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Resum

En aquesta tesi hem derivat una teoria efectiva de camps per tal de descriure la desinte-
gració feble no mesònica d’hipernuclis. Aquest és un procés extremadament ric. Involu-
cra diversos ingredients que abarquen des d’una precisa comprensió de les interaccions
fortes entre els hadrons lleugers, fins a una descripció adequada dels mecanismes febles
que desencadenen la desintegració de l’hipernucli. Avui dia els hipernuclis són prodüıts
rutinàriament en diverses instal·lacions arreu del món i les seves desintegracions es poden
mesurar amb bona precisió. Això fa que aquests sistemes siguin un bon laboratori on
estudiar la f́ısica de la interacció feble.

En aquest treball ens hem concentrat en la derivació dels mecanismes de desintegració
febles, els quals constitueixen la part menys coneguda en el procés de desintegració hiper-
nuclear. En particular, hem estudiat la transició ⇤N ! NN , principal responsable de la
desintegració d’hipernuclis amb un nombre atòmic igual o superior a cinc. Això és degut
a què la desintegració mesònica de la part́ıcula ⇤ (únic canal de desintegració possible per
aquest hiperó a l’espai lliure) està fortament suprimida en el medi nuclear. Aquest canal
produeix un nucleó i un pió a l’estat final, però aquest nucleó no té prou energia com per,
o bé escapar del nucli, o bé accedir a estats lliures per sobre del nivell de Fermi. Aquesta
interacció s’ha descrit anteriorment usant models d’intercanvi d’un mesó, integrant-se en
el càlcul de l’amplitud de desintegració hipernuclear un cop s’han tractat de forma realista
els aspectes d’estructura nuclear lligats a la descripció de l’hipernucli inicial. El resultat
és un acord força raonable entre els ritmes de desintegració total i parcial teòrics i les
dades experimentals. Aquest èxit en els models fenomenològics d’intercanvi d’un mesó
ens ha motivat a fer un pas més enllà i desenvolupar una descripció fonamental del procés
⇤N ! NN , basada en una teoria efectiva de camps (EFT).

La derivació d’aquesta teoria efectiva és el principal resultat (formal) d’aquesta tesi.
El seu desenvolupament és essencial per tal de tenir una sòlida comprensió del problema
des del punt de vista teòric. Proporciona una descripció del procés de desintegració menys
depenent de model i permet millorar les prediccions de la teoria d’una forma sistemàtica.
Les teories efectives es construeixen basant-se en una clara separació d’escales f́ısiques en el
problema considerat i en l’existència d’un paràmetre prou petit com per poder definir una
expansió. En el cas de la interacció forta nucleó-nucleó a energies baixes, on les EFT’s
s’han desenvolupat durant l’última dècada d’una manera molt exitosa, es pot prendre
com a valor d’aquest paràmetre el moment dels nucleons. En el nostre cas, i donat que el
moment intercanviat entre els barions és de l’ordre de 400 MeV/c, el paràmetre petit el
constrüım a partir del quocient de dues escales f́ısiques, una associada al valor del moment
intercanviat, q, i l’altra a la massa promig dels barions que participen en el procés.

Havent formulat la teoria fins a ordre O(q2), ens hem centrat en examinar les dades

v



vi

experimentals existents. Degut a la poca quantitat de dades experimentals disponibles
per a nuclis lleugers hem decidit concentrar-nos en la implementació de l’ordre més baix
de la teoria, i d’aquesta manera hem obtingut els valors teòrics per als observables corre-
sponents a tres hipernuclis lleugers, 5

⇤He,
11
⇤ B i 12

⇤ C. La mateixa teoria a ordre més baix
s’ha utilitzat per tal de predir el valor de la tasa de desintegració no mesònica per a
l’hipernucli més lleuger que podem construir, l’hipertritó. Per tal d’entrar en detall en
com tot el procediment s’ha dut a terme, resumim a continuació els resultats principals
de la tesi, presentats en els caṕıtols 2, 3 i 4.

Descripció de la interacció ⇤N ! NN amb teoria efectiva de
camps

En el caṕıtol 3 descrivim la teoria efectiva de camps desenvolupada per a l’obtenció de
l’amplitud de desintegració feble. Primer notem que degut a la diferència en massa entre
la ⇤ i el nucleó, els nucleons emergents s’emporten sempre un moment mı́nim diferent
de zero. Aquest fet ens força a incloure en la nostra teoria efectiva graus de llibertat
mesònics (el pió i el kaó) acompanyant els termes de contacte. Aquests termes de contacte
representen la f́ısica d’alta energia (o les curtes distàncies de la interacció) i juguen un
paper equivalent a l’intercanvi de mesons pesats en models d’intercanvi mesònic.

Aix́ı, descrivim l’amplitud feble a primer ordre per mitjà d’un intercanvi expĺıcit d’un
pió i un kaó més interaccions de contacte a ordre zero en l’expansió de moment. Les
constants d’acoblament que apareixen en els vèrtexs barió-barió-mesó, o bé es poden
obtenir directament dels experiments (com en el cas del pió), o bé s’han de derivar util-
itzant simetria SU(3) de sabor. La teoria efectiva a ordre zero és fàcilment derivable
tenint en compte totes les possibles estructures de moment, spin i isosṕın que són com-
patibles amb les simetries del nostre problema, i té, a aquest ordre, només dues estructures
operacionals i per tant dues constants de baixa energia.

La virtut de la descripció efectiva és que, dins del limitat rang de valors que pot prendre
el paràmetre usat per definir la teoria, un pot investigar les contribucions dels següents
ordres de l’expansió. En aquest caṕıtol hem derivat la teoria efectiva fins a ordre O(q2).
Primer s’han escrit totes les interaccions de contacte fins a aquest ordre, i després, hem
calculat tots els diagrames que participen en l’intercanvi de dos pions. Tots els detalls del
càlcul d’aquests diagrames, agrupats per la seva topologia segons formin boles, triangles
o quadrats, es donen a l’apèndix. Cal dir que aquests diagrames contribueixen a totes les
possibles estructures de spin, isosṕın i moment i per tant el seu efecte s’hauria de tenir
en compte en futurs estudis dins del camp. Notem, tanmateix, que la descripció a ordre
O(q2) inclou 15 constants de baixa energia (dues de les quals ja estan presents a ordre
zero), i que par tant, donat el nombre de dades experimentals (independents) disponibles,
fixar la interacció a aquest ordre és quelcom no assumible en el futur immediat.

Resultats

En el caṕıtol 4, utilitzant el formalisme descrit per al càlcul dels observables de desinte-
gració hipernuclear descrit en el caṕıtol 2, comparem les prediccions de la EFT derivada al
caṕıtol 3 amb les dades experimentals existents. Com ja hem esmentat, la base de dades
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per a la desintegració hipernuclear no mesònica és notablement curta, havent-hi només
uns pocs observables de desintegració d’hipernuclis lleugers mesurats amb bona precisió.
Aquesta escassetat de dades ens ha portat a considerar només la contribució a primer
ordre en l’amplitud de la desintegració ⇤N ! NN , que com hem dit conté només dos
paràmetres independents, els quals sóm capaços de determinar mitjançant un procés de
minimització. Hem dut a terme un ajust als ritmes de desintegració totals, als parcials,
⇤p ! np o ⇤n ! nn, i a l’asimetria dels protons emergents, la qual es pot relacionar amb
la interferència entre las parts de violació i conservació de paritat de l’amplitud feble. Això
ens ha permès extreure els valors de les dues constants de baixa energia que apareixen al
primer ordre de la teoria. Malauradament, les constants de baixa energia trobades no són
completament independents del model usat en la descripció de la interacció forta. Per
tal d’obtenir un coneixement més complet del problema hem comparat les interaccions
de contacte que van acompanyades de les constants de baixa energia amb els potencials
corresponents a l’intercanvi d’un mesó pesat. Això s’ha fet de la següent manera, primer
expandim els potencials d’intercanvi d’un mesó en potències de q, i després igualem la
teoria efectiva amb el model d’intercanvi d’un mesó, ordre a ordre. D’aquesta manera
som capaços d’estudiar la possible contribució d’un mesó escalar-isoescalar en models
d’intercanvi mesònic, tal i com s’havia suggerit en treballs previs.

Un cop finalitzat aquest càlcul ens hem centrat en la desintegració feble de l’hipertritó.
Aquest és un càlcul consistent, on tots els ingredients, siguin forts o febles, deriven d’una
teoria efectiva. En aquest cas, hem presentat el resultat de la desintegració de l’hipertritó
cap a estats finals de tres nucleons o d’un deuteró i un neutró.

Finalment, mostrem, com a exemple, una comparació teòrica entre les contribucions
dels diagrames d’intercanvi de dos pions, que entren a segon ordre en la teoria, i les
corresponents a diagrames d’intercanvi d’un mesó que entren a ordre zero. S’ha trobat
que la contribució de l’intercanvi de dos pions és comparable en tamany a les contribucions
d’intercanvi d’un pió i d’un kaó, i com a conseqüència s’observen importants interferències
tant constructives com destructives entre totes dues contribucions.

Al final de la tesi presentem les possibles extensions i aplicacions del formalisme de-
senvolupat dins del camp de la f́ısica hipernuclear.





Chapter 1

Introduction

Being the lightest among the strange baryons, the ⇤ particle plays an essential role in the
study of nuclear physics phenomena involving strangeness. With a mass of 1115.684 ±
0.006 MeV, it is composed by u, d and s valence quarks and it has zero isospin and charge.
The decay of the ⇤ baryon in free space can only proceed via the weak interaction, and
therefore, through processes that do not conserve parity, strangeness nor isospin. The
decay products are nucleons and pions, which follow the approximate experimental ratio
�(⇤ ! p⇡�)/�(⇤ ! n⇡0) close to 2. This value can be theoretically reproduced using
isospin coupling algebra and assuming dominance of the �I = 1/2 transitions over the
�I = 3/2 ones, assumption that is known as the �I = 1/2 rule for the weak decay of
hadrons. The dynamical origin of such rule is not yet understood at a fundamental level,
neither its universal validity for the decay involving other hadrons.

The ⇤ baryon is one of the many strange baryons currently known. Baryons that
contain one or more strange valence quarks are called hyperons, and nuclei that contain
one or more hyperons are called hypernuclei. The first hypernucleus was discovered in
1952 in Warsaw by Danysz and Pniewski, when they were working with emulsion chamber
experiments. At a height of 26 Km above ground, a high energy proton from a cosmic
ray hit a nucleus from the emulsion, disintegrating it into small fragments. One of them
left a much longer track — it lived much longer than expected by the typical strong
interaction time scales —, and ended up disintegrating mesonically. It was the first
recorded hypernuclear event [1].

After these early emulsion experiments, much e↵ort was placed in obtaining better
statistics on the production and decay of strange systems. The advent of modern particle
accelerators represented a very important step forward this goal, giving rise to a more
accurate set of data which included a wider range of nuclear masses. A beam of hadrons
or electrons, produced in accelerator facilities, collided with a target nucleus, producing
a hyperon in the final state which could be captured by a residual nucleus, forming a hy-
pernucleus. Two types of reactions were used for the production mechanism: strangeness
exchange reactions, where a non-strange quark and a strange quark were exchanged be-
tween the hadrons in the initial and in the final states, e.g. n(K�, ⇡�)⇤, and associated
strangeness production reactions, where a pair of strange and antistrange quarks were
created in the final state, e.g. hadronic reactions as n(⇡+, K+)⇤ or electromagnetic re-
actions as n(e, e0K+)⇤. These processes usually leave the system in some excited state.
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2 Chapter 1. Introduction

The hypernuclear ground state can then be reached via either particle (nucleon) emission,
strong decay modes and/or the electromagnetic processes, with time scales of the order
of 10�16 � 10�24 seconds. Once the ground state is reached, about 10�10 seconds later,
the system decays weakly.

The binding energies and the potential depths of the ⇤ hyperon in light hypernuclei
could already be extracted from the analysis of the above mentioned emulsion experiments.
Later, in the 70’s, di↵erent counter experiments at CERN (Switzerland), BNL (USA)
and KEK (Japan) could produce, through the n(K�, ⇡�)⇤, n(K�

stop, ⇡
�)⇤ reactions, the

first excited hypernuclei. They gave information about hypernuclear structure and the
hyperon-nucleon interaction, such as the particularly small ⇤N spin-orbit force. However,
these experiments still su↵ered from low statistics and had a limited energy resolution in
the spectra. This situation changed in the 80’s, when new experiments, first at BNL and
later at KEK, studied hypernuclei through the n(⇡+, K+)⇤ reaction. The higher beam
intensities that were available allowed one to obtain a spectra of much higher quality,
facilitating the detection of the final particles in the decay mechanism and consequently,
opening the door for a more precise determination of the di↵erent decay observables. In
the 90’s, new experimental techniques were developed based in gamma-ray spectroscopy,
and using the n(e, e0K+)⇤ reaction it was possible to obtain further information on the
hypernuclear energy levels and their weak decay. All this experimental work has led to
characterize quite a variety of hypernuclei (from 3

⇤H to 208
⇤ Pb), extending thus the nuclear

landscape (see Fig.1.1) and providing a better understanding of the hypernuclear structure
and of the interactions among hyperons and nucleons. Most of the international facilities
responsible for this work (BNL, TJNAF, KEK) are still active and producing new data
on hypernuclar spectroscopy and/or hypernuclear decay. The inclusion of an important
strange physics program in the newly constructed experimental facilities (FINUDA at
DAPHNE [3] or the future experiments at JPARC [4] and FAIR [5]) is a clear proof of
the intense experimental activity in the field.

The data collected by hypernuclear experiments has been used to study the elementary
weak ⇤N ! NN interaction. However, the presence of the nuclear medium does not
allow us to extract clean amplitudes for the two-body transition, and experiments less
a↵ected by the medium would be much more desirable. An attempt in this direction was
taken some years ago by proposing to measure the weak production reaction np ! ⇤p
at RCNP (Osaka, Japan). A big e↵ort was invested in extracting di↵erent polarization
observables for this process. However, the experiment su↵ered from very low statistics
due to the very small values of the cross sections for the production mechanism, of the
order of 10�12 mb [6, 7, 8], and these observables could not be extracted [9, 10]. Until the
experimental community overcomes this di�culty and/or physicists come up with new
alternative measurements, the decay of hypernuclei will be the only quantitative way to
obtain information on the weak |�S| = 1 four-fermion interaction.

Along with these experiments, many theoretical groups have invested a lot of e↵ort to
understand the underlying theory governing the decay process, deriving models that were
intended to reproduce the various hypernuclear decay data. In hypernuclei, the ⇤ is not
free anymore but bound inside a medium of nucleons. When the ⇤ decays mesonically,
the final nucleon has a momentum of ⇠ 100 MeV, which is not large enough to access
to unoccupied energy levels in the nucleus, except for very light systems (with A  5).
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Figure 1.1: Layers s = �1 and s = �2 of the nuclear landscape. In the coming years,
new experiments will contribute with more hypernuclei in both layers. Original data for
the ⇤-hypernuclei is taken from [2].

The same medium which is responsible for the Pauli-blocking on the final nucleon, is also
responsible for the appearance of new decay mechanisms, the single and multi-nucleon
induced channels, ⇤N ! NN and ⇤NN ! NNN , where no mesons are detected in the
final state. Fig. 1.2, taken from Ref. [11], shows how the mesonic decay rate decreases
with the mass number A, while the nucleon-induced decay increases, reaching a saturation
value of the order of the decay rate of the ⇤ in free space, reflecting the short range nature
of the ⇤N ! NN interaction. The first counter experiments were able to extract values
for the total non-mesonic decay rate (�nm) and the partial decay rate induced by protons,
�p (⇤p ! pn), while extracting the neutron-induced rate, �n (⇤n ! nn), from direct
subtraction of the former quantities. The newest experimental setups are able to detect
in coincidence two nucleons in the final state, either a nn pair or a np pair, and from this
measure give a realistic estimation of the so called neutron-to-proton ratio, �n/�p. There-
fore, experimentalists usually give two independent quantities to constrain the di↵erent
theoretical models, �nm and �n/�p. Moreover, polarized hypernuclei were produced at
KEK by using the (⇡+, K+) reaction under some particular kinematic conditions. This
polarization produces an asymmetry (A) between the intensity of protons emitted parallel
and antiparallel to the hypernuclear polarization axis, which, in turn, can be related to
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Figure 1.2: Weak decay rates as a function of the mass number A. The lines are theoretical
calculations that use a polarization propagator method and a local density approximation
[11]. The upper dashed and black line represents the total decay rate; the dark blue solid
one represents the non-mesonic decay rate, which is the sum of the one-nucleon induced
(dashed and dark blue line) and two-nucleon induced (dashed and light blue line) decays;
the solid pink lower line represents the mesonic decay rate. The experimental points are
labeled with black squares (for the total decay rates) and with round red circles (for the
non-mesonic decay rates). Figure taken from Ref. [11].

the interference between the parity violating (PV) and parity conserving (PC) amplitudes
corresponding to the ⇤N ! NN transition. Therefore, at most, one can have three in-
dependent quantities characterizing the non-mesonic decay of a given hypernucleus: �nm,
�n/�p and A. For instance, the 5

⇤He observables or the total and partial decay rates for
the p-shell 12

⇤ C and 11
⇤ B hypernuclei measured by KEK-PS E462 and KEK-PS E307 ex-

periments [12, 13]. The decay of lighter nuclei is also desirable due to a cleaner extraction
of the elementary weak four-fermion interaction, less contaminated by the presence of the
medium. As an example, the E22 experiment at J-PARC [14], which will study the decay
of the s-shell 4

⇤H and 4
⇤He systems.

The non-mesonic decay observables have been studied theoretically using di↵erent
approaches. Guided by the previous work done in the description of the strong nucleon-
nucleon (NN) interaction, hypernuclear physicists have tackled the weak ⇤N ! NN
transition in analogous ways. As a first step, the interaction was interpreted as the emis-
sion of a pion by the ⇤ hyperon that was absorbed by one of the nucleons in the medium.
The result was that the non-mesonic decay rate could be fairly reproduced by this pion-
exchange (OPE) mechanism, while the values obtained for the neutron-to-proton ratio
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were too low compared with the central experimental numbers [15]. The reason resides
in the dominance of the OPE tensor term which, for transitions induced by s-shell nu-
cleons, translates in very low values for the production of a nn pair, and consequently,
for �n/�p. A number of improvements were proposed: (a) the inclusion in the exchange
mechanism of heavier mesons and uncorrelated two-pion exchanges, which would account
for shorter ranges in the interaction[16, 17, 18, 19, 20], and produce interferences in the
di↵erent spin-isospin transition channels that could increase the neutron-to-proton ratio,
while keeping the total non-mesonic decay rate in agreement with the experimental data;
(b) the inclusion of explicit �I = 1/2 breaking terms [21, 22]; (c) the consideration of the
two-nucleon induced channel, ⇤NN ! NNN [23, 24, 25, 26]; and (d) the combination of
the long-ranged OPE mechanism with quark models suited for the description of shorter
distances [27, 28]. Although these improvements succeeded in predicting a larger value for
the theoretical neutron-to-proton ratio with a moderate increase in the total non-mesonic
decay rate, a clear better agreement with experimental data was not achieved until an ac-
curate description of the medium e↵ects was included [29]. For instance, the partial decay
rates, extracted with good precision from two-nucleon coincidence experiments performed
at KEK [12, 30, 31, 32], could not be reproduced until the final state interactions between
the outgoing nucleons and the residual nuclear medium were accounted for [33, 34, 35].

One of the remarkable good points regarding the theoretical models used is that, with a
simple set of parameters, they successfully reproduce hypernuclear decay rates. However,
these approaches have a very narrow scope and one can argue if they are really connected
to the underlying physics —the results are model dependent—. For instance, in the one-
boson exchange (OBE) model, the non-pionic couplings and form-factors are unknown
and must be derived using SUF (3) and SU(6) = SUF (3) ⌦ SUspin(2) symmetries, which
we know are broken at the 30% level (at least). Moreover, the vector mesons (⇢, !, K⇤)
are too heavy to probe the short ranges (r ⇠ 0.25 fm) they account for. At these small
distances, the wave functions from the interacting baryons and mesons overlap, and one
may wonder if the quark degrees of freedom would already play an important role in the
interaction. A more general approach, more deeply connected to the underlying theory,
is required to gain more fundamental insight.

Since the development of quantum chromodynamics (QCD), physicists have tried to
understand nuclear physics from a broad perspective. The main drawback with this
approach is the non-perturbative nature of QCD, which prevents the use of perturbative
methods to solve the nuclear force in terms of the basic ingredients of QCD, quarks and
gluons. Two theoretical e↵orts, very interconnected, are trying to overcome this problem,
lattice QCD (LQCD) and e↵ective field theories (EFTs), both giving very encouraging
results (e.g. [36, 37]).

On the one hand, LQCD uses the path-integral formalism to perform finite-volume
calculations in a discretized space-time, by using a lattice of size L and distance between
nodes (lattice spacing) a. Within this approach, quarks are placed in the nodes of the
lattice while gluons, the carriers of the strong force, act as links connecting those nodes.
This discretization provides a natural cut-o↵ for the theory of the order of 1/a. Moreover,
the space-time is Wick-rotated so an Euclidean time is obtained. Then the theory, regu-
larized by this cut-o↵ and defined in the Euclidean space, can be solved by using numerical
Monte-Carlo methods. The cost of performing numerical calculations of QCD increases
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with decreasing quark mass (mq) values. As a result, most of the present day computa-
tions involving baryons can only be done with unphysical large values for the light quark
masses. After performing a few calculations using unrealistic mq values, extrapolations
(based on e↵ective theories) to the physical up and down masses are required to connect
the numerical results to nature. The computational cost also increases with increasing
volumes and decreasing lattice spacings, and therefore, additional infinite volume and
continuum extrapolations have to be undertaken to give realistic predictions for physical
observables. Although computationally expensive, LQCD has the great advantage to pro-
vide direct information on the baryon-baryon interaction without contamination of the
medium [38, 39, 40, 41]. A few attempts have been made to use this technique also in the
weak sector involving baryons. The calculation is technically much more involved than
the strong counterpart, and only very preliminary results have been published concerning
the NN parity-violating amplitude [42].

On the other hand, e↵ective field theories designed to describe hadronic processes do
not use the fundamental Lagrangian formulated in terms of quarks and gluons, but one
built with only degrees of freedom which are relevant at the low-energy (nuclear) scale.
The short range Lagrangian is built in the most general, systematic way, such that all
the physics below a certain scale is encapsulated in a minimum set of parameters. This
Lagrangian is still connected to the underlying theory by respecting all of its symmetries
and symmetry breakings, for instance, the spontaneously broken chiral symmetry of QCD.
S. Weinberg made the first step in showing how to apply e↵ective field theories to the
nuclear force [43, 44], and a few years later, C. Ordoñez, L. Ray, and U. van Kolck [45]
performed the first quantitative calculation for the NN interaction. Since then, di↵erent
groups have studied the nuclear force with increasing accuracy (up to next-to-next-to-
next-to-leading order, 3NLO, in perturbation theory), [36, 46, 47, 48]. E↵ective field
theories have also been applied for the description of processes involving strangeness, in
both, the weak and strong sectors. In Ref. [49] the authors studied the nucleon-nucleon
parity violation with a leading order (LO) e↵ective field theory, while SUF (3) extensions
of the previously developed EFT for the nuclear force were carried out at leading order in
Refs. [50, 51, 52, 53, 54] and, more recently, at next-to-leading order (NLO) in Ref. [55].

Our work uses e↵ective field theory techniques to describe the weak, |�S| = 1, ⇤N
transition. The EFT for the ⇤N ! NN interaction was first formulated in Refs. [56]
and [57, 58]. While the authors in [56] constructed the e↵ective theory by adding to
the long-ranged one-pion-exchange mechanism (OPE) a four-fermion-point interaction,
coming from Lorentz four-vector currents, Refs. [57, 58] considered the additional K-
exchange mechanism (OKE) to account for the intermediate range of the interaction,
as well as additional operational structures in the form of contact terms, to describe
the short-range physics. These structures result when all possible operators compatible
with the symmetries fulfilled by the weak |�S| = 1 ⇤N interaction are considered. The
local operators governing short distance dynamics in any EFT appear in the Lagrangian
multiplied by low-energy constants (LECs), which have to be determined by a fit to the
available experimental data. Although neither the amount nor the quality of hypernuclear
weak decay data is comparable with the wealth of information available in the nonstrange
sector, these data are enough to fairly constrain the lowest-order LECs. In this thesis
we extend and update previous work in this direction, by developing an e↵ective field



7

theory for the ⇤N ! NN interaction which includes explicitly all the possible two-
pion exchange contributions. Moreover, the EFT at LO is used to describe the decay
of four di↵erent hypernuclei and thus, constrain the fundamental weak interaction with
the extraction of the LO low energy constants. For three of these hypernuclei, 5

⇤He,
11
⇤ B and 12

⇤ C, we use a shell model approach for the initial hypernuclear wave function.
Harmonic oscillator wave functions are used for the ⇤ and the nucleon in the hypernucleus,
and a phenomenological spin-independent correlation function is used to account for the
e↵ective strong interaction among the two interacting baryons. For the final state, only the
strong interaction between the weakly emerging nucleons is taken into account, through a
Lippmann-Schwinger calculation which uses microscopical OBE potentials for the strong
NN interaction. Then, the two low-energy constants appearing at LO are fitted to the
di↵erent hypernuclear decay observables corrected from final sate interactions with the
residual medium.

An additional calculation is performed for the hypertriton, 3
⇤H, which is the lightest

hypernucleus one can think of, and therefore, the best strange system to treat the nuclear
medium in a systematic and realistic way. The fact that it only contains three baryons
—a proton, a neutron and a ⇤— makes it possible to take into account all the possible
two-body interactions explicitly and in a exact way. The wave functions for the initial and
final state (be it three nucleons or a deuteron plus a neutron) are then calculated using
strong chiral EFT forces up to next-to-next-to-leading order (NNLO), reducing the model
dependencies that unavoidably appear in calculations involving heavier systems. With a
running of the two LO LECs we illustrate how the total and partial decay rates depend
on the short range physics. From our study it comes clear that the feasibility of a higher-
order description of the weak four-fermion interaction, and therefore, the achievement of
a deeper understanding of the fundamental dynamics involved, requires more independent
and accurate experimental data, specially involving light strange systems.

