with the exact evolution for four ions. The semiclassical
model is found to provide a very accurate qualitative picture of our proposed
method, and allows us to correctly identify the parameter region where the
annealing protocol works well. By means of the semiclassical model we have
thus extended our study to larger number of ions, providing an accurate
picture of the ability of the annealing protocol to find the correct ground
state depending on the annealing time.

Finally, the semiclassical model has allowed us to study the robustness
of the scheme for initial phonon states at finite temperature. We find that
the effect of temperature strongly depends on the detuning from a phonon
resonance. While in most configurations, the quantum annealing does not
break down within the Lamb-Dicke regime, close to a resonance the situa-
tion is different. Here, the fidelity of the annealing may drop even before
the Lamb-Dicke limit is reached. Thus, while state-of-art spin model simu-
lations which are carried out far off any phonon resonance (e.g. Refs. [282,
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290]) require only cooling to the Lamb-Dicke limit, quantum annealing in
the interesting glassy regime requires more cooling. Accordingly, our finding
motivates the development of new, more efficient cooling techniques, as for
instance cooling based on electromagnetically-induced transparency [304–
306], which is very well suited to simultaneously achieve low populations in
all radial modes.

Outlook

Exact Diagonalization was the central theme of this doctoral thesis. It is
a method which, obviously has its limitations –it can only been applied
to systems of not too large size. Still, for many problems it is the unique
method to give insights into approximate numerical results obtained for
large systems. This thesis prove this fact with several important examples.

Exact diagonalizations will be used in QOT at ICFO and in the Quan-
tum Technologies group at UB. For instance, there is a lot of interest in
the systems in dynamical latices, in which bonds of the lattices are dynam-
ical. Either possessing phonons or other degree of freedom. This locates
ED in a good position, since one has to locate particles on the sites and
phonons on the bonds. These models are used to understand fluctuating
bond superconductivity or quantum simulators of quantum gauge lattices.

Particularly challenging uses are in the dynamical quantum dynamics.
We have initiated this kind of quantum dynamics in Chapter 6. Possi-
ble applications of exact diagonalization in quantum dynamics involves few
particle systems, small atomtronics devices, quantum simulators of intense
light-matter interactions and studies of disordered system and many-body
localization.
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APPENDIX

A.1 Subroutines for the labelling procedure

Explicit Fortran subroutines to generate the Fock basis labelling as ex-
plained in Sect. 2.3.1. First we need to build the Pascal triangle, depending
on the total number of sites and particles, this is done with buildpascal.
Once this is generated, we can use b2in and in2b, to from the basis to the
index or vice versa, respectively.

c original from A. V. Ponomarev (2009)

subroutine buildpascal

c lc=number of sites +1

c nc=number of atoms +1

parameter (lc=4,nc=3)

double precision jbc

integer cnkc(lc,nc)

193



194 Appendix A. Appendix

integer jmax

common/pascal/jmax,cnkc

c builds the rotated pascal triangle

do i = 1,lc

cnkc(i,1) = 1

end do

do i = 1,lc

do j = 2,nc

cnkc(i,j) = 0

end do

end do

do in1 = 2,lc

cnkc(in1,2) = sum(cnkc(in1-1,1:2))

if (nc-1.gt.1) then

do in2 = 1,nc

cnkc(in1,in2) = sum(cnkc(in1-1,1:in2))

end do

end if

end do

jmax = cnkc(lc,nc)

end

c ---------------------------------------------

c Returns the many body state bi at position in

c ---------------------------------------------

c original from A. V. Ponomarev (2009)

subroutine b2in(bi,in)

implicit none

integer in,lc,nc,jmax,ind_L,ind_N,indi,k,is,i

parameter (lc=4,nc=3)

integer cnkc(lc,nc),bi(lc),suma,M,in1,in2

common/pascal/jmax,cnkc

c builds the rotated pascal triangle
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in=1

do indi=1,lc-2

do ind_N=0,bi(indi)

if (bi(indi)-ind_N.gt.0) then

suma=0.