In order to get some insight of the dynamical origin of the LECs appearing in the
e↵ective theory and at the same time detect possible deficiencies in boson-exchange de-
scriptions of the weak mechanism, we also show the results of a mapping of the EFT to
successful one-meson-exchange (OME) models. Following this procedure, we have writ-
ten the low-energy constants in terms of physical ingredients of the OME models, as
masses, strong form factor parameters and couplings of pseudoscalar and vector mesons
to baryons, following an approach known as resonance saturation.

This thesis is organized in three main parts: the formalism, the results, and the con-
clusions. The formalism used to evaluate the hypernuclear decay is described in chapters
2 and 3. In chapter 2 we write the total and partial decay rates, and the asymmetry, in
terms of the four-body weak ⇤N ! NN transition. We explicitly show how the strong
interactions are accounted for in the initial and final states, and also how the weakly
interacting baryons are uncoupled from the rest of nucleons in the initial hypernucleus.
In chapter 3 the EFT potential for the weak �S = 1 interaction is derived. In particular,
we indicate the di↵erent Lagranians and the power counting used, and display all the
possible contributions in terms of Feynman diagrams. The technical details that appear
in the formalism (integrals, relations between integrals, and explicit results for the two
pion exchanges) are given explicitly in the appendices. The results are shown in chapter 4,
and include the values obtained for the di↵erent hypernuclear observables, and how these
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are best fitted with a particular set of low energy constants. The comparison between the
LO EFT with the OME model is also included in this chapter. We conclude in the last
chapter, by summarizing the work done and by pointing out possible future perspectives.



Chapter 2

Hypernuclear decay formalism

The description of the non-mesonic weak decay of hypernuclei requires the knowledge of
the initial and final wave functions and of the two-body mechanism. The wave functions
are determined by the strong interactions among the baryons, while the two body tran-
sition involves also the weak force. In this chapter we formulate the formalism for the
decay of hypernuclei, leaving the derivation of the weak two-body transition potential for
chapter 3. More precisely, we describe the hypernuclear decay observables in terms of the
⇤N ! NN amplitude.

To obtain the wave functions for nuclear bound states one needs, in principle, to
solve the non-relativistic Schrödinger equation for a many-body system. For light nuclei,
(A < 5), this has been possible due to the development of few-body techniques, such as the
Faddeev-Yakubovsky scheme [59]. For larger nuclei, it becomes too di�cult to numerically
solve the Schrödinger equation, and one needs to use many-body methods such as the shell
model, the coupled-cluster approach, or Monte-Carlo simulation techniques [60].

We use two di↵erent approaches in the description of the strong interactions, depend-
ing on how massive is the hypernucleus under consideration. For A � 5, it is not feasible
to explicitly take into account the two and three-body strong interactions among the
baryons in the hypernuclear system on one hand and among the baryons in the final state
on the other hand. In our approach, we have used a shell-model to describe the initial
hypernucleus. The hyperon and nucleon wave functions have been obtained from a mean
field harmonic oscillator potential, adjusting the oscillator parameters to reproduce the
experimental binding energy for the A-hypernucleus and the (A � 1) core respectively.
Regarding the final wave function, we have not included the propagation of the two pri-
mary outgoing nucleons within the residual medium. In our approximation, the residual
(A � 2) nucleus acts as a spectator, and only the strong interaction among these two
primary nucleons is considered. More specifically, we solve a Lippman-Schwinger scatter-
ing equation with the input of modern potential models. This approximation can lead
to unrealistic results for exclusive observables — partial decay rates (�(⇤n ! nn) and
�(⇤p ! np)) and the asymmetry in the distribution of protons coming from the decay of
polarized hypernuclei —. In any case, we will always compare our results to observables
corrected by these final-state interaction e↵ects.

For lighter hypernuclei (A = 3, 4), the initial and final wave functions can be computed
using two and three-body forces that act among all the baryons. Faddeev-Yakubovsky

9
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calculations for A = 3, 4 hypernuclear systems have been carried out in [61, 62]. This
allows us to describe the decay of light hypernuclei with e↵ective field theory (EFT)
potentials in both the nuclear part and the two-body weak transition, which leads to a
less model-dependent and more systematic framework.

In this work we describe the decay rate observables for 5
⇤He, 11

⇤ B, 12
⇤ C and 3

⇤H. The
decay for the first three hypernuclei is described through the shell-model approach (in
Sec. 2.1), while for the hypertriton the EFT formalism is used (in Sec. 2.2).

2.1 Light hypernuclei

Our goal in this section is to express the hypernuclear observables for the non-mesonic
decay of light hypernuclei in terms of the two-body amplitude and the initial and final
wave functions.

The decay rate for a hypernucleus decaying non-mesonically into a residual nuclear
part (R) and two free nucleons (1 and 2) is written as

�nm =

Z

d3k1
(2⇡)3

Z

d3k2
(2⇡)3

X

MI{R}
{1}{2}

(2⇡)�(MH � ER � E1 � E2)
1

2J + 1
|Mfi|2. (2.1)

All the possible angular momentum and momentum final states ({R}, {1}, {2}) have been
summed and integrated, while the initial spins, MI , have been averaged. The delta
function ensures energy conservation: MH is the mass of the hypernucleus, and ER,
E1 and E2 are the energies of the residual nuclear part and the two outgoing nucleons,
respectively. Using relative and center of mass momenta coordinates (P and k), the
matrix element Mfi connecting the initial and final states in the decay rate formula is

Mfi = hF |M |Ii =
D

 R; ~P ~k S MS T MT

�

�

�

Ô⇤N!NN |⇤Ai ,

where  R is the wave function for the residual part, and ~P , ~k, S, MS, T , MT are the
momenta, spin and isospin of the final two nucleons. We denote the initial state for a
⇤-hypernucleus of mass number A as |⇤Ai, and the operator mediating the two-body
transition, Ô⇤N!NN .

2.1.1 Initial hypernuclear wave function

In order to write the decay rate in terms of the 4-body interaction we need to uncouple
the ⇤ and the interacting nucleon from the initial hypernuclear wave function. We assume
that the ⇤ couples to the ground state (A-1) nuclear core,

|⇤AiJIMI

TIT3I
= |⇤i ⌦ |A� 1i
=
X

m⇤MC

(j⇤JCJI ,m⇤MCMI) |(n⇤l⇤s⇤)j⇤m⇤i |JCMCTIT3I i ,

where we define the initial hypernuclear spin and isospin and their projections as JI , MI ,
TI and T3I . The quantum numbers (shell, spin and isospin) of the ⇤ are n⇤ = 0, l⇤ = 0,
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s⇤ = 1/2, which couple to j⇤ = 1/2, m⇤ = 1/2. JC , MC , TI and T3I stand for the spin and
isospin for the core wave function. To uncouple the nucleon of the core wave function
(while maintaining its antisymmetry character) we use the technique of the coe�cients of
fractional parentage (we use the numerical values given in Ref. [63] for p-shell nucleons
and in Ref. [64] for s-shell nucleons),

|JCMCTIT3I i =
X

JRTRjN

⌦

JCTI

�

�

� JRTR, jN tN
↵ ⇥ |JR, TRi ⇥ |(nN lNsN)jN , tNi

⇤JCMC

TIT3I

=
X

JRTRjN

⌦

JCTI

�

�

� JRTR, jN tN
↵

⇥
X

MRmN

X

T3R t3i

(JR jN JC ,MR mN MC)(TR tN TI , T3R t3i T3I )

⇥ |JRMRi |TRT3Ri |(nN lNsN)jNmNi |tN t3ii , (2.2)

where nN , lN , sN , jN , and tN (= 1/2) denote, respectively, the shell, angular momentum,
spin, total spin, and isospin of the uncoupled nucleon; and JR, MR, and TR, T3R the spin
and isospin for the residual system.

⌦

JCTI

�

�

� JRTR, jN tN
↵

are the coe�cients of fractional
parentage, which allow us to write the core wave function as a residual part coupled to a
nucleon.

2.1.2 Total and partial decay rates

Considering that the ⇤ is in a l⇤ = 0 state, and writing the coe�cients of fractional
parentage as spectroscopic factors, S(JCTC↵; JR0TR0↵0, jN) ⌘ N

⌦

JCTI

�

�

� JRTR, jN tN
↵2

(N being the total number of active nucleons), the non-mesonic decay rate can be written
as,

�nm = �n + �p, (2.3)

where the partial decay rates are written in the general form

�i =

Z

d3P

(2⇡)3

Z

d3k

(2⇡)3
(2⇡)�(MH � Er � E1 � E2)

X

SMS

X

JRMR

X

TRT3R

1

2JI + 1

⇥
X

MI

�

�(TR
1
2 TI , T3R t3i T3I )

�

�

2

⇥
�

�

�

X

TT3

(12
1
2T, t1t2T3)

X

m⇤MC

(j⇤ JC JI ,m⇤ MC MI)
X

jN

p

S(JCTI ; JRTR, jN t3i)

⇥
X

MRmN

(JR jN JC ,MR mN MC)
X

mlN
msN

(lN
1
2 jN ,mlN msN mN)

⇥
X

ml⇤
ms⇤

(l⇤
1
2 j⇤,ml⇤ ms⇤ m⇤)

X

S0MS0

(12
1
2 S0,ms⇤ msN MS0)

X

T0T30

(12
1
2 T0,�1

2 t3i T30)

⇥ t⇤N!NN(S,MS, T, T3, S0,MS0 , T0, T30 , l⇤, lN , ~P ,~k)
�

�

�

2
, (2.4)
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JR TR S Sn Sp

s-shell

1 0 0.375 0.319 0.300

1 1 1.125 0.956 0.900

2 0 0.625 0.531 0.500

2 1 1.875 1.594 1.500

p3/2-shell

0 0 0.000 0.000 0.000

0 1 0.653 0.718 0.718

1 0 0.606 0.667 0.667

1 1 0.129 0.142 0.142

2 0 0.097 0.107 0.107

2 1 3.038 3.341 3.341

3 0 1.239 1.363 1.363

3 1 0.125 0.137 0.137

p1/2-shell

1 0 0.312 0.343 0.343

1 1 0.104 0.115 0.115

2 0 0.246 0.271 0.271

2 1 0.451 0.496 0.496

Table 2.1: Spectroscopic factors for s-shell and p-shell for 12
⇤ C. The neutron and proton

spectroscopic factors are denoted, respectively as Sn and Sp.

with t3i = 1/2, t1 = �1/2, t2 = 1/2 for the p-induced direct diagram and t3i = �1/2,
t1 = �1/2, t2 = �1/2 for the n-induced one. We denote the spin and isospin for the
initial pair ⇤N as S0, MS0 and T0, T30 . As an example, the spectroscopic factors
S(JCTC↵; JR0TR0↵0, jN) for the 12

⇤ C are listed in Table 2.1.2.

2.1.3 �I = 1
2 rule

In Eq. (2.4) the ⇤ is assumed to be in a |1/2,�1/2i state due to the isospin 1/2 rule. This
rule reflects the dominance of the �I = 1/2 weak transitions over the �I = 3/2 ones, and
is derived from the experimental value

�free
⇤!⇡�p

�free
⇤!⇡0n

= 1.78. (2.5)

Assuming that the ⇤ is coupled to an isospurion of �I = 1/2 we have:

�free
⇤!⇡�p

�free
⇤!⇡0n

⇠ | h⇡�p|T1/2,�1/2 |⇤i |2
| h⇡0n|T1/2,�1/2 |⇤i |2 =

|p2/3|2
|p1/3|2 = 2, (2.6)
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while coupling the ⇤ to an isospurion of �I = 3/2 gives

�free
⇤!⇡�p

�free
⇤!⇡0n

⇠ | h⇡�p|T3/2,�1/2 |⇤i |2
| h⇡0n|T3/2,�1/2 |⇤i |2 =

|p1/3|2
|p2/3|2 =

1

2
. (2.7)

2.1.4 Initial ⇤N wave function

Eqs.(2.3) and (2.4) show how to calculate the total and partial non-mesonic decay rates in
terms of the two-body transition t⇤N!NN(S,MS, T, T3, S0,MS0 , T0, T30 , l⇤, lN , ~P ,~k). How-
ever, we still need to explicitly write the initial and final two-body wave functions. As
we already mentioned, for the initial ⇤ and nucleon states we take the solutions of a har-
monic oscillator mean field potential. In writing the relative and center of mass ⇤N wave
functions, we use an average parameter b = b⇤+bN

2 , where b⇤ = 1.87 fm and bN = 1.64 fm
are such that the corresponding hypernuclear and core binding energies are reproduced.
While the ⇤ is assumed to be always in an s-shell, the nucleon might be in an s-shell or
in a p-shell. Expressing the initial two-body wave function in center of mass and relative
coordinates we have, for an s-shell nucleon:

�⇤
100

⇣

~r1
b⇤

⌘

�N
100

⇣

~r2
bN

⌘

= �rel
100

⇣

~rp
2b

⌘

�CM
100

⇣

~R
b/
p
2

⌘

, (2.8)

and for a p-shell nucleon:

�⇤
100

⇣

~r1
b⇤

⌘

�N
11m

⇣

~r2
bN

⌘

= 1p
2

n

�rel
100

⇣

~rp
2b

⌘

�CM
11m

⇣

~R
b/
p
2

⌘

� �rel
11m

⇣

~rp
2b

⌘

�CM
100

⇣

~R
b/
p
2

⌘o

. (2.9)

The coe�cients relating the wave functions in both coordinate systems and for a general
shell (N) and angular momentum (L) are called Moshinsky brackets, X(NrLrNRLR, l⇤lN)
[65]. We can write the two-body transition of Eq. (2.4) as a function of these coe�cients
and of the relative and center of mass momentum,

t⇤N!NN =
X

NrLrNRLR

X(NrLrNRLR, l⇤lN)t
NrLrNRLR
⇤N!NN . (2.10)

Using this model, the initial ⇤ and nucleon are assumed to be independent. To account
for the strong correlation between the two interacting baryons we replace the harmonic
oscillator wave function, �rel(~r), by a correlated ⇤N wave function which simulates the
result of a G-matrix calculation for 5

⇤He [66]. This calculation solves a finite-nucleus
G-matrix using the soft-core and hard-core Nijmegen models of Refs. [67] and [68]. We
follow the approach of Ref. [17], where it is shown that the use of a correlation function
of the type

f⇤N(r) =(1� e�r2/a2)n + br2e�r2/c2 (2.11)

produces correlated wave functions in between the results of Ref. [66] for these two po-
tential models. The values of a = 0.5 fm, b = 0.25 fm, c = 1.28 fm and n = 2 give
results between those obtained from numerical Nijmegen soft-core correlations and those
obtained with the Nijmegen hard-core potential, in both spin channels, 1S0 and 3S1.
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2.1.5 Final NN wave function

We now describe the two-body final state. The wave function for two outgoing free
nucleons is, in particle coordinates,

D

~r1~r2|~k1~k2s1ms1 , s2ms2 , t1mt1 , t2mt2

E

=ei
~k1·~r1ei

~k2·~r2�s1
ms1

�s2
ms2

�t1
mt1

�t2
mt2

. (2.12)

The four �’s denote the spin and isospin states of each of the two particles. In relative
(~k, ~r) and center of mass ( ~P , ~R) coordinates we have

D

~R~r
�

�

�

~P~kSMSTMT

E

=ei
~P ·~Rei

~k·~r�S
MS
�T
MT

. (2.13)

To antisymmetrize it we must exchange the coordinates and quantum numbers of the
two nucleons. In relative and center of mass coordinates this translates into exchanging
~k ! �~k and including a factor (�1)S+T . Thus, the antisymmetrized wave function is

D

~R~r
�

�

�

~P~kSMSTMT

E

=
1p
2
ei

~P ·~R
⇣

ei
~k~r � (�1)S+T e�i~k·~r

⌘

�S
MS
�T
MT

, (2.14)

where the first and second terms represent the direct and exchanged contributions to
⇤N ! NN process. The nucleons, though, are not free but interact among themselves
and with the medium. In our description we only incorporate the strong force among
the two nucleons. The Schrödinger equation with a Hamiltonian H = H0 + V can be
expressed as the Lippmann-Schwinger equation,

�

� (±)
↵

= |�i+ 1

E �H0 ± i✏
V
�

� (±)
↵

, (2.15)

where |�i represents a solution of the free Hamiltonian H0, and E is the energy of the
two-nucleon state

�

� (±)
↵

. The plus and minus signs denote states at an infinite time
before and after the interaction. Defining V

�

� (±)
↵ ⌘ T |�i one obtains the T-matrix

equation,

T = V + V
1

E �H0 ± i✏
T. (2.16)

We solve this T-matrix equation with two di↵erent potential models, Nijmegen Soft-
Core 97f [67, 68] and the one from the Jülich group [69]. Once the T-matrix equation
is computed, we can use the definition V

�

� (±)
↵ ⌘ T |�i and Eq. (2.15) to obtain the

correlated NN wave function, which in relative and center of mass coordinates, we denote
as  ~k. Thus, the final nucleon-nucleon wave function is obtained by replacing

ei
~k·~r !  ~k(~r) (2.17)

in Eq. (2.13). Finally, the matrix element of Eq. (2.10) for the direct contribution and in
momentum space is

tNrLrNRLR
⇤N!NN =

1p
2

Z

d3R

Z

d3re�i~P ·~R ⇤
~k
(~r)�†S

MS
�†T

T3
V (~r)�CM

NRLR

 

~R

b/
p
2

!

⇥ �rel
NrLr

✓

~rp
2b

◆

�S0
MS0

�T0
T30

. (2.18)
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2.1.6 Asymmetry

The kinematical conditions of the hypernuclear experiments carried out at Brookhaven
(USA) [70] and KEK (Japan) [71], through the reactions n(K�, ⇡�)⇤ and n(⇡+, K+)⇤,
also allow to extract information about the angular distribution of the outgoing protons
with respect to the polarization axis. Due to an interference between the PV and PC
amplitudes, there is an angular asymmetry in the intensity of outgoing protons, I(�),
where � is the angle of the proton with respect to the polarization axis. A schematic
representation for the n(⇡+, K+)⇤ reaction is shown in Fig. 2.1. In this section we outline
the steps to obtain this asymmetry in terms of the two-body amplitudes. A more complete
calculation can be found in the Appendix B of Ref. [72].

For a hypernucleus polarized in the y-axis, the asymmetry, Ap(�), is defined by

I(�) = I0(1 + PyAp(�)), (2.19)

where Py is the hypernuclear polarization created in the production reaction. The asym-
metry is given in terms of the transition matrix element M, the spin operator in the
polarization axis, Ŝy, and the total spin, J ,

Ap(�) =
3

J + 1

Tr(MŜyM†)

Tr(MM†)
. (2.20)

For pure vector polarization, this asymmetry only depends on cos(�) and on the intensities
of the outgoing protons with spin projections Mi, I(Mi):

Ap(�) =
3

J + 1

P

Mi
I(Mi)Mi

P

Mi
I(Mi)

cos(�) = Apcos(�), (2.21)

where Ap is the asymmetry parameter characteristic of the hypernuclear weak decay. The
asymmetry of the proton distribution is then determined by PyAp. In the weak coupling

Figure 2.1: Schematic representation of the n(⇡+, K+)⇤ reaction. YM is the polarization
axis, and � is the angle between YM and the direction of the outgoing protons.
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scheme, where l⇤ = 0, we can easily relate the hypernuclear polarization Py with the ⇤
polarization p⇤,

p⇤ =

(

� J
J+1Py if J = JC � 1

2

Py if J = JC + 1
2

. (2.22)

Finally, we define the intrinsic parameter a⇤, such that it fulfills PyAp = p⇤a⇤ and that
is characteristic of the ⇤N ! NN transition:

a⇤ =

(

�J+1
J Ap if J = JC � 1

2

Ap if J = JC + 1
2

. (2.23)

2.2 Hypertriton

In this section we describe the formalism for the non-mesonic decay rate of the hypertriton.
The hypertriton is a bound state of a proton, a neutron and a ⇤ with positive parity, total
isospin zero, and total spin J3 = 1

2 . The fact that the hypertriton is made of only three
particles allows us to describe the initial and final strong interactions contributing to the
decay by explicitly taking into account the two and three-body interactions among the
three baryons.

The initial wave function is calculated using strong e↵ective field theory NLO Y N
[54, 55] and NNLO NN potentials [46, 47] such that the hypertriton binding energy is
reproduced. The final state which results from the non-mesonic decay of the hypertriton
can be either three free nucleons (3N break up) or a deuteron and a free neutron (d+n
break up). The interactions among the final three baryons are also calculated using strong
NNLO EFT nucleon-nucleon potentials.

The strong Hamiltonian used in the following formalism is separated into a term
containing the kinetic energy, H0, and the strong potential, Vs. The strong potential
contains three terms Vij accounting for the strong forces between the three possible pairs
i� j, where i, j = 1, 2, 3. It is also convenient to separate the three body force into three
terms, V (l)

ijk , such that they are symmetric with respect to the exchange of the particles
other than l,

H =H0 + Vs

=H0 + V12 + V13 + V23 + V (1)
123 + V (2)

123 + V (3)
123 . (2.24)

2.2.1 Decay rate formula

To calculate the decay rate, we must average the initial spin projections ( 1
2J3+1

P

mJ3
) and

sum and integrate over final spin projections (md and mn for the d+ n break up and m1,
m2 and m3 for the 3N break up) and momenta (~kd and ~kn for the d+ n break up and ~k1,
~k2 and ~k3 for the 3N break up). In the center of mass frame, the decay rates for the two
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possible final states are:

d�d+n =
1

2

X

mJ3

X

mdmn

�

�

�

h (�)
mdmn

|V w| 3
⇤H

i
�

�

�

2
(2.25)

⇥ d3kdd
3kn(2⇡)�

3(~kd + ~kn)�

 

M3
⇤H

�Md �MN �
~k2
d

2Md
�

~k2
n

2MN

!

,

d�3N =
1

2

X

mJ3

X

m1m2m3

�

�

�

h (�)
m1m2m3

|V w| 3
⇤H

i
�

�

�

2
(2.26)

⇥ d3k1d
3k2d

3k3(2⇡)�
3(~k1 + ~k2 + ~k3)�

 

M3
⇤H

� 3MN �
~k2
1

2MN
�

~k2
2

2MN
�

~k2
3

2MN

!

,

where M3
⇤H

is the mass of the hypertriton, MN is the mass of the nucleon,  3
⇤H

is the

wave function of the hypertriton and  (�) is the outgoing wave function. Vw denotes the
potential driving the weak ⇤N ! NN transition. We now change to Jacobi coordinates,
which in position space are the relative and center of mass coordinates. For three particles
at positions x1, x2 and x3 and with masses m1, m2 and m3 they are defined as

~r12 ⌘ ~x1 � ~x2, (2.27)

~r3 ⌘ ~x3 � 1

m1 +m2
(m1~x1 +m2~x2)

~rCM ⌘ 1

m1 +m2 +m3
(~x1 + ~x2 + ~x3).

These coordinates are represented in Fig. 2.2. The corresponding Jacobi momenta are

x1x1

x2x2

x3x3rCM

r12
r3

Figure 2.2: Representation of the Jacobi coordinates, ~r12, ~r3 and ~rCM , for three particles
at positions x1, x2 and x3. The masses of the particles are proportional to the areas of
the circles respresenting them.
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defined as

~p12 ⌘ 1

m1 +m2
(m2

~k1 �m1
~k2), (2.28)

~p3 ⌘ 1

m1 +m2 +m3

h

(m1 +m2)~k3 �m3(~k1 + ~k2)
i

,

~pCM ⌘ ~k1 + ~k2 + ~k3.

Using these coordinates and defining M3
⇤H

= 2MN +M⇤ + ✏ and Md = 2MN + ✏d (where
✏ < 0 and ✏d < 0) we obtain

d�d+n =
1

2

X

mJ3

X

mj12m3

�

�

�

h (�)
mj12m3

|V w| 3
⇤H

i
�

�

�

2
(2.29)

⇥ d3pCMd3p3(2⇡)�
3(~pCM)�

✓

M⇤ �MN + ✏� ✏d � 3

4

~p 2
3

MN
� ~p 2

CM

6MN

◆

,

d�3N =
1

2

X

mJ3

X

m1m2m3

�

�

�

h (�)
m1m2m3

|V w| 3
⇤H

i
�

�

�

2
(2.30)

⇥ d3p12d
3p3d

3pCM(2⇡)�3(~pCM)�

✓

M⇤ �MN + ✏� ~p 2
12

MN
� 3

4

~p 2
3

MN
� 1

6

~p 2
CM

MN

◆

.

We have identified ~kd = ~k1 + ~k2, md = mj12 and ~kn = ~k3, mn = m3. Integrating ~pCM and
the modulus of ~p3, we get

d�d+n =
1

2

X

mJ3

X

mj12m3

�

�

�

h (�)
mj12m3

|V w| 3
⇤H

i
�

�

�

2
dp̂3(2⇡)

2MN

3
p(d+n)
3 , (2.31)

d�3N =
1

2

X

mJ3

X

m1m2m3

�

�

�

h (�)
m1m2m3

|V w| 3
⇤H

i
�

�

�

2
p212dp12dp̂12dp̂3(2⇡)

2MN

3
p(3N)
3 , (2.32)

with p(d+n)
3 ⌘

q

4MN
3 (�M + ✏� ✏d), p

(3N)
3 ⌘

r

4MN
3

⇣

✏+�M � ~p 2
12

MN

⌘

and �M ⌘ M⇤ �
MN . The 3N break up still depends on p12, which has the upper limit of

p12 =
p

MN(✏+�M). (2.33)

Above this limit the delta gives zero. Also, both decay rates still depend on an angular
part. Because of the average over spin projections, the squared matrix element for the
d + n break up does not depend on p̂3, and for the 3N break up it only depends on the
angle between ~p3 and ~p12, which we define as ✓. Integrating the angular parts (except ✓
for the 3N break up), the decay rates are

d�d+n =8⇡22MN

3
p(d+n)
3

1

2

X

mJ3

X

mj12m3

�

�

�

h (�)
mj12m3

|V w| 3
⇤H

i
�

�

�

2
, (2.34)

d�3N =16⇡32MN

3
p(3N)
3 p212dp12 sin(✓)d✓

1

2

X

mJ3

X

m1,m2,m3

�

�

�

⌦

 (�)
m1m2m3

�

�V w
�

�

�

 3
⇤H

E

�

�

�

2
. (2.35)
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2.2.2 Final state wave function

The wave function for the final state consists of d+ n or 3N states that evolve under the
influence of the strong force. The asymptotically free states, normalized and antisym-
metrized, are defined as

h free| NA, (2.36)

where h free| is the three-particle non-antisymmetrized state, N is the normalization

constant and A the antisymmetry operator. N ⌘
q

N !
⌫1!⌫2!...

depends on the total number

of particles (N) and on the number of particles in each bound state (⌫i), and takes into
account all the possible configurations in the final state. For the d + n state we have
N =

p
3 and for 3N , N =

p
6. The antisymmetrization operator is defined as

A ⌘ 1

6
(1 + P12P23 + P13P23) (1� P12) , (2.37)

where Pij exchanges the coordinates and quantum numbers of particles i and j. In order
to obtain the evolution of the free and antisymmetrized states, d+n and 3N , we separate
the Hamiltonian into two parts, H1 and H2, such that i✏

E+i✏�H1
| freei = | freei. For the

3N wave function H1 is just the kinetic energy part, H0, while for the d + n we have to
take into account the two-body interaction between the hyperon and the nucleon in the
deuteron, labeled with 1 and 2, i.e. H1 = H0 � V12. We then define the corresponding
identities,

1

E �H
=

1

E �H0
+

1

E �H0
Vs

1

E �H
, (2.38)

1

E �H
=

1

E �H0 � V12
+

1

E �H0 � V12
(Vs � V12)

1

E �H
. (2.39)

Applying these identities to the d + n and 3N free states, we obtain the corresponding
evolved states,

D

 (�)
d+n

�

�

�

= h | +i✏

E + i✏�H
= h |

✓

1 + (Vs � V12)
1

E + i✏�H

◆

, (2.40)

D

 (�)
3N

�

�

�

= h | +i✏

E + i✏�H
= h |

✓

1 + Vs
1

E + i✏�H

◆

. (2.41)

Thus, we can write the decay rate formulas as

d�d+n =24⇡22MN

3
p(d+n)
3

1

2

X

mJ3

X

mj12m3

�

�

�

�

h mj12m3 |
✓

1 + (Vs � V12)
1

E + i✏�H

◆

AV w| 3
⇤H

i
�

�

�

�

2

,

(2.42)

d�3N =96⇡32MN

3
p(3N)
3 p212dp12 sin(✓)d✓ (2.43)

⇥ 1

2

X

mJ3

X

m1,m2,m3

�

�

�

�

h m1m2m3 |
✓

1 + Vs
1

E + i✏�H

◆

AV w
�

�

�

 3
⇤H

E

�

�

�

�

2

.
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The weak potential V w ⌘ V w
12 +V w

13 mediates the transition from a ⇤ (labeled with 1) and
a nucleon (labeled with 2 or 3) to two nucleons. Since the states on the left and the right
of V w are antisymmetric with respect to the nucleons 2 and 3 we can simplify the weak
potential potential so that we only have one term,

V w
12 + V w

13 = V w
12 + P23V

w
12P23 ! V w

12 + (�1)V w
12(�1) = 2V w

12. (2.44)

Moreover, working with a basis of states that is antisymmetric in particles 1 and 2, we
can e↵ectively replace P12 by �1, and thus

1� P12 ! 2. (2.45)

Finally, we also simplify (1 + P12P23 + P13P23) by applying P12 in both sides,

1 + P12P23 + P13P23 ! 1 + P12P23 + P12P13P23P12 = 1 + 2P12P23 ⌘ 1 + P. (2.46)

Note that we have defined P ⌘ 2P12P23. Therefore, the quantity AV w can be simplified
to

AV w =
2

3
(1 + P )V w

12,

and the decay rates are then

d�d+n =
32

9
⇡2MNp

(d+n)
3

X

mJ3

X

mj12m3

�

�

�

�

h mj12m3 |
✓

1 + (Vs � V12)
1

E + i✏�H

◆

(1 + P )V w
12| 3

⇤H
i
�

�

�

�

2

,

(2.47)

d�3N =
128

9
⇡3MNp

(3N)
3 p212dp12 sin(✓)d✓ (2.48)

⇥
X

mJ3

X

m1,m2,m3

�

�

�

�

h m1m2m3 |
✓

1 + Vs
1

E + i✏�H

◆

(1 + P )V w
12

�

�

�

 3
⇤H

E

�

�

�

�

2

.

We now use the permutation operators to simplify the strong potential. For the d + n
decay rate we have

Vs � V12 =V13 + V23 + V (1)
123 + V (2)

123 + V (3)
123 (2.49)

=P (V12 + V (3)
123) + V (3)

123 , (2.50)

and for 3N ,

Vs =V12 + V13 + V23 + V (1)
123 + V (2)

123 + V (3)
123 (2.51)

=(1 + P )(V12 + V (3)
123). (2.52)

Using these identities and defining the following rescattering state,

|Ui ⌘
✓

V12 + V (3)
123

1

E + i✏�H

◆

(1 + P )V w
12| 3

⇤H
i, (2.53)
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the decay rates become

d�d+n =
32

9
⇡2MNp

(d+n)
3

X

mJ3

X

mj12m3

�

�

�

h mj12m3 |(1 + P )V w
12| 3

⇤H
i+ h mj12m3 |P |Ui (2.54)

+h mj12m3 |V (3)
123

1

E + i✏�H
(1 + P )V w

12| 3
⇤H

i
�

�

�

�

2

,

=
32

9
⇡2MNp

(d+n)
3

X

mJ3

X

mj12m3

�

�

�

h mj12m3 |
⇣

1 + V (3)
123G0

⌘

(1 + P )V w
12| 3

⇤H
i

+h mj12m3 |
⇣

P + V (3)
123G0(1 + P )

⌘

|Ui
�

�

�

2
,

d�3N =
128

9
⇡3MNp

(3N)
3 p212dp12 sin(✓)d✓ (2.55)

⇥
X

mJ3

X

m1,m2,m3

�

�

�

h m1m2m3 | (1 + P )V w
12| 3

⇤H
i+ h m1m2m3 | (1 + P ) |Ui

�

�

�

2
.

In the second step of Eq. (2.54) we have used again the identity defined in Eq. (2.38) and
we have defined G0 ⌘ 1

E+i✏�H0
.

We have written the matrix elements for both decays as a sum of a plane-wave part,
where no strong interactions are accounted for, and a rescattering part, which contains
the state |Ui.

2.2.3 Final state interaction: the rescattering part

We now focus on how to solve the rescattering state, |Ui, given the plane-wave one,
(1 + P )V w

12| 3
⇤H

i. The strong e↵ective potential consists of two and three-body terms.

The three body interaction can be expressed as a sum of three terms of type V (k) such
that they are symmetric with respect to the exchange of the particles other than k. Using
this we have,

Vs(1 + P ) =
h

(V12 + V (3)
123) + (V13 + V (2)

123) + (V23 + V (1)
123)
i

(1 + P )

= (1 + P )(V12 + V (3)
123)(1 + P ).

Applying this equality and the resolvent identity, we obtain the following iterative equa-
tion for the rescattering part |Ui,
�

�U
↵ ⌘ (V12 + V (3)

123)
1

E + i✏�H
(1 + P )V w

12

�

��3
⇤H

↵

= (V12 + V (3)
123)

1

E + i✏�H0
(1 + P )V w

12

�

��3
⇤H

↵

+ (V12 + V (3)
123)

1

E + i✏�H0
(1 + P )(V12 + V (3)

123)
1

E + i✏�H
(1 + P )V w

12

�

��3
⇤H

↵

= (V12 + V (3)
123)

1

E + i✏�H0
(1 + P )V w

12

�

��3
⇤H

↵

+ (V12 + V (3)
123)

1

E + i✏�H0
(1 + P )

�

�U
↵

.

(2.56)
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To solve for
�

�U
↵

we first solve the two-body force using the following t-matrix equation

(1 + t12G0)(1� V12G0) = 1, (2.57)

with G0 ⌘ 1
E+i✏�H0

, and then solve the iterative equation containing (one third of) the
three-body force,

�

�U
↵

=t12G0(1 + P )V w
12

�

��3
⇤H

↵

+ (1 + t12G0)V
(3)
123G0(1 + P )V w

12

�

��3
⇤H

↵

+ t12G0P
�

�U
↵

+ (1 + t12G0)V
(3)
123G0(1 + P )

�

�U
↵

. (2.58)

Once |Ui is solved, we can insert it in the matrix elements of Eqs. 2.54 and 2.55 and
compute the decay rates.

2.2.4 Basis of three-body states: |↵, p12, p3i
To compute the matrix elements we use the following basis of states

|p12, p3,↵i = |p12, p3i
�

�[(l12s12)j12(l3
1
2)I3]J3

↵

�

�(t12
1
2)T3MT3

↵

. (2.59)

We have defined the di↵erent quantum numbers as follows: l12 and s12 are the relative
angular momenta and spin between particles 1 and 2, and which are coupled to j12; l3
and 1

2 are the angular momentum (with respect to the center of mass of particles 1 and 2)
and the spin of particle 3, which couple to I3. The total spin and its third component are
J3 and mJ3 . Similarly, the isospin of particles 1 and 2 is t12, which coupled to the isospin
of the third particle, 1

2 , gives a total isospin |T3,MT3i. As for the momenta states we use
the normalization

h~p| ~p0i = �3(~p� ~p0). (2.60)

Thus, the hypertriton wave function has the form

�

�

�

 3
⇤H

E

=
X

↵

Z

d3p12d
3p3�↵(p12, p3) |p12, p3,↵i , (2.61)

where �↵(p12, p3) accounts for the dependence on the momenta and quantum numbers of
the interacting baryons. In particular, the hypertriton wave function has positive parity
and total spin and isospin J3 =

1
2 and |T3,MT3i = |0, 0i.

Using the same notation, the d+ n and 3N states are defined as

�

�

�

 md
j12

m3

E

=
X

ld12

Z

dpd12p
d
12

2
�ld12

(pd12)
�

�pd12, (l
d
12s

d
12)j

d
12 md

j12 , t
d
12 md

t12

↵

�

�~p3,m3,m
n
t3

↵

, (2.62)

| m1m2m3i = |~p12~p3,m1m2m3,mt1mt2mt3i , (2.63)

where the quantum numbers for the deuteron and the neutron are: ld12, m
d
l12 , s

d
12 = 1,

md
s12 , t

d
12 = 0, md

t12 = 0, mn
t3 = �1

2 ; and where the dependence of the deuteron wave
function on p12 and l12 is encapsulated in �l12(p12). The modulus ~p3 is determined by the
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mass di↵erence and the binding energies, p3 = p(d+n)
3 ⌘

q

4MN
3 (�M + ✏� ✏d), while the

orientation p̂3 is fixed to any value, since the decay does not depend on it (see end of
Sec. 2.2.1). Two of the isospins of the 3 nucleons, mt1 , mt2 , mt3 , must be �1

2 , and the
other one 1

2 . Finally, we can insert a complete set of |p12, p3,↵i states to obtain the d+ n
and 3N wave functions in the same basis as in the hypertriton wave function:

| mj12m3i =
X

ld12

Z

dpd12p
d
12

2 X

↵,mJ3

Z

dp12p
2
12 dp3p

2
3 �ld12

(p12) |p12, p3,↵ mJ3i , (2.64)
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1
2 I3,mJ3 �md
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dp012p
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2 dp03p
0
3
2 hp012, p03,↵ mJ3 | ~p12~p3,m1m2m3,mt1mt2mt3i (2.65)

⇥ |p012, p03,↵ mJ3i

=
X

↵,mJ3

|p12, pn3 ,↵ mJ3i

⇥ (t12
1
2 T3,mt1 +mt2 MT3 �mt1 �mt2 MT3)(

1
2

1
2 t12,mt1 mt2 mt1 +mt2)

⇥
X

ml3

(j12 I3 J3,mJ3 �ml3 �m3 ml3 +m3 mJ3)

⇥ (l12 s12 j12,mJ3 �ml3 �m1 �m2 �m3 m1 +m2 mJ3 �ml3 �m3)

⇥ (l3
1
2 I3,ml3 m3 ml3 +m3)(

1
2

1
2 s12,m1 m2 m1 +m2)

⇥ Yl12,mJ3�ml3
�m1�m2�m3(p̂12)Yl3,ml3

(p̂3).

Note that all the quantum numbers in the ↵’s of the d+n wave function are fixed except
for the angular momentum l12. In order to simplify the spherical harmonics, we choose p̂3
in the direction of the z-axis and p̂12 to be in the x� z plane. In this case, the spherical

harmonics Yl3,m3(✓,�) appearing in Eqs. (2.64) and (2.65), are simplified to
q

2l3+1
4⇡ �m30.

2.2.5 Matrix elements

We are are now ready to write the decay rates in terms of the two-body transition ampli-
tude. The four matrix elements appearing in the decay rate formulas (2.54) and (2.55)
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are

M1 ⌘h mj12m3 |((1 + P )V w
12 + V (3)

123G0)| 3
⇤H

i, (2.66)

M2 ⌘h mj12m3 |(P V w
12 + V (3)

123G0) |Ui , (2.67)

M3 ⌘h m1m2m3 | (1 + P )V w
12| 3

⇤H
i, (2.68)

M4 ⌘h m1m2m3 | (1 + P ) |Ui . (2.69)

Using the wave functions in the |p012, p03,↵ mJ3i basis defined in Eqs. 2.64 and 2.65 the
needed matrix elements are

M1 ⌘hp012, p03,↵ mJ3 | ((1 + P )V w
12 + V (3)

123G0)| 3
⇤H

i, (2.70)

M2 ⌘hp012, p03,↵ mJ3 | (P V w
12 + V (3)

123G0) |Ui , (2.71)

M3 ⌘hp012, p03,↵ mJ3 | (1 + P )V w
12| 3

⇤H
i, (2.72)

M4 ⌘hp012, p03,↵ mJ3 | (1 + P ) |Ui . (2.73)

Using the definition of the hypertriton wave function of Eq. (2.61), the matrix element of
Eq. (2.72) is

hp12p3↵|(1 + P )V w
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⇤H
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t12 M 00
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⇥ �J 0J 00�M 0M 00�m0
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mj0012
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dr̂012 h(l0012s0012)j0012mj0012
|r̂012iht0012mt0012

|V (~q)|t012m0
t12i

⇥ hr̂12|(l012s012)j012m0
j12i, (2.74)

where ~q ⌘ ~r12 0 � ~r12 Once the plane-wave part, Eq. (2.74), is calculated, we insert it in
Eq. (2.58) to calculate the rescattering part.

Finally we indicate a few more technicalities. First, in order to not double count
final states when calculating the total decay rate for the 3N break-up, �3N , we must
add a global factor of 1

6 in front of the sum and integration over final quantum numbers
and momenta. Second, due to the normalization of h~p| ~p 0i = �3(~p � ~p 0), followed in the
calculation of the hypertriton decay, the potentials must include a factor of 1

(2⇡)3 .

In the next chapter we proceed to describe the potential V (~q) mediating the weak
transition. The matrix elements of the operators appearing in the weak potential enter
the calculation in Eq. (2.18) for the light hypernuclear decay and in Eq. (2.74) for the
hypertriton decay. These spin and isospin matrix elements, in position and momentum
space, are shown in the Appendices A, B, and C.



Chapter 3

E↵ective field theory description for
the ⇤N ! NN interaction

In the previous chapter we have presented the formalism to compute the observables of the
non-mesonic hypernuclear decay. Schematically, this computation requires 1) a descrip-
tion of the initial hypernuclei, which we can model using a shell model or, for the lightest
hypernuclei, by directly solving the Schrödinger equation using few-body techniques, 2)
the corresponding description of the decay products of the weak hypernuclear reaction,
and 3) a proper understanding of the weak potential driving the ⇤N ! NN transition.

In this chapter we will concentrate on the latter. As mentioned in the introduction, this
transition amplitude is responsible for a large fraction of the observed weak hypernuclear
decay and as such has received much attention in the last decade [18, 56, 57, 73, 74].
The first attempts to describe the reaction mechanism [16, 17, 18] where motivated by
the successful one-meson-exchange potentials, extensively employed for the description of
the NN ! NN interaction at low energies. These models, with further refinements, had
been used since the early work of H. Yukawa, who successfully explained the long-range
character of the nucleon-nucleon interaction through the exchange of a new particle termed
pion. During the nineties these models—Partovi-Lomon [75, 76], Stony Brook [77, 78],
Paris [79, 80] and Bonn [81, 82]—incorporated all known low lying mesons and allowed
one to achieve a very precise understanding of the nucleon-nucleon force. This description
was from the start intended to describe the experimental data on low energy scattering
from the properties of the mesons and baryons that were detected at the accelerators. It
was from this point of view an e↵ective description of the problem which avoided solving
the involved microscopic theory governing the dynamics of quarks and gluons, quantum
chromodynamics (QCD). The impossibility of describing low energy reactions from QCD
was circumvented by designing e↵ective field theories which captured the essential features
of QCD, such as chiral symmetry.

Chiral e↵ective field theory was founded in the late sixties, well before QCD was
established, by the works of S. Weinberg [83] and C. G. Callan, S. Colemenan, J. Wess
and B. Zumino [84, 85]. These works described the interactions among nucleons and
pions at tree level, through phenomenological Lagrangians which were realizations of the
spontaneous breaking of chiral symmetry. A decade later, S. Weinberg showed how to
include pion loop corrections to these tree level calculations [86][86]—and thus how to

25
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systematically construct an e↵ective field theory—. In the mid eighties J. Gasser and H.
Leutwyler successfully applied this theory, up to one loop, to ⇡⇡ and ⇡N scattering [87],
while also extending the calculation to SU(3)F [88]. However, the nucleon-nucleon force
was still not solved. The main problem in describing the nuclear force with chiral EFT
is that the mass of the nucleon does not vanish in the chiral limit (q ! 0, m⇡ ! 0),
and it destroys the well defined expansion of small external momenta and pion masses.
E. Jenkins and A. Manohar solved this problem by treating the baryons as heavy static
fields such that the momentum transferred by the pions is small as compared to the baryon
masses [89]. In the early nineties S. Weinberg suggested that, in order to compute the
nuclear amplitudes, one could use the chiral expansion to calculate the NN potential and
then iterate it to all orders in the Schrödinger equation [43, 44]. After this pioneering
work, C. Ordóñez, L. Ray and U. Van Kolck calculated the NN potential up to next-to-
next-to-leading order (NNLO) using time-ordered perturbation theory [45]. Since then,
a few groups have further developed chiral EFT in order to describe nuclear reactions
in few-body systems. Nowadays, these theories have reached a very sophisticated status
with many observables computed up to several orders in the chiral expansion.

The problem we have at hand, the description of the ⇤N ! NN weak transition,
shares several features with the paradigmatic case of the NN strong potential. Namely,
in both interactions there is a certain separation of scales—the external momenta of the
baryons are quite lower than the QCD energy scale—, the masses of the baryonic fields
involved in both processes are of the order of 1 GeV, and the strong interactions are
involved in both transitions. This motivated the authors of Ref. [57] to write down the
lowest order description of the amplitude. Their model combined the long range one pion
exchange and medium-long range one kaon exchange potentials but left the description
of the shorter distances to an e↵ective field theory. This lowest order allows to get a
reasonable description of the available data. The scarcity of data for hypernuclear decay
mentioned in Chapter 1 does not pose, as of today, a very stringent constraint on the
e↵ective field theory. This has not stopped us from further developing the theory as the
power of e↵ective field theories lies precisely in the fact that one can further improve
the results, within a certain range, by computing higher orders. Thus, in this chapter
we present the full next order prediction of the theory for the ⇤N ! NN amplitude.
This is of course much more involved as it requires the explicit evaluation of all the loop
integrals, requiring technical analytic and numerical calculations partly borrowed from
the NN ! NN case.

The chapter is organized in the following way. First we will write down all the La-
grangians involving the degrees of freedom relevant for our amplitude. Second we will
describe an important piece, which is the power counting scheme used to organize the dif-
ferent contributions of the theory. Next we discuss the lowest order contributions, which
were partially known before, and finally we describe the main new contribution which is
the evaluation of all two pion exchange diagrams entering in the next-to-leading order
description. The calculation of the latter requires many intermediate steps which are
detailed in the Appendices as they should be helpful for future researchers in the field.
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3.1 Interaction Lagrangians

The non-mesonic weak decay of the ⇤ involves both the strong and electroweak inter-
actions. The ⇤ decay is mediated by the presence of a nucleon which, in the simplest
meson-exchange picture, exchanges a meson, e.g. ⇡, K, with the ⇤. Therefore, computing
the transition requires the knowledge of the strong and weak Lagrangians involving all
the hadrons participating in the process. Apart from the interacting ⇤ and nucleon, the
relevant degrees of freedom mediating the interaction are the ⇡, the K and the ⌃. The
⇡ and the K are exchanged between the baryons, and the ⌃ enters in the loop diagrams
as an intermediate propagating baryon. The minimum energies necessary to create these
hadrons in a ⇤N interaction, M⌃ �M⇤ ' 77 MeV, m⇡ ' 138 MeV and mK ' 495 MeV,
are either smaller or similar than the momentum transferred to each of the final nucleons,
q ⇠ 450 MeV. This large scale comes from the mass di↵erence between the initial and
final baryons, M⇤ � MN ' 177 MeV. Assuming that each of the initial baryons, the ⇤
and N , have a momentum of ⇠ 0 � 200 MeV—due to their own Fermi motion in the
hypernucleus—, the final nucleons obtain a momentum of ⇠ 417� 463 MeV. In this sec-
tion we describe the strong and weak Lagrangians for these degrees of freedom entering
at LO and NLO in the ⇤N ! NN transition.

In our approach, we try to describe the weak �S = 1 interaction within the e↵ective
field theory (EFT) framework, i.e., in an e↵ective and systematic way, which respects the
symmetries of the underlying theory, the standard model. As mentioned in the intro-
duction, chiral symmetry has played a key role in describing the strong nucleon-nucleon
force. In particular, chiral EFT’s successfully describe nucleon-nucleon scattering S, P
and D-wave phase shifts up to energies of the order of Elab ⇠ 200 MeV and the bind-
ing energies of light nuclei [90]. However, the situation in the weak sector is quite less
favorable. The short lifetime of the ⇤ does not allow us to perform ⇤N scattering ex-
periments, and the available experimental data on weak ⇤-hadron interactions mainly
comes from the weak decay of the ⇤ in free space and in the medium. Moreover, there
is a strong disagreement between the experiments and the chiral e↵ective field theory
for the hyperon decays. In the works of E. Jenkins [91] and R. Springer [92] the s-wave
and p-wave amplitudes for the hyperon decays have been derived using strong and weak
e↵ective chiral Lagrangians. The parity-violating amplitudes are automatically described
by the vertices appearing in the weak Lagrangian, while the parity-conserving ones are
described through pole diagrams, which are formed by weak baryon-baryon and strong
baryon-baryon-meson vertices. Thus, one can fit the two parameters, hD and hF , appear-
ing in the weak chiral Lagrangian to the experimentally known hyperon decays. In that
case, one finds that when s-wave amplitudes are correctly reproduced, p-wave amplitude
predictions disagree with the experiment. In our description, we obviate this problem by
using phenomenological Lagrangians for the vertices ⇤N⇡ and ⌃N⇡. The vertices ⇤NK
and ⌃NK are then related to the pionic ones using SU(3)F symmetry. Unfortunately,
the vertices ⇤N⇡⇡ and ⇤N , which may play an important role in the NLO description of
the ⇤N ! NN interaction, are not experimentally determined and cannot be related to
the previous ones by SU(3)F , and for these we use the chiral ones. In the following we
explicitly list and use the Lagrangians mentioned above.

The weak interactions between the ⌃, ⇤ and N baryons and the pseudoscalar ⇡ and
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⇤ N

⇡ q

⌃ N

⇡ q

N N

K q

Figure 3.1: Weak vertices for the ⇤N⇡, ⌃N⇡ and NNK stemming from the Lagrangians
in Eqs. (3.1) to (3.3). The weak vertex is represented by a solid black circle.

K mesons that contribute to the interaction, depicted in Fig. 3.1, are described by the
phenomenological Lagrangians

Lw
⇤N⇡ =� iGFm

2
⇡ N(A+B�5)~⌧ · ~⇡ ⇤ , (3.1)

Lw
⌃N⇡ =� iGFm
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,

where GFm2
⇡ = 2.21 ⇥ 10�7 is the weak Fermi coupling constant, �5 is the fifth gamma

matrix and ⌧ the Pauli matrices. We have implemented the isospin rule of �I = 1/2,
described in Sec. 2.1.3. Within this rule, the ⇤ and the ⌃, with isospins I = 0 and I = 1,
are coupled to and isospin of I = 1/2. Thus, the ⇤ behaves as a hyperon with I = 1/2 and
the ⌃ as a hyperon with I = 1/2 or I = 3/2. The index i appearing in the ⌃ field refers to
these two isospurion states:
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The PV and PC structures, ~A⌃i and ~B⌃i contain the corresponding weak coupling con-
stants together with the isospin operators ⌧a for 1

2 ! 1
2 transitions and T a for 3

2 ! 1
2

transitions. The weak couplings A = 1.05, B = �7.15, A⌃ 1
2
= �0.59, A⌃ 3

2
= 2.00,

B⌃ 1
2

= �15.68, and B⌃ 3
2

= �0.26 are fixed to reproduce the experimental data of

the corresponding hyperon decays [93], while the ones involving kaons, CPC
K = �18.9,

DPC
K = 6.63, CPV

K = 0.76 and DPV
K = 2.09, are derived using SU(3)F symmetry.