do k=1,indi-1

suma=suma+bi(k)

enddo

if (lc-indi.gt.0.and.nc-ind_N-suma.gt.0) then

is=0

in=in+cnkc(lc-indi,nc-ind_N-suma)

endif

endif

enddo

enddo

end

c ---------------------------------------------

c Returns the many body state bi at position in

c ---------------------------------------------

c original from A. V. Ponomarev (2009)

subroutine in2b(in,bi)

implicit none

integer in,lc,nc,jmax,ind_L,ind_N,indi

parameter (lc=4,nc=3)

integer cnkc(lc,nc),bi(lc)

common/pascal/jmax,cnkc

indi = in-1



196 Appendix A. Appendix

bi = 0

ind_L = lc-1

ind_N = nc

do while(ind_N.ne.1)

if(indi.ge.cnkc(ind_L,ind_N)) then

indi=indi-cnkc(ind_L,ind_N)

bi(lc-ind_L)=bi(lc-ind_L)+1

ind_N = ind_N-1

else

ind_L = ind_L-1

end if

end do

end

A.2 Composite Fermion construction

A quite general feature of quantum Hall wave functions are strong anticorre-
lations between the particles, introduced by the magnetic fluxes. Formally,
such anticorrelations are described by a Jastrow factor,

Jm({z}) =
∏

i<j

(zi − zj)
m, (A.1)

which prohibits two particles to be at the same position z = x + iy. In
the composite fermion picture [116], such Jastrow factors are interpreted as
flux attachments, that is, Jm makes each particle to be seen by the other
particles as a vortex with vorticity m. A system of N particles and NΦ

magnetic fluxes can thus alternatively be seen as a system of N composite
particles, and N ′

Φ ≡ NΦ −mN fluxes. For the exchange symmetry of the
composite particles to be fermionic, m has to be odd (even) if the original
particles are bosons (fermions). The appeal of the composite fermion picture
is based on the fact that the composite particles very often turn out to form
integer quantum Hall liquids, that is, their wave functions are simply given
by a Slater determinant for a system with N ′

Φ fluxes.
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The composite fermion construction is often carried out for systems on
the surface of a sphere. Such closed geometry offers the advantage that each
Landau level has a finite number of states, which defines the notion of “filled”
Landau levels. Each level then accounts for a well-defined, finite amount
of magnetic flux, and the number of occupied Landau levels is uniquely
defined by N ′

Φ. Accordingly, one can also define a filling factor, ν = N/NΦ,
and in this way conveniently relate the system in the closed geometry to a
thermodynamically large system in a plane geometry.

In this paper, we study a small system in a plane geometry. For a
rotationally symmetric system, it then becomes most convenient to intro-
duce the angular momentum Lz (in perpendicular direction to the system
in the xy-plane) as a constant of the motion. By assuming that the system
spends all angular momentum as relative angular momentum between pairs
of particles, Lz (in units of ~) relates to the number of fluxes as

NΦ =
Lz

1
2(N − 1)

. (A.2)

In the thermodynamic limit, this can then be related to the filling factor,
ν.

To perform the composite fermion construction, we note that the Jas-
trow term Jm consumes m

2 N(N − 1) quanta of angular momentum. Ac-
cordingly, a state with quantum number Lz is described by the Jastrow
term multiplied with a Slater determinant of total angular momentum
L′
z = Lz − m

2 N(N − 1). It may happen that L′
z < 0, a situation in which

more fluxes have been attached to the particles than the magnetic field pro-
vides. Effectively, the composite particles then feel an opposite magnetic
field. Such flux-reversion corresponds to a complex conjugation of the wave
function.