The other two weak vertices (Fig. 3.2), entering at NLO, are obtained from the weak
SU(3)F chiral Lagrangian,

Lw
⇤N⇡⇡ =GFm

2
⇡

h2⇡

f 2
⇡

(~⇡ · ~⇡)  ⇤ , (3.5)

Lw
⇤N =GFm

2
⇡h⇤N  ⇤ , (3.6)

with h2⇡ = (hD+3hF )/(8
p
6GFm2

⇡) = 10.13 MeV and h⇤N = �(hD+3hF )/(
p
6GFm2

⇡) =
�81.02 MeV and f⇡ = 92.4 MeV. For the parameters appearing in the weak chiral La-
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⇤ N

⇡

q1 q2

⇡
a b

⇤ N

Figure 3.2: Weak vertices corresponding to the ⇤N⇡⇡ and ⇤N interactions, represented
by a solid black circle. The corresponding Lagrangians are given in Eqs. (3.5) and (3.6).

N N

⇡ q

N N

⇡

q
1

q
2

⇡
a b

⇤ ⌃

⇡ q

⇤ N

K q

Figure 3.3: Strong vertices for the NN⇡, NN⇡⇡, ⇤⌃⇡ and ⇤NK which arise from the
Lagrangians in Eqs. (3.7) to (3.10).

grangian, hD and hF , we have taken the values hD = �7.14·10�6 MeV and hF = 1.70·10�5

MeV, obtained from a fit to the s-wave amplitudes of the hyperon decays [93].

The strong vertices for the interaction between our baryonic and mesonic degrees of
freedom are obtained from the strong SU(3)F chiral Lagrangian [93],

Ls
NN⇡ =� gA

2f⇡
 �µ�5~⌧ · @µ~⇡ , (3.7)

Ls
NN⇡⇡ =� 1

4f 2
⇡

 �µ~⌧ · (~⇡ ⇥ @µ~⇡) , (3.8)
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3
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µ�5~ ⌃ · @µ~⇡ , (3.9)

Ls
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D + 3F

2
p
3f⇡

 N�
µ�5 @µ�K ⇤ , (3.10)

where we have taken the convention which gives us ~ ⌃ · ~⇡ =  ⌃+⇡� +  ⌃�⇡+ +  ⌃0⇡0,
and we consider, gA = 1.290 and f⇡ = 92.4 MeV. D = 0.822 and F = 0.468 parameterize
the strong SU(3)F chiral Lagrangian. These strong coupling constants are taken from
NN interaction models such as the ones derived by the Jülich [69] or Nijmegen [94, 95]
groups. The four interaction vertices corresponding to these Lagrangians are depicted in
Fig. 3.3. The kaon field appearing Eq. 3.10 is defined as �K =

�

K+

K0

�

.

Once the interaction Lagrangians involving the relevant degrees of freedom have been
presented, we need to define the power counting scheme which allows us to organize the
di↵erent contributions to the full amplitude.
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3.2 Power counting scheme and non-relativistic ex-
pansion

The amplitude for the ⇤N ! NN transition is built as the sum of medium and long-range
one meson exchanges (i.e. ⇡ and K), the contribution from the two-pion exchanges, and
the contribution of the contact interactions up to two powers of momentum. The order at
which the di↵erent terms enter in the perturbative expansion of the amplitudes is given by
the so-called Weinberg power counting scheme [43, 44]. Within this scheme, the Feynman
diagrams are organized in increasing powers of momenta. From dimensional analysis one
can easily see that the baryonic propagators are O(q�1), the mesonic ones O(q�2), the
derivative interactions O(q1) and the four-momentum integrations O(q4). Applying then
some topological identities one has that, the connected and irreducible diagrams, and
with four external baryons, contribute with ⌫ powers of momenta,

⌫ = 2L+
X

i

(di +
ni

2
� 2), (3.11)

where ⌫ is given by the number of loops (L), the number of derivative insertions in each
vertex i (di), and the number of baryon fields in the vertex (ni).

In our calculations we will employ the heavy baryon formalism developed by E. Jenkins
and A. Manohar in the early nineties [89]. This technique introduces a perturbative
expansion in the baryon masses appearing in the Lagrangians, so that this new large scale
does not disrupt the Weinberg power counting. It is worth noting that, in the heavy
baryon formalism, terms of the type  B�5 B are subleading in front of terms like  B B,
since they show up at one order higher in the heavy baryon expansion. In our calculation,
we choose to keep both terms in our Lagrangians of Eqs. (3.1) and (3.2) because the
experimental values of the couplings B and B⌃ are much larger than A and A⌃. For
example, A = 1.05 and B = �7.15 [93].

Our calculation is characterized by the presence of di↵erent octet baryons in the rele-
vant Feynman diagrams, contributing in both, the spinors and propagators. In the center
of mass system, the spinors for the incoming ⇤ and N with masses M⇤ and MN , energies
E⇤

p and EN
p , and momenta ~p and �~p are given by
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⇤
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s

EN
p +MN

2MN

0

@

1

� ~�2 · ~p
EN

p +MN

1

A , (3.13)
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and for the outgoing nucleons with momenta ~p 0 and �~p 0, and energy E 0 ⌘ 1
2

�

E⇤
p + EN

p

�

,

ū1(E
0, ~p 0) =

r

E 0 +MN

2MN

✓

1 � ~�1 · ~p 0

E 0 +MN

◆

, (3.14)

ū2(E
0,�~p 0) =

r

E 0 +MN

2MN

✓

1
~�2 · ~p 0

E 0 +MN

◆

. (3.15)

The momenta and the Pauli matrices are labeled according to Fig. 3.4. The relativistic
propagator of a baryon with mass MB and momentum p reads

i

�p�MB + i✏
=

i(�p+MB)

p2 �M2
B + i✏

. (3.16)

Heavy-baryon expanding with these spinors and propagators introduces mass di↵erences
(M⇤ �MN , M⌃ �M⇤) in the baryonic propagators. A reasonable approach would be to
consider these mass di↵erences of order O (~q 2/⇤2), MB = M +O (~q 2/⇤2), and thus they
would not enter in the loop diagrams. We have chosen to leave the physical masses in
both the initial and final spinors and also in the intermediate propagators; i.e. we consider
the mass di↵erences as another scale in the heavy baryon expansion. The corresponding
SU(3)F symmetric limit is also given, and can be easily obtained from our expressions by
setting the mass di↵erences, which we explicitly retain, to zero.

⇤ N

N N

p

�p

p0

�p0

(1)

(2)

Figure 3.4: General diagram representing the ⇤N ! NN transition in the center of
mass frame. The solid ellipse represents any interaction connecting the four baryons. The
upper vertex is labeled with (1) and the lower one with (2). The initial and final momenta
in the upper legs are denoted with p and p0, and the corresponding ones in the lower legs,
�p and �p0. In all the following diagrams we use these labels.

The procedure we follow to compute the di↵erent Feynman diagrams entering the
transition amplitude is the following: first we write down the relativistic expressions for
each diagram, and afterwards, we perform the heavy baryon expansion. Starting our
calculation from the relativistic amplitudes, instead of directly using the heavy-baryon
Feynman rules, allows us to keep track on how the mass di↵erences mentioned above
a↵ect the final amplitude.

In the next sections we will describe the LO and NLO contributions to the process
⇤N ! NN , following the scheme presented here. The explicit expressions and details of
the calculations are given in the App. D and E.
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3.3 Leading order Contributions

⇤ N

N N

⇡

⇤ N

N N

K

⇤ N

N N

Figure 3.5: One-pion and one-kaon exchange, and four-point baryon contributions to the
transition.

At tree level, the transition potential ⇤N ! NN involves the LO contact terms, and ⇡
and K exchanges, as depicted in Fig. 3.5. First, the contact interaction can be written as
the most general Lorentz invariant potential with no derivatives. Taking into account the
antisymmetry of the final two nucleons, the four-fermion (4P) interaction in momentum
space at leading order (in units of GF ) is

V4P (~q ) = C00 + C01 ~�1~�2 , (3.17)

where C00 and C01 are low energy constants which need to be fitted by direct comparison
to experimental data.

The potentials for the one pion and one kaon exchanges read, respectively,

V⇡(~q ) =� GFm2
⇡gNN⇡

2MN

✓

A� B

2M
~�1 ~q

◆

~�2 ~q

�q20 + ~q 2 +m2
⇡

~⌧1 · ~⌧2, (3.18)

VK(~q ) =
GFm2

⇡g⇤NK

2M

 

Â+
B̂

2MN
~�2 ~q

!

~�1 ~q

�q20 + ~q 2 +m2
K

, (3.19)

where m⇡ = 138.04 MeV and mK = 494.99 MeV, q0 ⌘ 1
2(M⇤ �MN), M ⌘ 1

2(MN +M⇤),
M⇤ = 1115.68 MeV, MN = 938.92 MeV, gNN⇡ ⌘ gAMN

f⇡
, g⇤NK ⌘ �D+3F

2
p
3f⇡

, A = 1.05,
B = �7.15 and

Â =

✓

CPV
K

2
+DPV

K +
CPV

K

2
~⌧1~⌧2

◆

,

B̂ =

✓

CPC
K

2
+DPC

K +
CPC

K

2
~⌧1 ~⌧2

◆

.

The values for the weak PV and PC coupling constants, derived using the NSC97f model,
are CPV

K = 0.76, DPV
K = 2.12, CPC

K = �23.75 and DPC
K = 8.33. The constants are labeled

D and C depending if they contribute to the direct or exchange Feynman diagrams.
The transferred momentum ~q ⌘ ~p 0 � ~p, and the spin and isospin operational structures
connecting the initial and final states, are defined according to the labels of Fig. 3.4. Since
in the hypertriton calculation we use Jacobi coordinates, we should also use them for the
transferred momentum. Denoting the Jacobi coordinates for the initial and final states
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as ~p12, ~p3, ~pCM and ~p12 0, ~p3 0, ~pCM
0, we have, in the center of mass frame, ~pCM = 0, and

using the spectator condition, ~p3 = ~p3 0:

~q ⌘ ~p 0 � ~p = ~p12
0 � ~p12 +

M⇤ �MN

2(M⇤ +MN)
~p3 . (3.20)

In the computation of the hypernuclear decay observables, we make the approximation
~q ' ~p12 0 � ~p12.

We note here that the global sign of the one-meson-exchange (OME) potentials, which
depends on the sign of the weak hyperon-nucleon-meson vertices, is currently not deter-
mined. The experiments constraining these weak vertices are the mesonic weak decays
of hyperons, which don’t a↵ect the global sign of the vertex, and the non-mesonic weak
decays of hypernuclei, which are not precise enough to determine it. Therefore, the global
sign of the weak OME potentials driving the ⇤N ! NN is a matter of the convention
one uses for the sign of the hyperon-nucleon-meson vertices.

3.3.1 LO order contributions to the ⌃N ! NN potential

So far we have discussed the formalism for the weak decay of a ⇤ bounded in hypernuclei.
However, the strong interactions among the ⇤ and the medium of nucleons may convert
it to a virtual ⌃ (and then back to a ⇤). These strong interactions happen many orders
of magnitude faster than the weak interactions that make the ⇤ decay, and therefore the
initial hypernuclear wave function must take into account the ⌃ hyperon as an explicit de-
gree of freedom. This e↵ect has been considered in the LO study of the non-mesonic decay
of the hypertriton. Therefore, the weak potential mediating the decay of the hypertriton
must also include the ⌃N ! NN transition.

⌃ N

N N

⇡

⌃ N

N N

K

⌃ N

N N

Figure 3.6: One-pion and one-kaon exchange and contact contributions to the transition.

The OPE and OKE mechanisms and the contact interaction driving the ⌃N ! NN
interaction are depicted in Fig.3.6. All the vertices involved in this interaction have
already been described in Sec. 3.1, except the strong ⌃NK one. As the ⇤NK vertex, this
one is also extracted from the strong chiral SU(3)F Lagrangian,

Ls
⌃NK =

�D + F

2f⇡
 N�

µ�5~⌧
† · ~ ⌃ @µ�K , (3.21)

where the couplings are defined as before and we use the convention

~⌧ † · ~ ⌃ =

 

⌃0

p
2⌃+p

2⌃� �⌃0

!

. (3.22)
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The contact potential is analogous to the one for the ⇤N ! NN transition, with two
new independent low energy constants. Thus, the potentials read:

V (⌃)
⇡ (~q ) =� GFm2

⇡gNN⇡

2MN

" 

A⌃ 1
2

~�2 · q̂ �
B⌃ 1

2

2M⌃

~q 2(~�1 · q̂)(~�2 · q̂)
!

~⌧1 · ~⌧2 (3.23)

+

 

A⌃ 3
2

~�2 · q̂ �
B⌃ 3

2

2M⌃

~q 2(~�1 · q̂)(~�2 · q̂)
!

~T1 · ~⌧2
#

1

�q00
2 + ~q 2 +m2

⇡

,

V (⌃)
K (~q ) =

GFm2
⇡g⌃NK

2M⌃

 

Â⌃|~q|~�1 · q̂ + B̂⌃

2MN
~q 2(~�1 · q̂)(~�2 · q̂)

!

1

�q00
2 + ~q 2 +m2

K

, (3.24)

V (⌃)
4P (~q ) =C⌃

00 + C⌃
01 ~�1~�2, (3.25)

where A⌃ 1
2

= �0.59, A⌃ 3
2

= 2.00, B⌃ 1
2

= �15.68, B⌃ 3
2

= �0.26, g⌃NK = 5.38, M⌃ ⌘
MN+M⌃

2 , M⌃ = 1193.15 MeV, q00 ⌘ 1
2(M⌃ �MN), and

Â⌃ = �
p
3

✓

CPV
K

2
+DPV

K

◆

+
1

2
p
3
CPV

K ~⌧1~⌧2 + CPV
K

~T1 · ~⌧2

B̂⌃ = �
p
3

✓

CPC
K

2
+DPC

K

◆

+
1

2
p
3
CPC

K ~⌧1~⌧2 + CPC
K

~T1 · ~⌧2

The transferred momenta and the operational structures are defined as in the previous
section. The matrix elements for the di↵erent spin and isospin structures that appear in
both transitions, ⇤N ! NN and ⌃N ! NN , are shown in the App. B and C.

3.4 Next-to-leading order contributions

The NLO contribution to the weak decay process, ⇤N ! NN , includes contact inter-
actions with one and two derivative operators, caramel diagrams and two-pion-exchange
diagrams, as shown in the following sections.

3.4.1 NLO contact potential

Order Parity Structures

1 PV
~�1 · ~q, ~�1 · ~p, ~�2 · ~q,

~�2 · ~p, (~�1 ⇥ ~�2) · ~q, (~�1 ⇥ ~�2) · ~p,

2 PC
~q 2, ~p2, (~�1 · ~�2)~q 2, (~�1 · ~�2)~p2, (~�1 · ~q)(~�2 · ~q),

(~�1 · ~p)(~�2 · ~p), (~�1 + ~�2) · (~q ⇥ ~p)

Table 3.1: All possible PC and PV NLO operational structures connecting the initial and
final spin and angular momentum states. There are a total of thirteen.

In principle the NLO contact potential should include, in the center of mass frame,
structures involving both the initial (~p ) and final (~p 0) momenta, or independent linear



3.4. Next-to-leading order contributions 35

 0  20  40  60  80  100  120  140  160  180

Pr
ob

ab
ili

ty
 d

en
sit

y

p12 (MeV)

Triton
Hypertriton

Figure 3.7: Probability densities for the relative momentum between two nucleons in the
triton (solid red) and between a ⇤ and a nucleon in the hypertriton (dashed green). The
wave functions are calculated using strong e↵ective potentials such that the corresponding
binding energies are reproduced [96]. Due to the ⇤ being less bound than the nucleons,
the momentum in the hypertriton is peaked at lower values.

combinations of these two momenta, e.g. ~q ⌘ ~p 0 � ~p and ~p. Table 3.1 lists all these
possible structures. At NLO there are 13 LEC’s—6 PV ones at order O (q/M) and 7 PC
ones at order O (q2/M2)—, which must be fitted to experiment. This is not feasible with
current experimental data on hypernuclear decay. A reasonable way to reduce the number
of LEC’s and render the fitting procedure more tractable is to note that the pionless weak
decay mechanism we are interested in takes place inside a ⇤-hypernucleus. Therefore,
one can assume that in the ⇤N ! NN transition potential the initial baryons have a
fairly small momentum. For example, for the hypertriton, the typical relative momentum
between the ⇤ and a nucleon is of the order of a few tens of MeV. In comparison, the
relative momentum between two nucleons in its nuclear partner, the triton, is peaked
at quite larger values, as shown in Fig. 3.7. Moreover, the final nucleons gain an extra
momentum from the surplus mass of the ⇤ (M⇤ �MN ' 116 MeV), which in most cases
allows to consider, |~p 0| � |~p |. In this case, one may approximate ~q ' ~p 0 and ~p = 0.
Within this approximation, the contact potential up to O(~q 2) contains only eight LEC’s
and reads (in units of GF ):

V4P (~q ) = C00 + C01(~�1 · ~�2) (3.26)

+ C10
~�1~q

2MN
+ C11

~�2~q

2MN
+ iC12

(~�1 ⇥ ~�2) ~q

2MN

+ C20
~�1~q ~�2~q

4M2
N

+ C21
~�1~�2 ~q 2

4M2
N

+ C22
~q 2

4M2
N

.
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Figure 3.8: Caramel diagrams contributing to the process at NLO. The solid circle
represents the weak vertex.
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Figure 3.9: Corrections to the LO contact interactions. The contributions of all these
diagrams can be accounted for by an adequate shift of the coe�cients of the LO contact
terms.

Using strong and weak LO contact interactions and two baryonic propagators one can
also build three diagrams that enter at NLO. These caramel-like diagrams are shown in
Fig. 3.8. They only di↵er in the position of the strong and weak vertices and in the
mass of the upper-leg baryonic propagator. In order to write a general expression for
the three caramel diagrams we label the mass of the upper-leg propagating baryon M↵

(Ma = MN , Mb = M⇤ and Mc = M⌃) and the corresponding strong and weak contact
vertices C↵

00(s)+C↵
01(s)~�1 ·~�2 and C↵

00(w)+C↵
01(w)~�1 ·~�2, where ↵ = a, b, c correspond to the

labels of Fig. 3.8. It is also convenient to define M↵ = MN + �↵. In the heavy baryon
formalism these diagrams only contribute with an imaginary part of the form

V↵ =i
GFm2

⇡

16⇡MN
(C↵

00(s) + C↵
01(s)~�1 · ~�2) (C↵

00(w) + C↵
01(w)~�1 · ~�2) (3.27)

⇥
q

(�b ��↵)(
1
2(�b +�↵) +MN) + ~p2 .

The only dependence on momenta is due to the ~p 2 inside the square root, which should
be neglected in the approximations |~p 0| � |~p | Few more details of this calculation are
given in App. D.1.

One pion corrections to the LO contact interactions, shown in Fig. 3.9, also enter at
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NLO. However, the net contribution of these diagrams is to shift the coe�cients of the
LO contact terms with functions which depend on m⇡, M⇤ � MN and M⌃ � MN , and
therefore we do not include them.

3.4.2 Two-pion-exchange diagrams

The two-pion-exchange contributions are organized according to the di↵erent topologies—
balls, triangles, and boxes—, such that most of the integration techniques are shared by
each class of diagrams. There are two types of ball diagrams, among which only one
gives a non-zero contribution, depicted in Fig. 3.10. In addition, there are four triangle
diagrams, shown in Fig. 3.11, and two box and two crossed box diagrams, shown in
Fig. 3.12. The topologies contain, respectively, zero, one, and two baryonic propagators,
which may correspond to N or ⌃ baryons. All the diagrams contain two relativistic
propagators corresponding to the 2�⇡ exchange.

⇤ N

N N

N ⇤ N

N N

(a)

Figure 3.10: Possible ball diagrams contributing to the process at NLO. The right one
gives a zero contribution due to isospin cancellations. The solid circle represents the weak
vertex.

⇤ N

N NN

⇤ N

N NN

N ⇤ N

N N

N
⇤ N

N N

⌃

(b) (c) (d) (e)

Figure 3.11: Triangle diagrams which contribute to the process at NLO. The solid circle
represents the weak interaction vertex.

⇤ N

N NN

N ⇤ N

N NN

⌃

⇤ N

N NN

N ⇤ N

N NN

⌃

(f) (g) (h) (i)

Figure 3.12: Box diagrams which contribute to the process at NLO. The solid circle stands
for the weak interaction vertex.
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The technical details of the evaluation of the Feynman diagrams for the ball, triangle
and box diagrams are given in App. D.2, D.3, and D.4, respectively. The main technique
used is to introduce a number of master integrals (the simplest ones), which appear in
di↵erent diagrams, and which reduce the mathematical complexity of the problem (see
App. E). Once they are defined, we derive a number of relations between the master
integrals and the more complicated ones, which can in most cases be easily checked. Full
details are provided to ensure the future use of these expressions. In the next section we
provide a few more details on how this calculation technique is applied.

Using the labels defined in Figs. 3.10, 3.11 and 3.12 we organize the contributions of
all the 2 � ⇡ exchange diagrams in Eqs. (3.28) to (3.36). The corresponding coe�cients
in terms of the coupling constants, baryon and meson masses, and momenta can be read
o↵ from the full expressions given in the App. D.2, D.3 and D.4.

Va =ca1 ~⌧1 · ~⌧2 , (3.28)

Vb =cb1 , (3.29)

Vc =cc1 ~⌧1 · ~⌧2 , (3.30)

Vd = [cd1 + cd2 ~�1 · ~q + cd3 (~q · ~p) + cd4 ~�1 · (~q ⇥ ~p)] (~⌧1 · ~⌧2) , (3.31)

Ve =(ce1 + ce2 ~�1 · ~q)(~⌧1 · ~⌧2) , (3.32)

Vf =
h

cf1 + cf2 ~�1 · ~�2 + cf3 ~�1 · ~q + cf4 (~�1 ⇥ ~�2) · ~q + cf5 (~�1 · ~q)(~�2 · ~q) + cf6 (~�1 · ~q)(~�2 · ~p)
+cf7 ~�1 · (~p⇥ ~q) + cf8 ~�2 · (~p⇥ ~q)

i

(c0f1 + c0f2 ~⌧1 · ~⌧2) , (3.33)

Vg =
h

cg1 + cg2 ~�1 · ~�2 + cg3(~�1 · ~q)(~�2 · ~q)
i

(c0g1 + c0g2 ~⌧1 · ~⌧2) (3.34)

+
h

cg4 ~�1 · ~q + cg5(~�1 ⇥ ~�2) · ~q
i

(c00g1 + c00g2 ~⌧1 · ~⌧2) ,
Vh =

h

ch1 + ch2 ~�1 · ~�2 + ch3 ~�1 · ~q + ch4(~�1 ⇥ ~�2) · ~q + ch5(~�1 · ~q)(~�2 · ~q) + ch6(~�1 · ~q)(~�2 · ~p)
+ch7 ~�1 · (~p⇥ ~q) + ch8 ~�2 · (~p⇥ ~q)

i

(c0h1 + c0h2 ~⌧1 · ~⌧2) , (3.35)

Vi =
h

ci1 + ci2 ~�1 · ~�2 + ci3 (~�1 · ~q)(~�2 · ~q)
i

(c0i1 + c0i2 ~⌧1 · ~⌧2) (3.36)

+
h

ci4 ~�1 · ~q + ci5(~�1 ⇥ ~�2) · ~q
i

(c00i1 + c00i2 ~⌧1 · ~⌧2) .

Considering the SU(3)F limit where all the baryon masses are considered to take the
same value (q0 = q00 = 0) the expressions above become much more simple. Defining

At(q) ⌘ 1

2q
arctan

✓

q

2m⇡

◆

, (3.37)

L(q) ⌘
p

4m2
⇡ + q2

q
ln

 

p

4m2
⇡ + q2 + q

2m⇡

!

, (3.38)
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with q ⌘p~q 2, and extracting the baryonic poles and the polynomial terms, one obtains,

Va =� h⇤N

192⇡2f 4
⇡(M⇤ �MN)

(4m2
⇡ + q2)L(q)(~⌧1 · ~⌧2) , (3.39)

Vb =
3g2Ah2⇡

32⇡f 4
⇡

(2m2
⇡ + q2)At(q) , (3.40)

Vc =� g2Ah⇤N

384⇡2f 4
⇡(M⇤ �MN)

(8m2
⇡ + 5q2)L(q)(~⌧1 · ~⌧2) , (3.41)

Vd =
gA

64⇡2f 3
⇡MN

L(q)(~⌧1 · ~⌧2)
��2Bm2

⇡ � B~q 2 +B(~q · ~p) + 6AMN(~�1 · ~q)� 3iB~�1 · (~q ⇥ ~p)
�

,

(3.42)

Ve =

p
3D

384⇡2f 3
⇡MN

L(q)
�

B⌃1(4m
2
⇡ + 3~q 2)� 4A⌃1MN(~�1 · ~q)

�

, (3.43)

Vf =
g3A

512⇡2f 3
⇡MN(4m2

⇡ + ~q 2)
L(q)(�3 + 2~⌧1 · ~⌧2) (3.44)

⇥
h1

6
B(448m4

⇡ + 4m2
⇡(�24~q · ~p+ 47~q 2) + 25~q4 � 36~q 2(~q · ~p))

+ 4iB(4m2
⇡ + ~q 2)~�2 · (~q ⇥ ~p)� 4AMN(8m

2
⇡ + 3~q 2)~�1 · ~q + 2iB(8m2

⇡ + 3~q 2)~�1 · (~q ⇥ ~p)

+ 4B(4m2
⇡ + ~q 2)(~�1 · ~q)(~�2 · ~p)� 4B(4m2

⇡ + ~q 2)(~�1 · ~q)(~�2 · ~q)
� 4B(4m2

⇡ + ~q 2)(~q · ~p� ~q 2)(~�1 · ~�2)� 8iAMN(4m
2
⇡ + ~q 2)(~�1 ⇥ ~�2) · ~q

i

,

Vg =
Dg2A

256
p
3⇡2f 3

⇡MN(4m2
⇡ + ~q 2)

L(q)
h

� 1

6
B⌃2(448m

4
⇡ + 188m2

⇡~q
2 + 25~q4) (3.45)

+ 4A⌃2MN(8m
2
⇡ + 3~q 2)(~�1 · ~q) + 4B⌃2(4m

2
⇡ + ~q 2)(~�1 · ~q)(~�2 · ~q)

� 4B⌃2(4m
2
⇡ + ~q 2)~q 2(~�1 · ~�2)� 8iA⌃2MN(4m

2
⇡ + ~q 2)(~�1 ⇥ ~�2) · ~q

i

,

Vh =
g3A

512⇡2f 3
⇡MN(4m2

⇡ + ~q 2)
L(q)(3 + 2~⌧1 · ~⌧2) (3.46)

⇥
h1

6
B(448m4

⇡ + 4m2
⇡(�24~q · ~p+ 47~q 2) + 25~q4 � 36~q 2(~q · ~p))

� 4iB(4m2
⇡ + ~q 2)~�2 · (~q ⇥ ~p)� 4AMN(8m

2
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⇡ + 3~q 2)~�1 · (~q ⇥ ~p)
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i
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⇡MN(4m2
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L(q)⇥
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6
B⌃3(448m

4
⇡ + 188m2

⇡~q
2 + 25~q4) (3.47)

+ A⌃3MN(8m
2
⇡ + 3~q 2)(~�1 · ~q) + 4B⌃3(4m

2
⇡ + ~q 2)(~�1 · ~q)(~�2 · ~q)

� 4B⌃3(4m
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2
⇡ + ~q 2)(~�1 ⇥ ~�2) · ~q

i
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The isospin part for the potentials that contain ⌃ propagators (Ve, Vg, Vi) is taken into
account by making the replacements:

A⌃1 !2

3

⇣p
3A⌃ 1

2
+ A⌃ 3

2

⌘

~⌧1 · ~⌧2 , (3.48)

B⌃1 !2

3

⇣p
3B⌃ 1

2
+B⌃ 3

2

⌘

~⌧1 · ~⌧2 ;

A⌃2 !�
p
3A⌃ 1

2
+ 2A⌃ 3

2
+

2

3
(
p
3A⌃ 1

2
+ A⌃ 3

2
)~⌧1 · ~⌧2 , (3.49)

B⌃2 !�
p
3B⌃ 1

2
+ 2B⌃ 3

2
+

2

3
(
p
3B⌃ 1

2
+B⌃ 3

2
)~⌧1 · ~⌧2 ;

A⌃3 !�
p
3A⌃ 1

2
+ 2A⌃ 3

2
� 2

3
(
p
3A⌃ 1

2
+ 2A⌃ 3

2
)~⌧1 · ~⌧2, (3.50)

B⌃3 !�
p
3B⌃ 1

2
+ 2B⌃ 3

2
� 2

3
(
p
3B⌃ 1

2
+ 2B⌃ 3

2
)~⌧1 · ~⌧2 .

To obtain the coe�cients accompanying the isospin operators 1 and ~⌧ ·~⌧ we calculate each
diagram in the particle basis and then relate them to the results obtained by the isospin
operators. Note that Eqs. (3.39) and (3.41) only have physical meaning away from the
SU(3)F limit.

We note here that the role played by the two-pion exchange mechanism in the weak
decay of hypernuclei was also considered in Ref. [18]. This work scaled the expressions
obtained in the strong NN sector within the chiral unitary approach [97] to account for
the parity-conserving amplitudes in the weak transitions, the scaling factor being the
ratio between the weak and strong baryon-baryon-meson coupling constants. Although a
direct comparison between our EFT approach and Ref. [18] cannot be made, the results
of Ref. [18] provide an insight e↵ective field theory approach, provide an insight on the
role played by the interferences between the di↵erent diagrams considered (one-meson
exchange and uncorrelated and correlated two-pion exchanges).

3.4.3 Master integrals and their relations

In this section we briefly review the technical part of the loop calculation. The main
complication arises from the integrals that appear in the di↵erent NLO two-pion exchange
diagrams. These loop diagrams contain a momentum, carried by the hadrons forming the
loop, that is not constrained by the external momenta and that must be integrated to
account for all the possibilities. The corresponding integrals have ultraviolet divergences
and therefore must be regularized. In our work, we use the dimensional regularization
approach. These integrals depend on the number and type of propagators (baryonic or
mesonic), which appear as denominators, and on the type of vertices, which appear as
momenta in the numerator. The integrals are therefore classified according to the di↵erent
topologies the diagrams may have: balls, triangles and boxes. Let us focus on the triangle
diagrams, which contain a baryonic (non-relativistic) propagator, two pionic (relativistic)



3.4. Next-to-leading order contributions 41

ones, and up to three momenta in the numerator (one for each vertex):

I;µ;µ⌫;µ⌫⇢ ⌘ 1

i

Z

d4l

(2⇡)4
1

l2 �m2 + i✏

1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏
(1; lµ; lµl⌫ ; lµl⌫l⇢) ,

where the semicolons separate the di↵erent possible numerators.
These integrals, as well as the ones appearing in the ball and box diagrams, have

already been calculated with q0 = q00 = 0 (for example see Ref. [98]). In our calculation,
we choose to keep these quantities explicitly, but the strategy we follow is the same: we
calculate only the integrals without momenta in the numerator, which are called master
integrals, and then relate the others with them through Veltman-Passarino tricks [99].
For example, one can replace an l0 in the numerator of I0 by (l0+ q00)� q00 and obtain thus
two simpler integrals (one with one denominator less and one with one momentum less in
the numerator). The full set of relations and master integrals are shown in the App. E.

To show how q0 and q00 contribute at this level of the calculation, we plot in Fig. 3.13
the master integral I as a function of q and with the quantities q0 and q00 that appear in
the di↵erent triangle diagrams. Fig. 3.13 shows that the master integral is quite sensible
of q0 and q00. In the next chapter we show the comparison of the potentials with and
without these quantities taken into account.

0 100 200 300 400 500 600

1

2

3

q HMeVL

-
10
3
◊I
HqL
HMe

V
-
1 L

q0=0, q0'=0
q0=DMê2, q0'=0
q0=-DMê2, q0'=-DM
q0=-DMê2, q0'=-DM'

Figure 3.13: Comparison of the master integral I with q0 = q00 = 0 and with the actual
q0 and q00 that appear in the heavy baryon expansion of the di↵erent triangle diagrams.
We have defined �M = M⇤ �MN and �M 0 = M⌃ �MN .
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Chapter 4

Results

The formalism developed in the two previous chapters allows us to compute the di↵erent
hypernuclear decay observables. First, in Chapter 2, we have presented the formalism
describing the strong interactions taking place in the initial hypernuclei and in the nuclear
products which result from the weak decay. Following the two schemes presented in
Chapter 2, this chapter is also mainly divided in two sections, one for light hypernuclei
and one for the hypertriton. Second, the potential driving the weak ⇤N ! NN transition,
has been derived in Chapter 3.

In the description of light hypernuclei, we have used di↵erent models to account for
the strong interactions. The initial wave function has been described by a shell model
approach, while making use of spectroscopic factors to account for the nuclear struc-
ture. For the final strong interactions among the two outgoing nucleons two potentials
have been used, one from the Nijmegen group (NSC97f) and one from the Jülich group.
These potentials were developed in the late eighties and nineties and are based on one-
meson-exchange models for the baryon-baryon interaction. They are SU(3)F extensions
of previously and successfully developed nucleon-nucleon potential models. SU(3)F sym-
metry is then broken in several ways, as for example by using the physical values for the
masses of the mesons and the baryons or by including charge-symmetry breaking terms
and the Coulomb interaction explicitly. In the case of NSC97, the potential includes
the contribution of the pseudoscalar ⇡, ⌘, ⌘0 and K mesons the vector ⇢, �, ! and K⇤
mesons, the scalar a0(980), f0(975), and (880), and the di↵ractive contribution from
the pomeron P and from the tensor f2(1285), f 0

2(1525), a2(1270) mesons [94]. The Jülich
model is based on the Bonn meson-exchange model for the NN interaction, which includes
not only one-meson-exchange potentials but also explicit two-pion-exchange contributions
involving the �-isobar in intermediate states. Additionally, the Jülich model includes the
degrees of freedom relevant in the YN interaction, namely the ⇤, ⌃ and Y ⇤ hyperons,
the pseudoscalar ⇡, K mesons and the vector ⇢ and ! mesons. Both models reproduce,
with great precision, the properties of the deuteron, e.g. binding energy, and also the low
energy NN and YN scattering experimental data. However, these models show di↵erences
in the baryon-baryon phase shifts and are subject to predict di↵erent results when applied
in other processes, as for example in the study of the hypernuclear decay quantities [29].
More recently, new versions of these meson-exchange based models have been developed.
As an example, the extended soft-core potential [100] includes apart from the one-boson

43
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exchanges, the exchanges of two-mesons, meson pairs and multiple gluons, together with
quark-core e↵ects. Although we have not used these more recent versions in our problem,
they are being tested by other groups in di↵erent physical situations where the strangeness
plays an important role, specially in the study of hypernuclear structure.

From the discussion above, one expects that the predictions for the observables of
the decay of light hypernuclei is subject to a model dependence tied to di↵erent baryon-
baryon strong interaction models used to describe the initial hypernuclear wave function
and the final interactions among the decay products. In order to reduce these model
dependencies we have performed a calculation for the decay of the hypertriton, where the
strong interactions in both the initial and final state have been described with potentials
derived within an e↵ective field theory (EFT) framework. These strong EFT potentials,
in contrast with the one-meson-exchange ones, include the most general interactions up
to a certain order in the momentum expansion, while being constrained by the chiral
symmetry of QCD. During the last decade the EFT for the nucleon-nucleon interaction
has been developed up to next-to-next-to-next-to-leading order (3NLO) in the momentum
expansion, and the corresponding low-energy coe�cients (LEC’s) have been fitted to the
experimental data on low energy NN and YN scattering and nuclear bound states.

The weak four-body �S = 1 transition has also been described with an EFT potential.
This potential has been derived in Chapter 3 up to order O(~q2) order. All the parameters
entering this potential—the couplings among mesons and baryons and the form factors—
have been provided correspondingly. We note that for the kaon strong couplings to the
baryons, which are not known experimentally and must be derived using SU(3)F sym-
metry, we have used the ones given by the NSC97f and Jülich models. The weak vertices
for the coupling of the mesons to the baryons have two di↵erent amplitudes, one that
conserves parity and one that violates parity. The corresponding coupling constants are
taken from Ref. [17], where the soft-meson reduction theorem and the pole model are
used to derive their values. The short range part of the potential is described by a set
of contact interactions that are accompanied by low energy constants. These constants
are not known and must be fitted by the available experimental data constraining the
⇤N ! NN transition.

In the first section of this chapter we review the available experimental data set for
the non-mesonic hypernuclear decay. There are three independent quantities that have
been measured for various hypernuclei: the total and partial decay rates and the parity
violating asymmetry in the outgoing protons respect to the hypernuclear polarization axis.
In s-shell hypernuclei, such as 5

⇤He, both of the initial interacting baryons, the ⇤ and the
nucleon, are in an s-shell, while in p-shell hypernuclei the nucleons may be in an s-shell
or a p-shell. Therefore, most optimistically, one may consider to have six independent
observables, three for s-shell hypernuclei and three for p-shell hypernuclei. In contrast, the
EFT weak potential contains two LEC’s at order O(~q 0), six at order O(~q), and seven at
order O(~q 2). The current number and precision of the measurements on the non-mesonic
decay of light hypernuclei only allow us to fairly constrain the two leading order (LO)
LEC’s.

In Sec. 4.2 we fit these two LEC’s to the total and partial decay rates and the parity
violating asymmetry for three light hypernuclei: 5

⇤He,
11
⇤ B, and 12

⇤ C. As an alternative way
to fix the two LO LEC’s, in Sec. 4.3, we compare the corresponding LO EFT potential
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with the one-meson exchange (OME) potential. Through this comparison, we write the
two LO LEC’s in terms of the parameters appearing in the OME description.

There are no experimental data on the decay of the hypertriton and therefore it is
currently not possible to fit the LEC’s using the Faddeev-Yakubovski scheme and EFT
formalism developed in Chapter 2. In Sec. 4.3 we show how our prediction for the hy-
pertriton nonmesonic decay depends on the values of the two LO LEC’s. We also briefly
compare our results with previous works that have studied the decay of the hypertriton.

In order to get some insight into the size of the loop corrections to the tree-level
calculation, in the last section we compare the pion and kaon contributions with the
di↵erent terms coming from the two-pion exchange diagrams.

The OME potentials entering the calculation in the two first sections, 4.2 and 4.3,
have been calculated using the Lagrangians listed in the Appendix F. The potentials used
in the sections 4.4 and 4.5, i.e. the one-pion, the one-kaon and the two-pion exchanges,
have been explicitly derived in the previous chapter.

4.1 Experimental data on the hypernuclear decay ob-
servables

In this section we briefly review the recent experimental data on the non-mesonic weak
decay of hypernuclei, focusing mainly on the values we use in the fitting, which are
obtained from the di↵erent experiments carried in KEK, Japan.

The decay of hypernuclei was first measured in emulsion and bubble chamber ex-
periments in the 50’s, where a few light hypernuclei were observed to decay. The first
counter experiments capable of measuring the total and partial decay rates were carried
at Brookhaven National Laboratory (BNL) in the early 90’s, through the n(K�, ⇡�)⇤
reaction. However, these experiments were restricted to measurements of the decays of
only the 11

⇤ B and the 12
⇤ C systems. During the last two decades the decay observables

of a wider variety of hypernuclei have been measured with greater precision through
di↵erent reactions; namely at BNL with the n(K�, ⇡�)⇤ reaction, at KEK with the
n(⇡+, K+)⇤ reaction, and more recently at the Laboratori Nazionali di Frascati (LNF)
with the n(K�

stop, ⇡
�)⇤ reaction.

In Table 4.1, we show, in chronological order, the di↵erent experiments on hypernuclear
decay and the corresponding observables that have been measured. These observables
consist of the total and partial decay rates, �nm and �n/�p, and the asymmetry in the
angular distribution of protons coming from the decay of polarized hypernuclei. The
same table also shows the experiments that have focused in the extraction of two-particle
energy and angular correlated spectra, a method that has proved to be more convenient
to extract a clean value for the relation of the partial decay rates. In recent years it has
also been possible to measure the two-nucleon induced decay, �2N , in the LNF facility.
The corresponding hypernuclei range from the very light, 4

⇤He , up to the medium-heavy
ones, 27

⇤ Al, 28
⇤ Si, with the exception of 89

⇤ Y.
In our calculation we have focused in describing the non-mesonic decay observables

of three hypernuclei, 5
⇤He,

11
⇤ B, and 12

⇤ C, representing both s-shell and p-shell nuclei. In
Table 4.2 we list the eleven experimental data points and their errors that are used in the
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Experiment Measurement

BNL-AGS LESB I (1991)
5
⇤He: p spectrum, �p, �n, �nm and �n/�p.
12
⇤ C: �nm and �n/�p.

KEK-PS E160 (1995)
11
⇤ B: �p, �nm and �n/�p.
12
⇤ C: p spectrum, �p, �nm and �n/�p.

KEK-PS E307 (2002) 12
⇤ C, 28

⇤ Si: p spectrum and �n/�p.

KEK-PS E369 (2003)
12
⇤ C: n spectrum and �n/�p.
89
⇤ Y: n spectrum.

KEK-PS E462-E508 (2004) 5
⇤He,

12
⇤ C: p and n spectra and �n/�p.

KEK-PS E307 (2005) 11
⇤ B, 12

⇤ C, 27
⇤ Al, 28

⇤ Si, ⇤Fe: p spectrum and �nm.

KEK-PS E462 (2006) 5
⇤He: p and n spectra and �n/�p.

KEK-PS E508 (2006) 12
⇤ C: p and n spectra and �n/�p.

KEK-PS E462-E508 (2007)
5
⇤He: p and n spectra.
12
⇤ C: p and n spectra and �n/�p (reanalysis).

BNL-AGS LESB II (2007) 4
⇤He: �n, �p and �n/�p.

LNF (2008) 5
⇤He,

7
⇤Li and

12
⇤ C: p spectrum.

KEK-PS E508 (2009) 12
⇤ C: p and n spectra, �n, �p, �2N (reanalysis).

LNF (2010) 5
⇤He,

7
⇤Li,

11
⇤ B, 12

⇤ C, 13
⇤ C, 15

⇤ N and 16
⇤ O: p spectrum

LNF (2011)
5
⇤He,

7
⇤Li,

9
⇤Be,

11
⇤ B, 12

⇤ C, 13
⇤ C,

15
⇤ N and 16

⇤ O: n and p coincidence

Table 4.1: Experiments on the non-mesonic weak decay of hypernuclei together with the
observables that have been measured and studied. The laboratories BNL, KEK and LNF
use, respectively, the reactions (K�, ⇡�), (⇡+, K+) and (K�

stop, ⇡
�) [101].

fitting process described in the following section. Only the more recent and/or precise
results are included in the fit. Note that the only available asymmetries are for 5

⇤He, all
of which are compatible with zero, and that for 11

⇤ B we only use the total decay rate.

4.2 LO EFT for 5
⇤He, 11

⇤B, and 12
⇤C

According to Eq. (3.17) the LO EFT potential for the weak ⇤N ! NN transition accounts
for the short range part with two contact interactions,

V4P =C00 + C01~�1 · ~�2. (4.1)

The constants C00 and C01 depend on the short range physics of the ⇤N ! NN transition.
To fix their values we use the di↵erent hypernuclear decay observables: the total and
partial decay rates and the parity violating asymmetry for 5

⇤He,
11
⇤ B, and 12

⇤ C. While the
interacting ⇤ and nucleon in 5

⇤He are always on an s-shell, in the 11
⇤ B, and 12

⇤ C they may
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Hypernucleus Experiment Observable

5
⇤He

KEK-PS E160 (1995) �nm = 0.50± 0.07 [102]

KEK-PS E462 (2006) �n/�p = 0.450± 0.114 [12]

KEK-PS E160 (2000) A = 0.24± 0.22 [103]

KEK-PS E462 (2006) A = 0.11± 0.09 [12]

KEK-PS E462 (2006) A = 0.07± 0.08 [104]

11
⇤ B

KEK-PS E160 (1995) �nm = 0.95± 0.14 [105]

KEK-PS E307 (2005) �nm = 0.861± 0.096 [13]

12
⇤ C

KEK-PS E160 (1995) �nm = 0.89± 0.18 [105]

KEK-PS E307 (2000) �nm = 0.83± 0.11 [106]

KEK-PS E307 (2005) �nm = 0.828± 0.087 [13]

KEK-PS E369 (2003) �n/�p = 0.51± 0.14 [107]

Table 4.2: Experimental values for the total and partial decay rates and the parity
violating asymmetry and their errors that have been used in the fitting of the LO LEC’s.

be either on an s-shell or a p-shell. Therefore, most optimistically, one may consider to
have six independent observables. In our approach we have considered the most recently
measured observables and with most accuracy, all obtained in the KEK experiments in
Japan. These add up to a total of eleven experimental data points and are listed in the
Table 4.2 of the previous section.

The fitting of the LEC’s has been computed by implementing the weak EFT potential,
described in the previous section, in a hypernuclear code that uses the subroutine minuit
[108] to minimize the corresponding chi-squared test, �2. Since in our formalism we have
used two strong interaction models, Nijmegen Soft-Core 97f (NSC97f) and Jülich, we
obtain two di↵erent set of results.

For each one of the strong interaction models we obtain two di↵erent minima. The
two models not only di↵er on the kaon exchange contribution (coupling constants and
cuto↵s), but they also generate di↵erent NN wave functions. The low energy constants
that account for the di↵erent observables are listed inn Tab. 4.3. The �2 values for the
corresponding fits to 11 observables are also given in the table. Three of the minima
have total �2 well below the total number of points. However the LEC’s for these three
minima are not compatible with each other. The strong model dependencies that we see
in these results suggest the use of EFT also in the strong sector. This has motivated us to
study the decay of the lightest hypernucleus, the hypertriton, within the EFT framework
in both the weak and the strong parts. We show and discuss the corresponding results in
Sec. 4.4.

In Fig. 4.1 we show the values for the observables used in the present fit together with
their respective fitted values, while Fig. 4.2 shows the contribution of each point to the �2.
Almost all the fitted points fall into the error bars of the corresponding experimental data
points, and therefore contribute with a �2 per point smaller than one. For both strong
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Nijmegen Jülich

LO PC calculation LO PC calculation

C00 �0.92± 0.31 4.01± 0.23 4.03± 0.50 0.89± 0.58

C10 �2.41± 0.11 0.02± 0.33 �0.30± 0.28 �1.52± 0.18

�2 3.89 13.43 4.26 4.58

Table 4.3: Values for the LEC’s obtained from the two sources: OME expansion and LO
(PC) EFT calculation, using the NSC97f and Jülich strong interaction models. All the
quantities are in units of GF = 1.166⇥ 10�11 MeV�2.

models used, NSC97f and Jülich, a set of LEC’s is found to be compatible with the data.
One can see that the LO EFT is already capable to describe the current experimental
data on hypernuclear decay.

Figure 4.1: Hypernuclear decay observables (total and partial decay rates and asymmetry
for ⇤

5He,
⇤
11B and ⇤

12C), including their error bars and their fitted values. The total decay
rates are in units of the ⇤ decay rate in free space (�⇤ = 3.8⇥ 109s�1). All the quantities
are adimensional.
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Figure 4.2: Contribution of each experimental point included in the fit to the total �2

for the four di↵erent fits discussed in the text.

4.3 Relations between the one-meson exchange po-
tentials and the EFT

In the previous section we show that the LO LEC’s can be fairly constrained by the
experiments on hypernuclear decay. An alternative way to obtain the numerical values
for these constants, and at the same time get some insight on their dynamical origin, is
by a direct comparison to the one-meson-exchange model describing the same interaction.
This idea is called resonance saturation and has been applied before in the strong NN
contact interaction [109]. In this case, the values found from a fit to the low energy
partial waves appear to be very close to the ones extracted from the phenomenological
one-boson-exchange and various other modern nucleon-nucleon potentials.

In the OME picture the ⇤N ! NN transition is described by the exchange of the
lightest pseudoscalar (⇡, K and ⌘) and vector (⇢, ! and K⇤) mesons. While the short
range part in the EFT potential is accounted by the two contact operational structures,
in the OME picture is accounted by the heavy meson exchanges. This kind of comparison
can also shed some light into identifying possible deficiencies (disregarded contributions)
in the OME picture. To relate the meson-exchange constants to the LEC’s in the e↵ective
⇤N ! NN potential, we perform a low-momentum expansion of the various (regularized)
meson-exchange potentials other than the pion and the kaon, since these two are explicitly
included in both, the OME and the EFT approaches. This procedure leads to a series
of contact terms organized by their increasing dimension (i.e., with increasing powers of
momenta), an appropriate form to compare with the EFT potential. Therefore, one can
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write these terms up to O(~q 2/M2) order (in units of GF = 1.166⇥ 10�11 MeV�2) as:
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where the values for all the couplings, masses and form cut-o↵s are listed in the Ap-
pendix G.

We have chosen to show the explicit expressions of the LEC’s in terms of meson-
exchange parameters in the Appendix H. Here we only quote the relations at LO. In
order to compare these expressions with the 4P potential of Eq. (4.1) we need to use
the same basis of operators. Note that, in principle, one could write, at order O(~q 2),
another set of eight operators containing the isospin structure ~⌧1 · ~⌧2. However, once one
imposes that the final two-nucleon state must be antisymmetric, the number of structures
in the e↵ective potential is reduced to half the original, leaving to only eight independent
operators. The relation between the LO constants appearing in Eq. (4.1) and the ones in
the non-antisymmetrized potential,

V (0)
4P (~q ) =C sc

00 + C vec
00 ~⌧1~⌧2 + C sc

01 ~�1~�2 + C vec
01 ~�1~�2 ~⌧1~⌧2 , (4.5)
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is the following:

C00 =C sc
00 � 2 C vec

01 � 3C vec
01 (4.6)

C01 =Csc
01 � C vec

01 . (4.7)

Comparing Eq. (4.5) and Eq. (4.2) we obtain the LO LEC’s in terms of the meson pa-
rameters:

C00 =
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C01 =
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In Table 4.4 we show the results for the LEC’s obtained within both formalisms. On the
one hand, we quote the values for the coe�cients obtained from Eqs. (4.8) and (4.9) (left
column, under the label: OME expansion). The numerical values for the constants in front
of the spin-isospin operators have been obtained for each strong interaction model, and
Eqs. (4.6) and (4.7) have been used to obtain the LO coe�cients in the basis of operators
1̂, ~�1 · ~�2. On the other hand, we show the values obtained from the fit of our EFT
to reproduce the experimental data, as described in the previous section (right column,
under the label: LO calculation). Notice that the values derived from the OME approach
do not arise from any fit to the observables but from SU(3)F symmetry considerations
together with studies of the strong baryon-baryon interaction. Their errors are estimated
considering an uncertainty in the couplings of ±30% based on an upper limit for SU(3)F
symmetry breaking.

The results in Table 4.4 show two important features. First, the LEC’s derived using
the input of the two strong OME models considered, NSC97f and Jülich, are compatible
albeit mostly due to the large theoretical uncertainties. The OME prediction for C01 is
in both cases compatible with zero. Second, the comparison between the OME extracted
LEC’s’ values and the LO PC fitted ones shows only partial agreement. The largest
disagreement is seen in C00 in all cases. In the next section we will discuss how this
disagreement can be concealed with the requirement of an extra exchange in the weak
OME model, compatible with the inclusion of a scalar meson.