For distributing the angular momentum L′
z over N composite fermions,

we have to note that the Landau level structure implies that ℓ ≥ −n, where
ℓ is the angular momentum, and n is the energy quantum number of the
single-particle states. That is, in the lowest Landau level (n = 0), we
have states with ℓ = 0, 1, 2, . . . , whereas in higher Landau levels (n > 0)
also states with negative angular momentum exist. Starting in the lowest
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Landau level, we fill each single-particle state from ℓ = 0 up to ℓ(1)max, and
similarly for higher levels from ℓ = −n to ℓ(n)max. Different from the closed
geometry, in the plane system there are no a priori values for the maximum
angular momentum ℓ

(n)
max in each Landau level. However, changing ℓ

(n)
max

will typically also modify the total angular momentum L′
z of the Slater

determinant. Accordingly, specifying the angular momentum will fix this
freedom.

We now turn to the two-component case discussed in this paper. In the
main text, we have introduced the composite fermion wave functions as

Ψ
[na,nb]
Lz

= PLLL [Φna({za}) Φnb
({zb})J({z})] , (A.3)

for a given Lz, and given numbers Na and Nb of type-a and type-b particles
(or pseudospin). In the Jastrow term J({z}), no distinction between a and b
particles is made. After the flux attachment, however, the two components
should be independent, so we write Φna({za}) (Φnb

({zb}) for the Slater
determinant of the a (b) particles. The indices na (nb) shall determine
the number of occupied Landau levels in both Slater determinants, and
negative values of na (nb) shall denote the case of reversed flux. While in
a closed geometry, this information would already uniquely define the wave
function, the plane geometry, as explained above, allows for different ways
of distributing Na (Nb) particles to na (nb) Landau levels. But again, the
total angular momentum Lz can be used as an additional label.

Trying to make a connection to the thermodynamic limit and/or the
system on the sphere, one associates the wave function Ψ

[na,nb]
Lz

with a filling
factor fully defined by the choice of [na, nb]. It reads [106]:

ν =
na + nb

na + nb + 1
. (A.4)

There is one possibility for an integer filling factor, and thus an integer
quantum Hall phase, at na = nb = −1, and ν = 2.

To exemplify the construction on the plane, we have listed in Table
A.1 all composite fermion wave functions with Na = Nb = 3. In this
table, we give the corresponding angular momentum of the system and the
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composite fermions, Lz and L′
z, and we specify which single-particle states

enter the construction. The listed wave functions yield all incompressible
phases found on the Yrast line shown in Fig. 1 of the main part. While the
choice Na = Nb implies that the z-component of spin Sz is zero, the total
spin is given by the multiplicities of the composite fermion wave functions.
For na = nb, there is a single wave function and thus a singlet, whereas
for na 6= nb (at least) two equivalent wave functions related through a spin
rotation exist. The composite fermion construction then yields an SU(2)
multiplet.

An important part in the definition of Eq. (A.3) is the projection op-
erator PLLL which shall bring the expression in the lowest Landau level,
that is, the low-energy Hilbert space of the problem. Projecting in the
lowest Landau level amounts for getting rid of complex conjugate variables
z∗, which naturally occur when the Slater determinants extend to higher
Landau levels. While there is no unique way of performing the projection,
a natural way [116] is to replace the complex conjugate coordinate z∗ by a
derivative ∂/∂z, leaving the total angular momentum of the wave function
unchanged.

A.3 Evaluation of the Chern number

The twisted boundary conditions are particularly useful to characterize
topological phases. They allow one to define Chern numbers in an interact-
ing many-body system [145]. Quite generally, the Chern number is defined
for the energy levels n of a Hamiltonian H(k1, k2) = H(k1 + 2π, k2) =
H(k1, k2 +2π), which periodically depends on two parameters k1 and k2 in
the following way,

cn =
1

2πi

∫ 2π

0
dk1

∫ 2π

0
dk2 F

(n)
12 (k1, k2) (A.5)
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where the Berry connection A(n)
µ (k1, k2) (µ = 1, 2) and the associated

strength F (n)
12 (k1, k2) are given by

A(n)
µ (k1, k2) = 〈n(k1, k2)| ∂µ |n(k1, k2)〉 (A.6)

F
(n)
12 (k1, k2) = ∂1A(n)