Note that the results for the LEC’s presented here are di↵erent from the ones given in
Ref. [58]. This comparison has to be made with the results obtained with the Nijmegen

Nijmegen Jülich

OME expansion LO PC calculation OME expansion LO PC calculation

C00 1.07± 0.88 �0.92± 0.31 4.01± 0.23 �1.7± 2.6 4.03± 0.50 0.89± 0.58

C01 0.02± 0.36 �2.41± 0.11 0.02± 0.33 0.12± 0.37 �0.30± 0.28 �1.52± 0.18

�2 3.89 13.43 4.26 4.58

Table 4.4: Values for the LEC’s obtained from the two sources: OME expansion and LO
(PC) EFT calculation, using the Nijmegen Soft-Core 97f and Jülich strong interaction
models. All the quantities are in units of GF = 1.166⇥ 10�11 MeV�2.
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NSC97f strong interaction model, which is the only one used in [58]. Apart from small
(kinematical) changes in the final NN wave functions, and in the regularization of the
OKE mechanism, the main di↵erence between both calculations resides in the experi-
mental values used to perform the fit. The data set has been updated in comparison
to Ref. [58] in order to include the recent rates extracted from the single and correlated
energy and angular particle spectra, with the measure in coincidence of the two nucleons
in the final state. This method, for example, allows the experimentalist to extract more
cleanly the value of the �n/�p ratio, which has been placed to values 0.5, in contrast to
previous measures which quote a number close to 1 for this quantity. Therefore, values
of the neutron-to-proton ratio (�n/�p) close to one have been disregarded, following the
last experimental and theoretical analysis, and more accurate data with smaller error bars
have been included.

4.3.1 Scalar exchange interaction

By inspecting Table 4.4 one clearly sees that the largest discrepancy a↵ects the C00 co-
e�cient, which determines the size of the scalar isoscalar contribution in the EFT. This
could be an indication of the need of a scalar exchange, previously disregarded, in meson-
exchange models of the weak baryon-baryon interaction.

A sensible way of inferring qualitatively the physical properties of such scalar would
be to add it to the meson exchange model described before. The one-scalar-exchange
(OSE) contribution can be obtained from the following weak and strong vertices:

LS
NN� = � gNN�  N�

� N , (4.10)

LW
⇤N� = �GFm

2
⇡  N (A� +B��5)�

� ⇤

�

0
1

�

, (4.11)

where A� and B� parameterize the parity-conserving and parity-violating weak ampli-
tudes. In the non-relativistic approximation, the corresponding potential reads,

VOSE(~q ) = �GFm
2
⇡ gNN�

✓

A� +
B�

2MW
~�1~q

◆

1

~q 2 +m2
�

. (4.12)

We can now try to establish the values of the weak couplings A� and B� by direct
comparison to the results of the fits, and obtain information about A� using the numbers
obtained in our LO (parity-conserving) result. Insight on B� would require a NLO fit,
which, as we already mentioned, is not needed to reproduce reasonable well our observ-
ables.

The OSE gives contribution, in particular, to C00, which now becomes:

C(�)
00 =
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Since C01 is not modified by the inclusion of the �, the minima that may be improved
via this mechanism are the ones in which this coe�cient is already in agreement with
the one obtained from the OME expansion. Focusing on these minima (the ones with
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Figure 4.3: Comparison between C00 and C(�)
00 for the Nijmegen minimum. The shaded

(blue) area represents the dependence of C(�)
00 on A� given by Eq. (4.13), while the fitted

EFT C00 value is represented by the solid (orange) area. See text for details.

Figure 4.4: Same as Fig. 4.3 but for the Jülich minimum.

�2 = 13.43 and �2 = 4.26), we can extract the value of A� needed to make the two
formalisms agree (at LO) within each strong interaction model. Using m� = 550 MeV
and gNN� = 8.8 [81] we get values for A� in the range 3.3 ! 7.3 for the Nijmegen minimum
and in the range 4.8 ! 16 for the Jülich one.

The shaded (blue) band in Figs. 4.3 and 4.4 shows the value of C(�)
00 given by Eq. (4.13)

as a function of A�, when the Nijmegen or Jülich strong interaction model is used, respec-
tively. Note that the error band in C(�)

00 is given by the propagation of the uncertainties in
the baryon-baryon-meson coupling constants, taken to be of the order of 30%. In the same
plot we represent the corresponding fitted value in the EFT approach by a solid (orange)
band. The range for A� quoted before corresponds to the intersection of both bands in
the plot, i.e, the values for A� that make compatible the OME and EFT formalisms.
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Other works have fitted this same parameter using di↵erent approaches. For instance,
Ref. [110], which incorporates the OPE, OKE, and OSE mechanisms together with a
direct-quark transition, uses the phenomenological approach of Block and Dalitz [111] to
write the nonmesonic decay rates in terms of the squares of the amplitudes driving the
⇤N ! NN transitions for the s-shell 5

⇤He,
4
⇤He, and

4
⇤H hypernuclei. This factorization

in terms of two-body amplitudes is possible when e↵ective (spin-independent) correlations
are used to account for the strong interaction among baryons, where no mixing between
the di↵erent partial waves is possible. The strong interaction model used in this work is
NSC97f. This approach leads to a quadratic equation to determine the couplings, resulting
in two values for A�, 3.9 and �1.0 (note that the first of these two values is compatible
with the range we are quoting for this constant when the same strong interaction model
is used). Another approach was followed in Ref. [74], where the exchanges of all the
mesons belonging to the pseudoscalar and vector mesons octets are considered in the
weak transition in addition to the � meson, while again, e↵ective (spin-independent)
correlations are used in the strong sector. Fixing the value of the strong NN� coupling
to be the same as the NN⇡ one, a range of variation for the � mass and cuto↵ leads
to di↵erent values for the weak couplings, once a fit to the nonmesonic decay rate and
the neutron-to-proton ratio for 5

⇤He is performed. Even though the inclusion of the �-
exchange mechanism does modify their prediction for the intrinsic asymmetry, their results
are insensitive to the particular values of the A� and B� couplings, and a simultaneous
reproduction of all the data is not achieved.

4.4 The Hypertriton decay rate at leading order

As explained in Chapter 2, the observables of the weak decay of the hypertriton can be
predicted in a less model-dependent way. This is because it is only made of three particles
and both the initial and final wave functions can be computed using few-body techniques
with the same strong interaction obtained from the same EFT. The downside, however, is
the scarce experimental data for the decay of the hypertriton. As this calculation employs
a di↵erent strong interaction kernel we would like to extract the corresponding LEC’s by
directly comparing to hypertriton decay data. Unfortunately, this is not the case and
solely from the hypertriton decay data it is not possible to fit the LEC’s. With this
important experimental shortcoming what we do instead is to discuss how the total decay
rate varies when we vary the LEC’s within natural values. The total decay rate should,
in principle, be comparable to the decay of the ⇤ in free space and to the decay of light
hypernuclei.

The formalism needed to calculate the non-mesonic decay rate of the hypertriton
has been derived in Sec. 2.2. There, the decay rate has been written in terms of the
hypertriton wave function and the ⇤N ! NN weak potential, which has been described
in Chapter 3. We have distinguished between the two possible final nuclear products in
which the hypertriton can decay: a deuteron and a neutron or three free nucleons. In the
first case, the decay rate also depends on the deuteron wave function. The wave functions
for the hypertriton and the deuteron used in our calculation have been calculated using
NLO EFT YN and NN potentials [54].

The hypertriton wave function takes into account the strong couplings among the
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Figure 4.5: Momenta probability density for the hypertriton. pY3 corresponds to the
momentum of the hyperon and pNN

12 to the relative momentum among the two nucleons.
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Figure 4.6: Contribution of the ⌃ hyperon to the momenta probability density for the
hypertriton. p⌃3 corresponds to the momentum of the ⌃ and pNN

12 to the relative momentum
among the two nucleons.
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Figure 4.7: Contributions l12 = 0 and l12 = 2 to the momenta probability density for the
deuteron. The deuteron is mainly an l12 = 0 state.
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two nucleons in the deuteron. The similarity of the two densities reflects the fact that the
hypertriton is mainly a deuteron with a low bounded ⇤.
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di↵erent baryonic channels, ⇤N�⌃N . Hence, both hyperons, the ⇤ and the ⌃, contribute
to the wave function. In order to illustrate what are the typical momenta of the baryons
forming the hypertriton we show, in Fig. 4.5, the probability density distribution of their
momenta. In Fig. 4.5 pNN

12 represents the relative momenta of the two nucleons and
pY3 the spectator momenta of the hyperon, which may be a ⇤ or a ⌃. The first thing
which we observe is that the contribution of the ⌃ hyperon to the hypertriton momenta
distribution is much smaller than the one of the ⇤, and cannot be appreciated in Fig. 4.5.
The momenta distribution for the ⌃ is plotted in a di↵erent scale in Fig. 4.6.

Two features can be easily distinguished between the two figures. On the one hand,
the momentum distribution for the ⇤ is peaked at values very close to zero, of the order of
p⇤3 ⇠ 0.1 fm�1, while the ⌃ distribution is peaked at p⌃3 ⇠ 2 fm�1. On the other hand, the
probability density for p⌃3 is much more spread than the one for p⇤3 . These two features
can be associated to the ⌃ having a larger mass than the ⇤. A heavier baryon is expected
to contribute less to the wave function but with a larger momentum.

The deuteron has zero isospin and positive parity and can be in two angular states,
l12 = 0 or l12 = 2. In Fig. 4.7 we show the momentum distribution of the deuteron for
each of these two channels. As it can be easily seen in the figure, the main contribution
to the wave function comes from the l12 = 0 channel. It is also interesting to compare
the probability density of the relative momentum among the nucleons in the deuteron
and in the hypertriton. This comparison is shown in Fig. 4.8. The similarity of both
distributions, as it can be appreciated in the figure, reflects the fact that the ⇤ is much
less bound than the nucleons forming the hypertriton. The lightest hypernucleus can thus
be regarded as a loosely bound-state of a deuteron and ⇤ hyperon. The latter orbiting
the deuteron with a very small momentum.

In Table 4.5, we show the values we obtain for the total decay rates of the hypertriton,
taking into account only the one-pion exchange, and the one-pion and the one-kaon ex-
changes. These values show a clear dominance of the 3N break up in front of the decay to
a deuteron and a neutron. It can also be seen that the pion and the kaon interfere destruc-
tively, reducing the total decay rate when both one-meson exchanges are included. This
destructive interference comes from the strong baryon-baryon-meson couplings, which
have opposite signs for the pion and the kaon, or more precisely, g⇤NK = �14.1 and
gNN⇡ = 13.16.

�d+n (s�1) �3N (s�1)

⇡ 0.54 · 107 0.57 · 108
⇡+K 0.15 · 107 0.18 · 108

Table 4.5: Values for the total decay rates of the hypertriton including the one pion
exchange and both, the one pion and one-kaon exchanges.

In Figs. 4.9 and 4.10, the total decay rate for both channels, 3N and d+n, and including
the one-pion and one-kaon exchange mechanisms, is plotted as a function of the two low-
energy constants, C00 and C01. Both figures show that, by varying the two low-energy
constants within a small range, from �1 to 1, the total decay rates are quantitatively
quite a↵ected. Moreover, the two contact operational structures interfere constructively
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when they have opposite signs, giving thus a much larger decay rate, and destructively
when both LEC’s have the same sign.
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Figure 4.9: Hypertriton total decay rate for the deuteron plus nucleon channel, including
the one-pion and one-kaon exchange mechanisms and as a function of the two low-energy
constants C00 and C01.
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Figure 4.10: Hypertriton total decay rate for the deuteron plus nucleon channel, including
the one-pion and one-kaon exchange mechanisms and as a function of the two low-energy
constants C00 and C01.

The study of the decay of the hypertriton has been carried out previously in [112]. The
authors of this work computed the decay by using one-meson-exchange potentials from
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the Nijmegen group in both, the weak and strong interactions. The values for the total
decay rates listed in their work agree with ours, both from a quantitative and qualitative
point of view. In particular, we confirm their prediction that the total decay rate of the
hypertriton into a deuteron and a neutron is one order of magnitude smaller than the
total decay rate for the 3N break up.

4.5 Comparison of LO and NLO contributions

In this last section we briefly analyze the two-pion exchange potentials described in
Sec. 3.4.2 while comparing them to the one-pion and one-kaon exchanges LO poten-
tials. In Eqs. (3.28)-(3.36) and (3.39)-(3.47) we provided the explicit momentum and spin
structures arising from the di↵erent Feynman diagrams. Some features can be easily read
o↵ from the di↵erent terms. First, the ball (a) and first two triangle diagrams (b,c) only
contribute to the parity conserving part of the transition potential. Most other diagrams
have a non-trivial contribution, involving all allowed momenta and spin structures.

To provide a sample of the contribution of the di↵erent diagrams to the full amplitude,
we illustrate the case of the triplet central transition, 3S1 ! 3S1. In particular, we
compare the ⇡ and K exchanges with the ball, triangle and box diagrams for the ⇤n ! nn
channel. Since the interaction is parity conserving, none of the parity violating structures
of Table 3.1 contribute. For structures of the type (~�1 · ~q)(~�2 · ~q) we have that

(~�1 · ~q )(~�2 · ~q ) = ~q 2

3
(~�1 · ~�2) + ~q 2

3
Ŝ12(q̂), (4.14)

where the tensor operator Ŝ12(q̂) changes either zero or two units of angular momen-
tum and does not contribute to this transition (see its definition and matrix elements in
App. A). The potential, therefore, depends only on the modulus of the momentum (or
~q 2). To obtain the potential in position space we Fourier-transform the expressions for
the one-meson-exchange contributions, Eqs. (3.18) and (3.19), and the loop expressions
in the appendices D.2, D.3 and D.4. More explicitly, we compute the following,

Ṽ (r) = F ⇥V (~q 2)F (~q 2)
⇤ ⌘

Z 1

�1

d3q

(2⇡)3
ei~q·~rV (~q 2)F (~q 2)

with q ⌘ |~q| and r ⌘ |~r| and where we have included a form factor in order to regularize
the potential. Following the formalism developed in Ref. [17] we use a monopole form
factor for the meson exchange contribution at each vertex, while the 2 � ⇡ terms use a
Gaussian form of the type F (~q2) = e�~q 4/⇤4

.
The expressions for each loop integral, shown in App. D, have been calculated using

dimensional regularization. Details of this calculation are given in App. E, where the
integrals are written in terms of the couplings appearing in Chapter 3 and of some master
integrals. ⌘ is the regularization parameter that appears when integrating in D ⌘ 4 � ⌘
dimensions. The modified minimal subtraction scheme (MS) has been used—we have
expanded in powers of ⌘ the expressions for the di↵erent loop contributions and then
subtracted the term R ⌘ � 2

⌘ + � � 1� ln (4⇡)—.
In Fig. 4.11, we show the respective contributions to the potential in position space.

The one-pion-exchange potential is repulsive while the one kaon-exchange one is attractive.
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Figure 4.11: (A) Medium-Long range part of the potentials for the one-pion-exchange,
one-kaon-exchange, ball diagram and triangle diagrams. (B) Medium-Long range part
of the potentials for the one-pion-exchange, one-kaon-exchange, box and crossed box
diagrams.
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Figure 4.12: (A) Medium-Long range part of the potentials in the SU(3) limit for the
one-pion-exchange, one-kaon-exchange, ball diagram and triangle diagrams. (B) Medium-
Long range part of the potentials in the SU(3) limit for the one-pion-exchange, one-kaon-
exchange, box and crossed box diagrams.

This destructive interference does not depend on the weak coupling constants accompany-
ing the di↵erent isospin and spin structures, but on the global strong baryon-baryon-meson
couplings, as commented in the previous section. The contribution from the di↵erent 2�⇡
exchange potentials are seen to be sizable at all distances. The triangles (b) and (e) and
the crossed box diagrams (h) and (i) are attractive and hence interfere destructively with
the pion, while all the others are repulsive and interact constructively. The largest contri-
butions come from the box (f, g, h) and triangle (d) diagrams, which are comparable to
the pion and the kaon. Note that diagrams (d), (f) and (h) contribute with an imaginary
part. This is characteristic of diagrams with a ⇤N⇡ vertex, which may be on shell since
M⇤ > MN+m⇡. This imaginary part is taking into account the amplitude for the possible
⇤N ! NN⇡ transition. We stress that the imaginary part of the box diagram (f) that
comes from the baryonic pole has been extracted, so no iterated part is considered in
Fig. 4.11.

Fig. 4.12, shows the same potentials but taking q0 = q00 = 0. In this limit, the baryon
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mass di↵erences are neglected and the vertices ⇤N⇡ cannot be on shell anymore. There-
fore, all the imaginary parts disappear. All diagrams seem to have a smaller contribution
with this approximation. The attractive and repulsive character of the di↵erent potentials
does not change except for the second box diagram and the (very short-ranged) second
crossed box diagram, which turn to be attractive and repulsive, respectively, when taking
the SU(3) limit.

The 2 � ⇡ loop diagrams play an important role due to the di↵erent interferences
among them and among the one-meson-exchange contributions.



62 Chapter 4. Results



Chapter 5

Summary and future perspectives

In this thesis we have developed an e↵ective field theory description to understand in a
fundamental and systematic way the weak decay of hypernuclei. This decay, as elaborated
in the thesis and in previous works, is an extremely rich process. It involves several
ingredients which range from a precise understanding of the strong interactions between
low-lying hadrons, to a proper description of the weak coupling mechanisms which trigger
the decay of the hypernuclei. Notably, hypernuclei are routinely produced nowadays in
a number of facilities around the world and their decay products can be measured with
good accuracy. This makes these systems a nice laboratory to study the physics of the
weak interaction among the baryons.

We have concentrated on the the less-known pieces in the description of the weak
hypernuclear decay, the weak decay mechanisms. In particular we have studied the ⇤N !
NN transition mechanism, which is the main responsible for the decay of medium mass
heavier hypernuclei. The reason is that the nominal decay of the ⇤ in free space, which
is to decay into a nucleon and a pion, is forbidden for large enough nuclei. This is
because the final nucleon does not have enough momentum to either scape the nucleus
or occupy energy levels above the Fermi momentum. This weak transition amplitude
has been studied before using one-meson-exchange models [16, 17, 18] and a combination
of one-pion-exchange and quark degrees of freedom to account for the short range part
of the interaction [27]. Within these models the resulting amplitude, embedded in the
proper many-body theory to account for the nuclear structure of the initial hypernuclei
and final decay products, allowed one to get a good phenomenological understanding of
the weak mechanism, and a good reproduction of the decay observables measured by the
experimentalists [113]. This success triggered us to go one step further and develop an
e↵ective field theory description of the weak process.

The formal development of the e↵ective field theory (EFT) for the ⇤N ! NN is
the main result of this thesis. To develop such a theory is essential in order to have a
firm understanding of the problem from the theoretical point of view. It provides a less
model-dependent description of the decay process and allows to systematically improve
the predictions of the theory. EFTs are built based on a significant separation of scales in
the physical problem under study and on the existence of a small parameter, built from
the ratio of two of those scales, which is used to define an expansion. In the case of NN
scattering at very low energies, where EFTs have been developed in the last decay with
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extremely successful results, this parameter is the momentum exchanged between the two
nucleons. In our case, the two nucleons in the final state carry a non-negligible momentum
as a consequence of the di↵erent mass between the ⇤ hyperon and the nucleon in the initial
state, therefore, it is more convenient to think on the ratio of the final momentum over
the typical mass as an expansion parameter.

With both the leading order and next-to-leading-order of the theory computed, we
have turned our sight into the experimental data available. Due to the few available
data existing for non-mesonic hypernuclear decay we have decided to concentrate on the
leading order piece of the transition amplitude. This piece has been employed to compute
the decay observables for light nuclei, 5

⇤He,
11
⇤ B and 12

⇤ C, and for the smallest known
hypernucleus, the hypertriton. To get the detail of how the whole procedure has been
pursued let us in the following provide a brief rendition of the results presented in Chapters
2, 3, and 4.

Chapter 2. Hypernuclear decay formalism

In this Chapter we introduced the formalism and detailed the wave functions used to
compute the hypernuclear decay observables. We considered two di↵erent approaches.
The first one was the decay of hypernuclei for which a full microscopic description is not
feasible, due to the complexity in numerically solving the many-body problem in an exact
way. These are 5

⇤He,
11
⇤ B and 12

⇤ C. The initial wave function describing the hypernuclei
was obtained by means of a shell model with a mean-field harmonic oscillator potential.
The parameters in the single-particle wave functions were chosen such that the binding
energies of the A hypernuclei and its A� 1 core nucleus were correctly reproduced. The
decay products, i.e. a residual nucleus and two nucleons, are treated in the following
way. The residual nucleus acts as an spectator, and the corresponding nuclear structure
details are not relevant for the calculation. In order to account for the short range physics
stemming from the strong interaction among baryons, realistic NN potentials have been
used to obtain a correlated wave function for the final NN system though the solution of a
scattering T-matrix equation. With respect to the strong interaction acting on the initial
hyperon-nucleon pair, we have chosen to use a phenomenological correlation function that
simulates the e↵ects of performing a much more involved G-matrix calculation.

In the second approach we study the weak decay of the hypertriton. This hypernucleus
is fairly small, it is made of only two nucleons and a ⇤ particle, and an exact treatment of
the few-body problem is feasible in terms of Faddeev-Yakubovsky equations. Interestingly,
we can study exactly two important decay modes of the hypertriton, the decay into a
deuteron and a nucleon and the decay into three nucleons.

Chapter 3. EFT description for the ⇤N ! NN interaction

In Chapter 3 we presented the e↵ective field theory description of the weak decay ampli-
tude. The EFT is built in the following way. First we note that due to the mass di↵erence
between the ⇤ and the nucleon, the outgoing nucleons have a nonzero minimum value
of their momentum. This feature forces us to explicitly take into account the low-lying
mesonic degrees of freedom, and develop the EFT to describe the smaller distances. The
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latter are usually accounted for in one-meson-exchange models by the exchange of heavier
mesons, e.g. ⇢, !, etc.

Thus, we describe the weak amplitude by means of explicit one pion/kaon exchange
contributions plus contact terms entering at di↵erent orders in the transferred momentum.
The vertexes entering the one pion/kaon exchanges are all either known experimentally
or derived from SU(3) symmetry. The leading order (LO) contribution to the EFT is
readily written down by noting the possible momentum-spin-isospin structures which are
compatible with the existing symmetries. This LO contribution has solely two low energy
constants.

The virtue of the EFT description is that, within the appropriate bounds for the small
parameter used to define the theory, one can further investigate the contributions of the
next-to-leading order and higher terms. In this chapter we have derived the full next-to-
leading contribution to the amplitude. First, the next-to-leading contact interactions are
written down, and secondly, we computed all two-pion exchange diagrams. All details
entering the computation of these diagrams, grouped by their topology as balls, triangles
and squares, are provided in the Appendices D and E. They do contribute to all possible
spin-isospin-momentum structures and thus their e↵ect should be taken into account in
future studies. Let us remark that the next-to-leading description includes 15 low energy
constants (two of them already present at LO).

Chapter 4. Results

Chapter 4 compares the predictions of the EFT derived in the previous chapter, in com-
bination with the formalism employed to compute the hypernuclear decay observables
as derived in Chapter 2, to the existing experimental data. The world database of the
non-mesonic weak decay observables is notably meager. There are just a handful of
observables measured with good prediction which we can aim at describing with our the-
ory. This scarcity of data led us to consider only the leading order contribution to the
⇤N ! NN decay amplitude. This order only contains two independent parameters which
we are able to constraint by means of a minimization routine. A fit to the total and partial
decay rates and the final proton asymmetry for these hypernuclei has been done, which
allowed us to constrain the values of the two low-energy constants entering at LO. The
obtained LO potential provides a description of the existing data within errorbars. Un-
fortunately, the low-energy constants found show a noticeable dependence on the strong
baryon-baryon interaction model used to fix the parameters entering the one-pion and
one-kaon exchange mechanisms. To shed further light into the problem we compare the
low-energy constants with the one-meson-exchange potentials widely used and tested in
the literature. This is done by expanding the one-meson-exchange potentials in powers
of the transferred momentum and matching both the EFT and the OME model order
by order. In this way we were able to discuss the presence of a sizable scalar exchange
contribution to the amplitude, which had been previously proposed [114].

Then we turned into the calculation of the hypertriton decay. As mentioned above all
strong interaction ingredients for this calculation were obtained consistently. In this case,
we gave the result for the decay of the hypertriton into three uncorrelated nucleons and
into a nucleon and a deuteron within the partial-wave impulse approximation.
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Finally, we have presented an academic comparison between the contributions coming
from the next-to-leading order two-pion exchange diagrams and the ones coming from
the leading one-meson exchange diagrams. As we do not have enough data to constrain
all the LECs appearing at NLO, we have decided to show the contribution of the two-
pion exchange diagrams with arbitrary natural values for the low energy constants. The
contribution of the two-pion exchange terms have been found to be comparable in size to
those arising from the one-pion and one-kaon exchange terms.

5.1 Future Perspectives

Two nucleon induced decay mechanism

As mentioned above, an appealing feature of the EFT framework is that, once settled, it
can be applied to other regimes and reactions. A notable example is the ⇤NN ! NNN
mechanism. This two nucleon induced decay mechanism, has recently been shown by
the FINUDA collaboration to be responsible for one fifth of the total non-mesonic decay,
�2N/�nm = 0.21± 0.07stat

+0.03sys
�0.02sys [115]. Thus, we hope we can in the near future evaluate

this mechanism within our EFT and be able to use this data to further constrain the
theory.

Weak decay of A = 4 hypernuclei

Our EFT for the ⇤N ! NN transition can also be implemented in other hypernuclei other
than the hypertriton, as for example the A = 4 4

⇤H and 4
⇤He systems. The next would be

A = 4 hypernuclei, namely 4
⇤H and 4

⇤He. To perform a similar study to the one presented
in this thesis for the hypertriton, one would need to use the Faddeev-Yakubovsky scheme
for four baryons. This framework was already developed a decade ago, and was used to
compute the wave functions for these hypernuclei [62]. These calculations would provide
more accurate (in the sense of employing an exact description of the four-body problem)
results as compared to the ones that can be obtained using a shell-model prescription. In
addition, it has been shown [116] that these systems are more useful than others s-shell
nuclei to test the validity of the �I = 1

2 rule, which makes the calculation of their decay
rates even more interesting.

In order to achieve a more complete description of the decay of 3
⇤H,

4
⇤H and 4

⇤He, the
mesonic decay rates should also be computed. This can in principle be done using the
phenomenological amplitude for the weak process, ⇤ ! N⇡, combined with the strong
EFT potentials. The latter could consistently be employed to account for initial and final
correlations due to the strong force. In this manner, we would provide a full description
of all the decay modes for these light hypernuclei. It is worth stressing that experimental
information of the total and partial decay rates of these three hypernuclei would be of
great value, and we hope that the future E22 experiment at J-PARC would definitely give
us accurate numbers for these observables.
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Weak decay of double ⇤ hypernuclei

Another research avenue which is worth exploring within a similar framework is the EFT
description of the weak decay of double-⇤ hypernuclei. In this case new decay channels
involving octet baryons other than the ⇤ appear, thus providing more insight into the
weak interaction. Namely, each of the two ⇤’s can decay mesonically, but also through
non-mesonic channels, which now include apart from the standard ⇤N ! NN mode, new
⇤⇤! Y N reactions, where Y can be either a ⇤ or a ⌃ hyperon.

Other sources of information on the weak |�S| = 1 interaction

As mentioned several times in this thesis, in order to constrain the EFT at NLO, more
and accurate experimental input is needed. The data constraining the weak �S = 1
interaction is mainly obtained through the accurate measurement of hypernuclear decay
observables, which are the experiments we have discussed. We again emphasize on the
need of data for light hypernuclear systems. A di↵erent way to obtain this information
would be through the measurement of the inverse reaction in free space, np ! ⇤p, which
would give us a clean extraction of the observables. Unfortunately, the values of the cross
sections for the weak strangeness production mechanism, of the order of 10�12 mb, is
very small [6, 7, 8]. This has prevented, for the time being, its consideration as part of
the experimental data set, despite the e↵ort invested in extracting di↵erent polarization
observables for this process in the past [9, 10]. In the near future we hope there will be
advances along this line.

Finally, let us comment on a promising and important tool we have to obtain in-
formation about these hadronic interactions. This is lattice quantum chromodynamics
(LQCD). There are already proposals to obtain useful information on the description of
weak baryonic processes from LQCD in the strange sector [53]. For instance, the mesonic
and nonmesonic decays of hyperons can in principle be studied in the lattice. The former
could help to understand why the lowest order e↵ective Lagrangians are unable to simulta-
neously reproduce the parity-conserving and parity-violating amplitudes for the mesonic
decay of hyperons. The latter would provide clean information on the weak |�S| = 1
four-fermion interaction. In contrast to the study of the nonmesonic decay in hypernuclei,
LQCD has the great advantage to study the interaction without the contamination due to
the presence of the nuclear medium. However, computing weak baryonic processes with
LQCD represents a great challenge, specially from the computationally point of view,
and constitutes an avenue that is still in a very preliminary stage. Up to now, only [42]
has performed a calculation of weak baryon-baryon matrix elements in the lattice, with
the computation of the leading-order momentum-independent parity-violating coupling
between pions an nucleons. Although there are some ingredients that have been disre-
garded in this calculation—basically to make the computation feasible—, as disconnected
(quark-loop) diagrams, it represents an encouraging step forward the use of LQCD as a
reliable alternative to investigate physical processes poorly constrained by experiments.
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Appendix A

Spin matrix elements in position
space

In this appendix we show the matrix elements for the operators appearing in the leading
order potential for the ⇤N ! NN transition. We define the matrix elements of an
operator O↵ in position space, between an initial pair of baryons with spin and angular
momentum l and s, and a final one with spin and angular momentum l0 and s0 as

h(l0, s0)j|O↵|(l, s)ji ⌘
Z

dr̂

Z

dr̂0 h(l0s0)jmj|r̂0iO↵hr̂|(ls)jmji. (A.1)

The total spin and its projection are denoted j and mj and both are conserved quantities.

A.1 Central spin-independent transition (

ˆ

1)

h(l0s0)j| 1 |(ls)ji = �ss0�ll0 (A.2)

A.2 Spin-spin transition (~�1 · ~�2)

h(l0s0)j| (~�1 · ~�2) |(ls)ji = [2s(s+ 1)� 3]�ss0�ll0 (A.3)

A.3 Parity-violating transition (~�1 · r̂)

h(l0s0)j| (~�1 · r̂) |(ls)ji =(�1)1+j�l0+s+s0
p
6
p

(2l + 1)(2s0 + 1)(2s+ 1)C l00
10l0 (A.4)

⇥
(

1
2

1
2 s

s0 1 1
2

)(

l0 l 1

s s0 j

)

The matrix element for the operator ~�2 · r̂ gives the same result but for a factor (�1)s+s0 .
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A.4 Tensor transition 3(~�1 · r̂)(~�2 · r̂)� (~�1 · ~�2)

h(l0s0)j| 3(~�1 · r̂)(~�2 · r̂)� (~�1 · ~�2) |(ls)ji = �ss0�s1S
j
ll0 , (A.5)

where Sj
ll0 is defined in Table A.1.

Sj
ll0 l0 = j + 1 l0 = j l0 = j � 1

l = j + 1 �2(j+2)
2j+1 0

6
p

j(j+1)

2j+1

l = j 0 2 0

l = j � 1
6
p

j(j+1)

2j+1 0 2�2j
2j+1

Table A.1: Values of Sj
ll0



Appendix B

Spin matrix elements in momentum
space

In the following sections the matrix elements for the operators in momentum space ap-
pearing in the leading order potential for the ⇤N ! NN transition are shown. The
quantum numbers are defined as in the previous appendix. The general expression for
these matrix elements is

hj, (l0, s0)|O↵|j, (l, s)i ⌘
Z

dp̂

Z

dp̂0 h(l0s0)jmj|p̂0if(q)O↵hp̂|(ls)jmji, (B.1)

where p and p0 are the modulus of the initial and final momenta, ~p and ~p 0, and f(q) denotes
a general function dependent on the modulus of the momentum di↵erence q ⌘ |~p 0�~p|. We
also define the angle between ~p 0 and ~p as q̂, and its cosine as x. The matrix elements will
depend on the Legendre polynomials, which we denote as Pl. The matrices � appearing
in the operators are the Pauli matrices, defined as following,

�1 =

 

0 1

1 0

!

, �2 =

 

0 �i

i 0

!

, �3 =

 

1 0

0 �1

!

. (B.2)

B.1 Central spin-independent transition (

ˆ

1)

hp0(l0s0)jm|f(q)|p(ls)jmi = �ss0�ll0(2⇡)gl(q̂), (B.3)

with

gl(~q) ⌘
Z 1

�1

dx0Pl(x
0)f(q). (B.4)

B.2 Central spin dependent transition (~�1 · ~�2)
hp0(l0s0)jm|f(q)(~�1 · ~�2)|p(ls)jmi = 2⇡(2s(s+ 1)� 3)gl(q)�ss0�ll0 , (B.5)

with

gl(~q) ⌘
Z 1

�1

dx0Pl(x
0)f(q). (B.6)
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B.3 Parity violating transition (~�2 · ~q)

hp0(l0s0)jm|f(q)(~�2 · ~q)|p0(l0s0)jmi =� 36
p
6⇡
q

ŝŝ0ĵ

8

>

<

>

:

l0 l 1

s0 s 1

j j 0

9

>

=

>

;

8

>

<

>

:

1
2

1
2 0

1
2

1
2 1

s0 s 1

9

>

=

>

;

⇥
X

k

X

�1+�2=1

(�1)k+lk̂
3
2 gk(q)

s

�̂1�̂2

�̂1!�̂2!
(p0)�1(�p)�2

⇥ (k�1l
0, 000)(k�2l, 000)

8

>

<

>

:

k k 0

�1 �2 1

l0 l 1

9

>

=

>

;

,

with

gk(~q) ⌘
Z 1

�1

dx0Pk(x
0)f(q).

The matrix element for the operator (~�1 · ~q), instead of the (~�2 · ~q) one, is the same
except for a factor of (�1)s+s0 .

B.4 Tensor transition operator (~�1 · ~q)(~�2 · ~q)

hp0(l0s0)j0m0|f(q)(~�1 · ~q)(~�2 · ~q)|p(ls)jmi =36⇡�jj0�mm0

X

f

X

�1+�2=f

X

k

(�1)k+l

⇥ k̂
3
2 f̂ 2ŝ

q

ĵ

s

f̂ !

(2�1)!(2�2)!
gfk (q̂)(p̂

0)�1(�p̂)�2

⇥ (11f, 000)(k�1l
0, 000)(k�2l, 000)

⇥

8

>

<

>

:

1 1 0

1 1 0

f f 0

9

>

=

>

;

8

>

<

>

:

l0 l f

s s f

j j 0

9

>

=

>

;

⇥

8

>

<

>

:

1
2

1
2 1

1
2

1
2 1

s s f

9

>

=

>

;

8

>

<

>

:

k k 0

�1 �2 f

l0 l f

9

>

=

>

;

,

with

gfk (~q) ⌘
Z 1

�1

dx0Pk(x
0)f(q)~q 2�f .



Appendix C

Isospin matrix elements

In order to use the isospin formalism we couple an isopin I = 1
2 to the hyperons. This is

the way to implement the �I = 1
2 rule to the weak interactions (see Sec. 2.1.3). Thus,

the ⇤ behaves as a hyperon with I = 1
2 and the ⌃ as a hyperon with I = 1

2 or I = 3
2 . The

necessary isospin operators are then the ones allowing for isospin (12
1
2)t

0m0
t ! (12

1
2)tmt and

(32
1
2)t

0m0
t ! (12

1
2)tmt transitions. The first transition is driven by the unity operator and

by ~⌧1 ·~⌧2, where ~⌧i are the Pauli matrices for the i-vertex defined in Eq. (B.2). The second
transition is driven by ~T · ~⌧ , where ~T are the matrices mediating 3

2 ! 1
2 transitions, with

components

T1 =

 

� 1p
2

0 1p
6

0

0 � 1p
6

0 1p
2

!

, (C.1)

T2 =

 

� ip
2

0 � ip
6

0

0 � ip
6

0 � ip
2

!

, (C.2)

T3 =

0

@

0
q

2
3 0 0

0 0
q

2
3 0

1

A . (C.3)

These operators connect a final NN state with an initial Ỹ N one, where Ỹ indicates a
hyperon coupled to an isospin of

�

�

1
2 ,�1

2

↵

. The following sections show the isospin matrix

elements for the three operators, namely 1, ~⌧1 ·~⌧2, and ~T1 ·~⌧2. In the last section we relate
the possible initial isospin states for the ⇤N and ⌃N pairs appearing in the hypertriton
wave function, with the L̃N and ⌃̃N ones.

C.1 Unity operator (

ˆ

1)

⌦

(12
1
2)t

0m0
t

�

� (12
1
2)tmt

↵

=�tt0�mtm0
t

(C.4)

C.2 Operator (~⌧1 · ~⌧2)
⌦

(12
1
2)t

0m0
t

�

�~⌧1 · ~⌧2
�

�(12
1
2)tmt

↵

=[2t(t+ 1)� 3]�tt0�mtm0
t

(C.5)
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C.3 Operator (

~T1 · ~⌧2)

⌦

(12
1
2)t

0m0
t

�

� ~T1 · ~⌧2
�

�(32
1
2)tmt

↵

=� 4p
6
�tt0�mtm0

t
�t1 (C.6)

C.4 Relation between isospin basis and isopurious
basis

In this section we relate the isospin states of the ⇤N and ⌃N pairs contributing to the
hypertriton wave function with the isospin states where an isospin of

�

�

1
2 � 1

2

↵

has been
coupled to the hyperons. We proceed as following: first, we define the isospin states for
the ⇤ and the ⌃ hyperons; second, we define the isospurious states ⇤̃ and ⌃̃ by coupling
�

�

1
2 � 1

2

↵

to the ⇤ and the ⌃ states; third, we couple the isospurious states to a nucleon
isospin state; and fourth, we write these isospurious states in the isospin basis.

The ⇤ and the ⌃ isospin states are defined as

|⇤i = |0, 0i ; (C.7)
�

�⌃+
↵

= � |1, 1i ,
�

�⌃0
↵

= |1, 0i ,
�

�⌃�↵ = |1,�1i .

Coupling
�

�

1
2 � 1

2

↵

to these states we obtain

�

�

�

⇤̃
E

=
�

�

1
2 ,�1

2

↵

; (C.8)
�

�

�

⌃̃+
E

= �
q

2
3

�

�

1
2
1
2

↵� 1p
3

�

�

3
2
1
2

↵

,
�

�

�

⌃̃0
E

= 1p
3

�

�

1
2 � 1

2

↵

+
q

2
3

�

�

3
2 � 1

2

↵

,
�

�

�

⌃̃�
E

=
�

�

3
2 � 3

2

↵

.

We now couple the states above to the isospin of a nucleon. Since the operators mediating
the transitions (12

1
2)t

0m0
t ! (12

1
2)tmt and (32

1
2)t

0m0
t ! (12

1
2)tmt have independent couplings

we must keep the contributions with I = 1
2 and I = 3

2 separate. We label them with the
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subscripts 1
2 and 3

2 .

|⇤̃pi = |12 � 1
2i|12 1

2i (C.9)

= 1p
2
|1, 0i1/2 � 1p

2
|0, 0i1/2

|⇤̃ni = |12 � 1
2i|12 � 1

2i
= |1,�1i1/2

|⌃̃+pi = �
q

2
3 |12 1

2i|12 1
2i � 1p

3
|32 1

2i|12 1
2i

= �
q

2
3 |1, 1i1/2 �

1

2
|2, 1i3/2 + 1p

12
|1, 1i3/2

|⌃̃0pi = 1p
3
|12 � 1

2i|12 1
2i+

q

2
3 |32 � 1

2i|12 1
2i

= 1p
6
|1, 0i1/2 � 1p

6
|0, 0i1/2 + 1p

3
|2, 0i3/2 � 1p

3
|1, 0i3/2

|⌃̃�pi = |32 � 3
2i|12 1

2i
= 1

2 |2,�1i3/2 �
p
3
2 |1,�1i3/2

|⌃̃+ni = �
q

2
3 |12 1

2i|12 � 1
2i � 1p

3
|32 1

2i|12 � 1
2i

= � 1p
3
|1, 0i1/2 � 1p

3
|0, 0i1/2 � 1p

6
|2, 0i3/2 � 1p

6
|1, 0i3/2

|⌃̃0ni = 1p
3
|12 � 1

2i|12 � 1
2i+

q

2
3 |32 � 1

2i|12 � 1
2i

= 1p
3
|1,�1i1/2 + 1p

2
|2,�1i3/2 + 1p

6
|1,�1i3/2

|⌃̃�ni = |32 � 3
2i|12 � 1

2i
= |2,�2i3/2

The final step is to express the isospin states appearing the wave function of the hyper-
triton in terms of the states listed above. Since the hypertriton has zero isospin, the only
allowed states for the hyperon-nucleon pair are

|1
2

1

2
i⇤ = |⇤pi , (C.10)

|1
2
� 1

2
i⇤ = |⇤ni ;

|1
2

1

2
i⌃ = �

r

2

3
|⌃+ni � 1p

3
|⌃0pi,

|1
2
� 1

2
i⌃ =

1p
3
|⌃0ni �

r

2

3
|⌃�pi.
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We now replace in the formulas above the states |Y Ni by the
�

�

�

Ỹ N
E

ones, obtaining thus

|1
2

1

2
i⇤̃ = 1

3
p
2
|1, 0i1/2 � 1p

2
|0, 0i1/2, (C.11)

|1
2
� 1

2
i⇤̃ = |1,�1i1/2,

|1
2

1

2
i⌃̃ = 1p

2
|1, 0i1/2 + 1p

2
|0, 0i1/2 + 2

3 |1, 0i3/2,

|1
2
� 1

2
i⌃̃ = 1

3 |1,�1i1/2 + 2
p
2

3
|1,�1i3/2.

Given an initial and a final state in the isospin basis, now one can easily calcualte the
matrix elements for the di↵erent operators defined in the previous sections. Tables C.1
and C.2 show these matrix elements in the cases where the initial hyperon is a ⇤ and
a ⌃, respectively. We label the isospin of the two initial baryons with |t12mt12i, and the
isospin of the final ones with

�

�t012mt012

↵

.

t12 mt12 1 ⌧ · ⌧
1
2 �1

2 �t0121�m0
t12

�1 �t0121�m0
t12

�1

1
2

1
2 � 1p

2
�t0120�m0

t12
0 + 1p

2
�t0121�m0

t12
0

3p
2
�t0120�m0

t12
0 + 1p

2
�t0121�m0

t12
0

Table C.1: Matrix elements between ⇤N and NN states in the isospin basis and according
to the �I = 1

2 rule.

t12 mt12 1 ⌧ · ⌧ T · ⌧
1
2 �1

2
1
3�t0121�m0

t12
�1

1
3�t0121�m0

t12
�1 � 8

3
p
3
�t0121�m0

t12
�1

1
2

1
2

1p
2
�t0120�m0

t12
0 � 3p

2
�t0120�m0

t12
0 �4

p
2

3
p
3
�t0121�m0

t12
0

+ 1
3
p
2
�t0121�m0

t12
0 + 1

3
p
2
�t0121�m0

t12
0

Table C.2: Matrix elements between ⌃N and NN states in the isospin basis and according
to the �I = 1

2 rule.
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Diagrams

D.1 Caramel diagrams
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)

(Ep,�~p 0
)

kN = (E⇤
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N

rN = (Ep � l
0
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Figure D.1: First caramel-type Feynman diagram
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,�~l)

Figure D.2: Second caramel-type Feynman diagram

Using the same notation that is described in section 3.4.1 we write a general expression
for the three caramel diagrams that depends on the label ↵ = a, b, c, which corresponds,
respectively, to the masses and vertices of Figs. D.1, D.2, and D.3. The relativistic

77
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rN = (Ep � l
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Figure D.3: Third caramel-type Feynman diagram

expression for our caramel diagrams is,

V↵ = iGFm
2
⇡(C

↵
00(s) + C↵

01(s)~�1 · ~�2) (C↵
00(w) + C↵

01(w)~�1 · ~�2) (D.1)

⇥
Z

d4l

(2⇡)4
1

(Ep � l0)2 �~l 2 �M2
N + i✏

1

(E⇤
p + l0)2 �~l 2 �M2

↵

.

In order to not miss the relativistic pole we must first integrate the temporal part (l0)
before heavy-baryon expand the expression. Proceeding in this manner one obtains a
purely imaginary part (the real is suppressed in the heavy baryon expansion).

V↵ = �GFm2
⇡

4MN
(C↵

00(s) + C↵
01(s)~�1 · ~�2) (C↵

00(w) + C↵
01(w)~�1 · ~�2) (D.2)

⇥
Z

d3l

(2⇡)3
1

(�b ��↵)(
1
2(�b +�↵) +MN) + ~p 2 �~l 2

= i
GFm2

⇡

16⇡MN
(C↵

00(s) + C↵
01(s)~�1 · ~�2) (C↵

00(w) + C↵
01(w)~�1 · ~�2)

⇥
r

(�b ��↵)(
1

2
(�b +�↵) +MN) + ~p 2 .

D.2 Ball diagrams

In our calculation we have two di↵erent kind of ball diagrams depending on the position
of the weak vertex, although only one of them actually contributes. Their contribution
can be written in terms of the B integrals defined in Appendix E.

Here and in the following sections we first write the relativistic amplitude using V =
i M and then the corresponding heavy baryon expression.

For the first type of ball diagram, depicted in Fig. D.4, we obtain the following con-
tribution,

Vball 1 =
GFm2

⇡h2⇡

4f 4
⇡

�ab ✏
abc⌧ c ⇥

Z

d4l

(2⇡)4
1

l2 �m2
⇡ + i✏

1

(l � q)2 �m2
⇡ + i✏

(D.3)

⇥ u1(E, ~p 0)u1(E
⇤
p , ~p)⇥ u2(Ep,�~p 0)�µ(q

µ � 2lµ)u2(Ep,�~p)
=0 ,
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which is shown to vanish due to the isospin factor, �ab✏abc⌧ c = 0.
The amplitude corresponding to the diagram in Fig. D.5 reads,

Va =� i
GFm2

⇡h⇤N

8f 4
⇡

(~⌧1 · ~⌧2)
Z

d4l

(2⇡)4
1

l2 �m2
⇡ + i✏

1

(l + q)2 �m2
⇡ + i✏

(D.4)

⇥ (2lµ + qµ)(q⌫ + 2l⌫)

k2
N �M2

N + i✏
u1(E, ~p 0)�µ(◆◆kN +MN)u1(E

⇤
p , ~p)u2(Ep,�~p 0)�⌫u2(Ep,�~p) .

Using heavy baryon expansion,

Va =
GFm2

⇡h⇤N

8�Mf 4
⇡

(~⌧1 · ~⌧2)(4B20 + 4q0B10 + q20B) , (D.5)

where we have used the master integrals with q0 = �M⇤�MN
2 and ~q = ~p 0 � ~p.

D.3 Triangle diagrams

Two up triangles and two down triangles contribute to the interaction. The final expres-
sions are written in terms of the integrals I defined in Appendix E. The amplitude for
the first up triangle, depicted in Fig. D.6, is

Vb =� i
3

8

GFm2
⇡h2⇡g2A

MNf 4
⇡

Z

d4l

(2⇡)4
1

l2 �m2
⇡ + i✏

1

(l + q)2 �m2
⇡ + i✏

(lµ + qµ)l⌫

k2
N �M2

N + i✏
(D.6)

⇥ u1(Ep, ~p
0)u1(E

⇤
p , ~p)u2(Ep,�~p 0)�µ�5(◆◆kN +MN)�⌫�5u2(Ep,�~p) .

Using heavy baryon expansion,

Vb =
3

4

GFm2
⇡h2⇡g2A
f 4
⇡

⇥

(3� ⌘)I22 + ~q 2I23 + ~q 2I11
⇤

, (D.7)

where, we have used the master integrals with q0 =
M⇤�MN

2 , q00 = 0 and ~q = ~p 0 � ~p.
For the second up triangle, depicted in Fig. D.7, the relativistic amplitude is

Vc =� i
GFm2

⇡h⇤Ng2A
8f 4

⇡(r
2
N �M2

N)
~⌧1 · ~⌧2

Z

d4l

(2⇡)4
1

l2 �m2
⇡ + i✏

1

(l + q)2 �m2
⇡ + i✏

(2l⇢ + q⇢)(lµ + qµ)l⌫

k2
N �M2

N + i✏

⇥ u1(E, ~p 0)�⇢(◆◆k
0
N +MN)u1(E

⇤
p , ~p)u2(Ep,�~p 0)�µ�5(◆◆kN +MN)�⌫�5u2(Ep,�~p) .

(D.8)
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Figure D.4: Kinematical variables of the first kind of ball-diagram.
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Using heavy baryon expansion,

Vc =
GFm2

⇡h⇤Ng2A
8�Mf 4

⇡

~⌧1 · ~⌧2
⇥

2(3� ⌘)I32 + 2~q 2I33 + 2~q 2I21(3� ⌘)q0I22 + q0~q
2I23 + q0~q

2I11
⇤

,

(D.9)

where, we have used the master integrals with q0 =
M⇤�MN

2 , q00 = 0 and ~q = ~p 0 � ~p.
The amplitude for the first down triangle (Fig. D.8) is

Vd =i
GFm2

⇡gA
4f 3

⇡

(~⌧1 · ~⌧2)
Z

d4l

(2⇡)4
1

l2 �m2
⇡ + i✏

1

(l + q)2 �m2
⇡ + i✏

(l⌫ + q⌫)(2lµ + qµ)

k2
N �M2

N + i✏

⇥ u1(E, ~p 0)�⌫�5(◆◆kN +MN)(A+B�5)u1(E
⇤
p , ~p)u2(Ep,�~p 0)�µu2(Ep,�~p) , (D.10)

with the heavy baryon expansion, it reduces to,

Vd =� GFm2
⇡gA

8MNf 3
⇡

(~⌧1 · ~⌧2)
h

B(2I30 + 7q0I20 + 7q20I102q
3
0I � 2(3� ⌘)I32 � (3� ⌘)q0I22)

� B(2I21 + q0I11 + 2I33 + q0I23)~q
2 � B(2I10 + 2I21 + q0I + q0I11)(~q · ~p) (D.11)

+ 2AMN(2I21 + q0I11 � 2I10 � q0I)~�1 · ~qiB(�2I21 � q0I11 + 2I10 + q0I)~�1(~q ⇥ ~p)
i

.

We have used the master integrals with q0 = �M⇤�MN
2 , q00 = �M⇤ +MN and ~q = ~p 0 � ~p.

The second type of down-triangle diagram involves the intermediate exchange of the
⌃ (Fig. D.9). Its amplitude is

Ve =
GFm2

⇡Ds

4
p
3f 3

⇡
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(2⇡)4
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⌃ + i✏
(D.12)
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Using the heavy baryon expansion
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Figure D.5: Kinematical variables of the second kind of ball-diagram.
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Figure D.6: Up triangle diagram contributing at NLO.
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Figure D.7: Second up triangle contribution at NLO.

The isospin is taken into account by replacing every A⌃ and B⌃ by

2

3

⇣p
3A⌃ 1

2
+ A⌃ 3

2

⌘

~⌧1 · ~⌧2, 2

3

⇣p
3B⌃ 1

2
+B⌃ 3

2

⌘

~⌧1 · ~⌧2 , (D.14)

where, we have used the master integrals with q0 = �M⇤�MN
2 , q00 = M⌃ � M⇤ and

~q = ~p 0 � ~p.