2 (k1, k2)− ∂2A(n)
1 (k1, k2) (A.7)

with |n (k1, k2)〉 being the n-th normalized eigenvector.
Following the method of Fukui et al. [307], the Chern numbers can

conveniently be calculated by discretizing the parameter space,

c̃n =
1

2πi

∑

k1

∑

k2

F̃
(n)
12 (k1, k2) (A.8)

with the lattice field strength,

F̃
(n)
12 (k1, k2) = ln

[

U
(n)
1 (k1, k2)U

(n)
2 (k1 + dk1, k2)

U
(n)
1 (k1, k2 + dk2)U

(n)
2 (k1, k2)

]

,

− π <
1

i
F̃

(n)
12 (k1, k2) ≤ π

(A.9)

being dkµ the resolution of each parameter and U (n)
µ the link variables from

the eigenstates of the nth band,

U (n)
µ ≡

〈

n(k1, k2)
∣

∣n(k1 + dk1δ1,µ, k2 + dk2δ2,µ)
〉

∣

∣

〈

n(k1, k2)
∣

∣n(k1 + dk1δ1,µ, k2 + dk2δ2,µ)
〉∣

∣

. (A.10)

A special case which is important for our purposes concerns the Chern
number of degenerate bands. Since the eigenstates are not unique in the
degenerate points, we cannot associate Chern numbers to individual states.
For M degenerate or quasi-degenerate states, we consider the multiplet
ψ = (|n1〉 · · · |nM 〉) to define a non-Abelian Berry connection A = ψ†dψ,
which is an M × M matrix-valued one form associated to ψ. Then, we
consider the overlap matrix

[

u(n)µ

]

ij
≡
〈

ni(k1, k2)
∣

∣nj(k1 + dk1δ1,µ, k2 + dk2δ2,µ)
〉

, (A.11)
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Figure A.1: Separation time (a)) and Fidelity (b)) of systems with 6 spins
for several values of ε and τ , with initial populations of phononic modes set
to 0. Waiting time is fixed to 20τ and ωL = ωN − 1500 kHz.

in order to properly define the link variables

U (n)
µ ≡

det
[

u
(n)
µ

]

∣

∣

∣
det
[

u
(n)
µ

]∣

∣

∣

(A.12)

Finally, the Chern number c̃ψ and field strength are calculated using Eqs. (A.8)
and (A.9).
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A.4 Robustness of the semiclassical calculation

One can test the quality of the integration method by checking whether the
constants of motion are conserved. In time-independent systems, the total
energy of the system is usually the conserved quantity which can be com-
puted most easily. Unfortunately, since the Hamiltonian in Eq. 6.14 does
not commute with itself at different times due to the transverse magnetic
field in the annealing term, the total energy of the system is not conserved.
Furthermore, it is challenging to find an analytical expression for an al-
ternative conserved quantity given the infinitely non-commutativity of the
Pauli matrices algebra. We have tested the integration method checking its
time reversibility. The latter test has given relative differences below 10−7,
which is within the range of the computation precision.

A.5 Optimal bias for the exponential annealing func-

tion

Although the only function of the bias potential ǫ is to break Z2 symmetry
in the target Hamiltonian, it turns out that the value and position of the
bias have a non-negligible effect on the outcome of the annealing process.
Here, we investigate which values of the bias ǫ and the annealing parameter
τ minimize the separation time. As seen in Fig. A.1 a), the separation time
is minimized for smaller values of τ , at any value of the bias larger than Hz.
However, small τ are known to affect negatively the fidelity. As we see from
Fig. A.1 b), there is, even for decay times as short as a few ms, a range of
bias potentials (roughly between 1 kHz and 10 kHz), where the fidelity gets
large. Thus, this range defines the optimal choice for ǫ, which we have also
used in our calculations.

We also note that the magnitude of the bias provides a bound for the
maximum absolute value of 〈σx〉, that is, the spin expectation on the biased
site at the end of the annealing depends on the strength of the bias potential.
For a weak bias, this spin will deviate only weakly from zero, limiting the
overall fidelity.
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