D.4 Box diagrams

We have two kind of direct box diagrams and two cross-box ones. Direct box diagrams
usually present a pinch singularity. This is because the poles appearing in the baryonic
propagators get infinitesimally close to one another. In our integrals the denominators
appearing in the baryonic propagators also contain terms proportional to M⇤ �MN and
M⌃ �M⇤, and this avoids the singularity.

The integrals entering in the expression of the amplitudes are the J and K defined in
Appendix E. The amplitude for the first type of box diagram (Fig. D.10) is

Vf =i
GFm2

⇡g
3
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8f 3
⇡

(3� 2~⌧1 · ~⌧2)
Z

d4l
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N + i✏

u1(E, ~p 0)�⇢�5(◆◆kN +MN)(A+B�5)u1(E
⇤
p , ~p) (D.15)

⇥ u2(Ep,�~p 0)�⌫�5(�rN +MN)�µ�5u2(Ep,�~p) .
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Figure D.8: “Down”-triangle contribution at NLO.
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Figure D.9: Second type of down-triangle involving the intermediate exchange of a ⌃.

Using the heavy baryon expansion,

Vf =� GFm2
⇡g

3
A

32MNf 3
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⌘

#

,

where we have used the master integrals with q0 = �M⇤�MN
2 , q00 = MN � M⇤, and

~q = ~p 0 � ~p.
The second box diagram (Fig. D.11), which involves a ⌃ propagator, contributes with

Vg =� i
GFm2
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2
ADs

4
p
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(D.16)
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Figure D.10: Box diagram contributing at NLO.
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Figure D.11: Second box-type Feynman diagram.

Using the heavy baryon expansion
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We have used the master integrals with q0 = �M⇤�MN
2 , q00 = M⌃ �M⇤, and ~q = ~p 0 � ~p.

The second crossed box diagram (Fig. D.12) includes a ⌃-propagator and contributes
to the potential with
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Figure D.12: Crossed-box diagram contributing at NLO.

Using heavy baryon expansion and the master integrals of Sec. E, and redefining ~q ⌘ ~p 0�~p,

Vh =� GFm2
⇡g

3
A

32MNf 3
⇡

(3 + 2~⌧1 · ~⌧2)
h

� 2iBJ22~�2 (~p⇥ ~q) + 2BJ22
��~p · ~q + ~q 2

�

~�1 · ~�2 (D.20)

+ 2iB
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We have used the master integrals with q0 =
M⇤�MN

2 , q00 = �M⇤�MN
2 , and ~q = ~p 0 � ~p.
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Figure D.13: Second crossed-box-type Feynman diagram

The amplitude for the crossed-box diagram with a ⌃ propagator is

Vi =� i
GFm2

⇡g
2
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(D.21)
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⇤
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Using heavy baryon expansion and the master integrals of Sec. E, and redefining ~q ⌘ ~p 0�~p,

Vi =
GFm2

⇡g
2
ADs
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p
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To take into account the isospin we must replace every A⌃ and B⌃ by
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p
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2
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2
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2
� 2

3
(
p
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2
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2
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We have used the master integrals with q0 = M⇤�MN
2 , q00 = M⌃ � M⇤ + M⇤�MN

2 , and
~q = ~p 0 � ~p.
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Appendix E

Master integrals

E.1 Definitions

We need the following integrals in order to calculate the Feynman diagrams. The B’s,
I’s, J ’s and K’s appear, respectively, in the ball, triangle, box and crossed box diagrams:

B;µ;µ⌫ ⌘ 1

i

Z

d4l

(2⇡)4
1

l2 �m2 + i✏

(1; lµ; lµl⌫)

(l + q)2 �m2 + i✏
, (E.1)

I;µ;µ⌫;µ⌫⇢ ⌘ 1

i

Z

d4l

(2⇡)4
1

l2 �m2 + i✏

1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏
(1; lµ; lµl⌫ ; lµl⌫l⇢) ,

(E.2)

J;µ;µ⌫;µ⌫⇢ ⌘ 1

i

Z

d4l

(2⇡)4
1

l2 �m2 + i✏

1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏

(1; lµ; lµl⌫ ; lµl⌫l⇢)

�l0 + i✏
,

(E.3)

K;µ;µ⌫;µ⌫⇢ ⌘ 1

i

Z

d4l

(2⇡)4
1

l2 �m2 + i✏

1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏

(1; lµ; lµl⌫ ; lµl⌫l⇢)

l0 + i✏
.

(E.4)

The strategy is to calculate explicitly the integrals with no subindex (no integrated mo-
menta in the numerators), and then relate the others to simpler integrals. To do so we
also need to explicitly calculate the following integrals:

A(m) ⌘ 1

i

Z

d4l

(2⇡)4
1

l2 �m2 + i✏
,

A;µ;µ⌫(q, q
0) ⌘ 1

i

Z

d4l

(2⇡)4
1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏
(1; lµ; lµl⌫) , (E.5)
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C;µ;µ⌫;µ⌫⇢(q0, q
0
0) ⌘

1

i

Z

d4l

(2⇡)4
1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏

(1; lµ; lµl⌫ ; lµl⌫l⇢)

�l0 + i✏
, (E.6)

D;µ;µ⌫;µ⌫⇢(q0, q
0
0) ⌘

1

i

Z

d4l

(2⇡)4
1

(l + q)2 �m2 + i✏

1

�l0 � q00 + i✏

(1; lµ; lµl⌫ ; lµl⌫l⇢)

l0 + i✏
. (E.7)

The integrals can be divided depending on their subindexes being temporal or spatial. We
show explicitly all the cases for the integrals J . The same definitions are used for all the
other integrals. Therefore, to know any other integral one needs to replace in Eq. (E.8)
J by A, B, I, etc.

Jµ ⌘ �µ0J10 + �µiJ11~qi , (E.8)

Jµ⌫ ⌘ �µ0�⌫0J20 + (�µ0�⌫i + �µi�⌫0)J21~qi + �µi�⌫j(J22�ij + J23~qi~qj) , (E.9)

Jµ⌫⇢ ⌘ �µ0�⌫0�⇢0J30 + ���{µ⌫⇢00i}~qiJ31 + ���{µ⌫⇢0ij}(�ijJ32 + ~qi~qjJ33) (E.10)

+ �µi�⌫j�⇢k(�~q{ijk}J34 + ~qi~qj~qkJ35) ,

Jµ⌫⇢� ⌘ �µ0�⌫0�⇢0��0J40 + ����{µ⌫⇢�000i}~qiJ41 + ����{µ⌫⇢�00ij}(�ijJ42 + ~qi~qjJ43) (E.11)

+ ����{µ⌫⇢�0ijk}(�~q{ijk}J44 + ~qi~qj~qkJ45)

+ �µi�⌫j�⇢k��l(��{ijkl}J46 + �~q~q{ijkl}J47 + ~qi~qj~qk~qlJ48) .

All coe�cients J10, J11, etc. have been written explicitly as functions of I, J , K, which
can be integrated numerically, and the other simpler functions. The following definitions
have been employed:

�~q{ijk} = �ij~qk + �ik~qj + �jk~qi , (E.12)

�~q~q{ijkl} = �ij~qk~ql + �ik~qj~ql + �il~qj~qk + �jk~qi~ql + �jl~qi~qk + �kl~qi~qj , (E.13)

��{ijkl} = �ij�kl + �ik�jl + �il�jk . (E.14)

The other quantities, ���{µ⌫⇢00i}, ���{µ⌫⇢0ij}, etc, are not meant to be contracted with the
indexes i, j, and k appearing in the rest of the expressions. They only indicate how many
of the indexes µ, ⌫, ⇢, and � must be temporal and how many spatial. It does not matter
the order in which 0, i, j, and k are assigned to µ, ⌫, ⇢, and �, since all the integrals Jµ⌫ ,
Jµ⌫⇢, etc, are symmetric with respect to these indexes. For example

J00i = J0i0 = Ji00 = ~qiJ31 . (E.15)

E.2 Results for the master integrals

We have regularized the master integrals via dimensional regularization, where the inte-
grals depend on the momentum dimension D⌘, or more specifically, on the parameter ⌘,
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defined through D⌘ = 4� ⌘, and on the renormalization scale µ, for which we have taken
µ = m⇡. In the following we use,

R =� 2

⌘
� 1 + � � ln(4⇡) , (E.16)

q000 =q00 � q0 . (E.17)

The integrals A(m), A(q0, q00) and B(q0, |~q|) appear, for example, in [117]. We have checked
that both results coincide. It is important to maintain the �i✏ prescription, otherwise
the integrals may give a wrong result. We take it into account by replacing q00 ! q00 � i✏
when evaluating the integrals.

E.2.1 A(m), A(q0, q00) and B(q0, ~q)

We have,
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, (E.21)

w ⌘p4m2 + |q|2, |q| ⌘
p

~q 2 � q20, and q2 ⌘ q20 � ~q 2  0.

E.2.2 C(q0, q00) and D(q0, q00)
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with v ⌘
p

m2 � q20 and v00 ⌘
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m2 � q000
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E.2.3 I(q0, |~q|, q00)
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with C 0
q = �q0(1�x)+ q00, sx ⌘ �q2x(1�x)� (q00 � q0 + q0x)
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with Cq ⌘ �q0(1 � x), C 0
q ⌘ �q0(1 � x) + q00, sx ⌘ �q2x(1 � x) +m2
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E.3 Results for the master integrals with q0 = q00 = 0

A(m) = � 1

8⇡2
m2

✓

1

2
R + log

✓

m

µ

◆◆

, (E.27)
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I(0, ~q, 0) = � 1
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J(0, ~q, 0) =
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2⇡2~q 2
L(q) , (E.32)
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where L(q) and At(q) are defined with

At(q) ⌘ 1
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E.4 Relations between master integrals

E.4.1 Aµ(q0, q00)

A10 = �A(m)� q00A , (E.35)

A11 = �A . (E.36)

E.5 Aµ⌫(q, q0)

A20 =
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(q0 + q00)A(m) + q00
2A
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A23 = A . (E.40)

E.5.1 Bµ(q)

B10 = �q0
2
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B11 = �1

2
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E.5.2 Bµ⌫(q)
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E.5.3 Cµ(q0, q00)

C10 = �A , (E.50)

C11 = �C . (E.51)

E.5.4 Cµ⌫(q0, q00)

C20 = �A10 , (E.52)

C21 ⌘ �A11 , (E.53)
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E.5.5 Cµ⌫⇢(q0, q00)

C30 = �A20 , (E.56)

C31 = �A21 , (E.57)

C32 = �A22 , (E.58)

C33 = �A23 , (E.59)

C34 ⌘ �C22 , (E.60)

C35 = �6C11 � 3C23 � 4C . (E.61)

E.5.6 Dµ(q0, q00)

D10 = A , (E.62)

D11 = �D . (E.63)
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E.5.7 Dµ⌫(q0, q00)
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E.5.11 Iµ⌫⇢
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+q2I22 + q2~q 2I23 � 2q0B22 � 2q0~q
2B23 � 2q0q

0
0I22 � 2q0q

0
0~q

2I23
⇤

, (E.88)

I(~l·~q)~l 2 = ~q 2
��A11 �m2I11 � B21 � q00I21

�

. (E.89)

E.5.12 Jµ

J10 ⌘ �I , (E.90)

J11 ⌘ 1

2~q 2

⇥�C(0, q00) + C � 2q0I + q2J
⇤

. (E.91)

E.5.13 Jµ⌫

J20 ⌘ �I10 , (E.92)

J21 ⌘ �I11 , (E.93)

J22 ⌘ 1

(D⌘ � 2)~q 2

h

�J(~l·~q)2 + ~q 2J(~l 2)

i

, (E.94)

J23 ⌘ 1

(D⌘ � 2)~q 4

h

(D⌘ � 1)J(~l·~q)2 � ~q 2J(~l 2)

i

. (E.95)
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J(~l 2) = �C �m2J � I10 , (E.96)

J(~l·~q)2 =
1

2

⇥

C11 + q2J11 � 2q0I11
⇤

~q 2 . (E.97)

E.5.14 Jµ⌫⇢

J30 ⌘ �I20 , (E.98)

J31 ⌘ �I21 , (E.99)

J32 ⌘ �I22 , (E.100)

J33 ⌘ �I23 , (E.101)

J34 ⌘
�J(~l·~q)3 + ~q 2J(~l·~q)~l 2

~q 4(D⌘ � 2)
, (E.102)

J35 ⌘
(D⌘ + 1)J(~l·~q)3 � 3~q 2J(~l·~q)~l 2

~q 6(D⌘ � 2)
. (E.103)

J(~l·~q)3 =
~q 2

2

⇥�C20(0, q
0
0)� ~q 2C21(0, q

0
0)� ~q 2C(0, q00)� 2~q 2C11(0, q

0
0) (E.104)

+C20 + C21~q
2 + q2(J22 + J23~q

2)� 2q0(I22 + I23~q
2)
⇤

,

J(~l·~q)~l 2 = �~q 2
⇥

C11 +m2J11 + I21
⇤

. (E.105)

E.5.15 Jµ⌫⇢�

J40 ⌘ �I30 , (E.106)

J41 ⌘ �I31 , (E.107)

J42 ⌘ �I32 , (E.108)

J43 ⌘ �I33 , (E.109)

J44 ⌘ �I34 , (E.110)

J45 ⌘ �I35 , (E.111)

J46 = 2
�J~l 2(~l·~q)2 + ~q 2J~l 4

~q 2(D � 2)(2D + 3)
, (E.112)

J47 =
�(2D + 3)J(~l·~q)4 + 2(2 +D)~q 2J~l 2(~l·~q)2 � ~q 4J~l 4

~q 6(D � 2)(2D + 3)
, (E.113)

J48 =
(D + 4)J(~l·~q)4 � 6~q 2J~l 2(~l·~q)2

~q 8(D � 2)
. (E.114)
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J(~l·~q)4 =
~q 4

2

⇥

3C34 + ~q 2C35 + q2(3J34 + ~q 2J35)� 2q0(3I34 + ~q 2I35)
⇤

, (E.115)

J~l 2(~l·~q)2 = �~q 2
h

C22 + ~q 2C23 +m2(J22 + J23~q
2) + I32 + ~q 2I33

i

, (E.116)

J~l 4 =� (C22(D⌘ � 1) + C23~q
2)�m2(J22(D⌘ � 1) + J23~q

2) (E.117)

� (I32(D⌘ � 1) + I33~q
2) .

E.5.16 Kµ

K10 = I , (E.118)

K11 ⌘ 1

2~q 2

⇥�D(0, q00) +D + q2K + 2q0I
⇤

. (E.119)

E.5.17 Kµ⌫

For the first two cases we apply the following tricks,

K20 ⌘ I10 , (E.120)

K21 ⌘ I11 , (E.121)

K22 ⌘ 1

(D⌘ � 2)~q 2

h

�K(~l·~q)2 + ~q 2K(~l 2)

i

, (E.122)

K23 ⌘ 1

(D⌘ � 2)~q 4

h

(D⌘ � 1)K(~l·~q)2 � ~q 2K(~l 2)

i

. (E.123)

Giving the following results,

K(~l 2) = �D �m2K + I10 � r0K10 , (E.124)

K(~l·~q)2 =
1

2

⇥

D11 + q2K11 + 2q0I11
⇤

~q 2 . (E.125)

E.5.18 Kµ⌫⇢

K30 ⌘ I20 , (E.126)

K31 ⌘ I21 , (E.127)

K32 ⌘ I22 , (E.128)

K33 ⌘ I23 , (E.129)

K34 =
�K(~l·~q)3 + ~q 2K(~l·~q)~l 2

~q 4(D⌘ � 2)
, (E.130)

K35 ⌘
(D⌘ + 1)K(~l·~q)3 � 3~q 2K(~l·~q)~l 2

~q 6(D⌘ � 2)
. (E.131)
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K(~l·~q)3 =
~q 2
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⇥�D22(0, q
0
0)� ~q 2D23(0, q

0
0)� ~q 2D(0, q00)� 2~q 2D11(0, q

0
0) (E.132)

+D22 + ~q 2D23 + q2(K22 +K23~q
2) + 2q0(I22 + I23~q

2)
⇤

,

K(~l·~q)~l 2 = �~q 2
⇥

D11 +m2K11 � I21 + r0K21

⇤

. (E.133)

E.5.19 Kµ⌫⇢�

K40 ⌘ I30 , (E.134)

K41 ⌘ I31 , (E.135)

K42 ⌘ I32 , (E.136)

K43 ⌘ I33 , (E.137)

K44 ⌘ I34 , (E.138)

K45 ⌘ I35 , (E.139)

K46 = 2
�K~l 2(~l·~q)2 + ~q 2K~l 4

~q 2(D � 2)(2D + 3)
, (E.140)

K47 =
�(2D + 3)K(~l·~q)4 + 2(2 +D)~q 2K~l 2(~l·~q)2 � ~q 4K~l 4

~q 6(D � 2)(2D + 3)
, (E.141)

K48 =
(D + 4)K(~l·~q)4 � 6~q 2K~l 2(~l·~q)2

~q 8(D � 2)
. (E.142)

K(~l·~q)4 =
1

2

⇥

2D10~q
4 + ~q 4D + q2(K22~q

2 +K23~q
4) + 2q0(I22~q

2 + I23~q
4)
⇤

, (E.143)

K~l 2(~l·~q)2 = �
h

D22 +D23~q
2 +m2(K22 +K23~q

2)� I32 � I33~q
2
i

~q 2 , (E.144)

K~l 4 = �(D22(D⌘ � 1) +D23~q
2)�m2(K22(D⌘ � 1) +K23~q

2) + (I32(D⌘ � 1) + I33~q
2) .
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Appendix F

Lagrangians for the
one-meson-exchange potentials

The weak and strong vertices entering the one-pion-exchange (OPE) amplitude are:

LW
⇤N⇡ =� iGFm

2
⇡ N(A⇡ +B⇡�5)~⌧ ~�

⇡ ⇤

�

0
1

�

, (F.1)

LS
NN⇡ =� i gNN⇡  N�5~⌧ ~�

⇡ N , (F.2)

where GFm2
⇡ = 2.21 ⇥ 10�7 is the weak coupling constant, and A⇡ and B⇡, empirical

constants adjusted to the observables of the free ⇤ decay, which determine the strength
of the parity-violating and parity-conserving amplitudes, respectively. The nucleon, ⇤,
and pion fields are given by  N ,  ⇤, and ~�⇡, respectively, while the isospin spurion (01) is
included to enforce the empirical �T = 1/2 rule observed in the decay of a free ⇤. The
Bjorken and Drell convention for the definition of �5 [118] is taken.

For the exchange of the pseudoscalar ⌘ and K mesons, the strong and weak vertices
are (weak constants are given in units of GFm2

⇡) :

LS
NN⌘ =� i gNN⌘  N�5�

⌘ N (F.3)

LW
⇤N⌘ =� i N (A⌘ +B⌘�5)�

⌘ ⇤

�

0
1

�

, (F.4)

LS
⇤NK =� i g⇤NK  N�5 �

K ⇤ , (F.5)

LW
NNK =� i

⇥

 N

�

0
1

�

(CPV
K + CPC

K �5) (�
K)† N (F.6)

+ N N (DPV
K +DPC

K �5) (�
K)†

�

0
1

�⇤

,

where the weak coupling constants cannot be taken directly from experiment.
The weak ⇤N⇢, ⇤N!, NNK⇤, and strong NN⇢, NN!, ⇤NK⇤ vertices are given

by [119]:

LW
⇤N⇢ =�  N

✓

↵⇢�
µ � �⇢i

�µ⌫q⌫
2M

+ "⇢�
µ�5

◆

~⌧ ~⇢µ  ⇤

�

0
1

�

, (F.7)

LS
NN⇢ =�  N

✓

gVNN⇢�
µ + i

gTNN⇢

2M
�µ⌫q⌫

◆

~⌧ ~⇢µ  N , (F.8)
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LS
NN! =�  N

✓

gVNN!�
µ + i

gTNN!

2M
�µ⌫q⌫

◆

�!
µ N , (F.9)

LW
⇤N! = �  N

✓

↵!�
µ � �!i

�µ⌫q⌫
2M

+ "!�
µ�5

◆

�!
µ ⇤

�

0
1

�

, (F.10)

LS
⇤NK⇤ =�  N

✓

gV⇤NK⇤�µ + i
gT⇤NK⇤

2M
�µ⌫q⌫

◆

�K⇤

µ  ⇤, (F.11)

LW
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0
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�

0
1

�
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+ CPC,T
K⇤  N

�

0
1

�

(�K⇤

µ )† (�i)
�µ⌫q⌫
2M

 N +DPC,T
K⇤  N(�i)

�µ⌫q⌫
2M
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K⇤
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�

0
1

�
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K⇤  N
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0
1
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Appendix G

One-meson-exchange parameters

In this appendix we list the strong and weak couplings as well as the form factors needed
in the one-meson exchange potentials. The values for the Nijmegen Soft-Core 97f strong
model are listed in Table G.1, and the ones for the Jülich strong model are listed in
Table G.2.

M Strong c.c. Weak c.c. ⇤i

PC PV (GeV)

⇡ gNN⇡ = 13.16 B⇡=�7.15 A⇡=1.05 1.750

⌘ gNN⌘ = 6.42 B⌘=�11.9 A⌘=1.80 1.750

K g⇤NK = �17.66 CPC
K =�23.70 CPV

K =0.76 1.789

gN⌃K = 5.38 DPC
K =8.33 DPV

K =2.09

⇢ gV
NN⇢ = 2.97 ↵⇢=�3.29 ✏⇢=1.09 1.232

gT
NN⇢ = 12.52 �⇢=�6.74

! gVNN! = 10.36 ↵!=�0.17 ✏!= �1.33 1.310

gTNN! = 4.195 �!=�7.43

K⇤ gV
⇤NK⇤ =�6.105 CPC,V

K⇤ =�4.02 CPV
K⇤=�4.48 1.649

gT
⇤NK⇤ = �14.85 CPC,T

K⇤ =�19.54

DPC,V

K⇤ =�5.46 DPV
K⇤=0.60

DPC,T

K⇤ =6.23

Table G.1: Nijmegen (NSC97f) meson exchange parameters used in the present work.
The weak couplings are in units of GFm⇡

2 = 2.21⇥ 10�7.
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M Strong c.c. Weak c.c. ⇤i

PC PV (GeV)

⇡ gNN⇡ = 13.45 B⇡=�7.15 A⇡=1.05 1.300

⌘ gNN⌘ = 0 B⌘=0 A⌘=1.80 1.300

K g⇤NK = �13.48 CPC
K =�17.67 CPV

K =0.76 1.200

gN⌃K = 3.55 DPC
K =5.50 DPV

K =2.09

⇢ gV
NN⇢ = 3.25 ↵⇢=�3.60 ✏⇢=1.09 1.400

gT
NN⇢ = 19.82 �⇢=�9.55

! gVNN! = 15.85 ↵!=�5.85 ✏!= �1.33 1.500

gTNN! = 0 �!=�10.96

K⇤ gV
⇤NK⇤ =�5.63 CPC,V

K⇤ =�3.71 CPV
K⇤=�4.48 2.200

gT
⇤NK⇤ = �18.34 CPC,T

K⇤ =�26.38

DPC,V

K⇤ =�5.03 DPV
K⇤=0.60

DPC,T

K⇤ =12.18

Table G.2: Same as Table G.1 but for the Jülich B model.



Appendix H

Low energy coe�cients in terms of
meson-exchange parameters

The expressions for the low energy constants appearing in the e↵ective potential in terms
of the one meson exchange parameters are the following:

C sc
00 =



gV
⇤NK⇤

mK⇤2

✓

CPC,V

K⇤

2
+DPC,V

K⇤

◆

+
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NN! ↵!

m!
2

�

m⇡
2 , (H.1)

C vec
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NN⇢ ↵⇢
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◆

m⇡
2 , (H.2)

C sc
01 =0 , (H.3)

C vec
01 =0 , (H.4)

C sc
10 =0 , (H.5)

C vec
10 =0 , (H.6)

C sc
11 =

�m⇡
2

2M

A⌘ gNN⌘

m⌘
2

, (H.7)

C vec
11 =0 , (H.8)

C sc
12 = � m⇡

2

2M

2

4

i (gV
⇤NK⇤ + gT

⇤NK⇤) (
CPV

K⇤
2 +DPV

K⇤ )m⇡
2

mK⇤2
+

i(gV
NN! + gT

NN!)✏! m⇡
2

m!
2

3

5 , (H.9)

103



104 Appendix H. Low energy coe�cients in terms of meson-exchange parameters

C vec
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2

2M
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2
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⇤He and 4

⇤H: Challenges
for modern hyperon-nucleon forces,” Phys. Rev. Lett., vol. 88, p. 127501, 2002.

[63] S. Cohen and D. Kurath, “Spectroscopic factors for the 1p shell,” Nucl. Phys. A,
vol. 101, pp. 1–16, 1967.

[64] P. J. Brussaard and P. W. M. Glaudemans, Shell model applications in nuclear
spectroscopy. North-Holland, 1977.

[65] M. Moshinsky, “Transformation brackets for harmonic oscillator wave functions,”
Nucl. Phys., vol. 13, pp. 104–116, 1959.

[66] D. Halderson, “G-matrix calculations in finite hypernuclei,” Phys. Rev. C, vol. 52,
pp. 481–587, 1995.

[67] M. N. Nagels, T. A. Rijken, and J. J. de Swart, “Baryon-baryon scattering in a one-
boson-exchange-potential approach. II. Hyperon-nucleon scattering,” Phys. Rev. D,
vol. 15, pp. 2547–2564, 1977.

[68] P. M. M. Maessen, T. Rijken, and J. J. de Swart, “Soft-core baryon-baryon one-
boson-exchange models. II. Hyperon-nucleon potential,” Phys. Rev. C, vol. 40,
pp. 2226–2245, 1989.

[69] B. Holzenkamp, K. Holinde, and J. Speth, “A meson exchange model for the
hyperon-nucleon interaction,” Nucl. Phys. A, vol. 500, pp. 485–528, 1989.

[70] J. J. Szymanski et al., “Nonleptonic weak decay of 5
⇤He and 12

⇤ C,” Phys. Rev. C,
vol. 43, pp. 849–862, 1991.

[71] S. Ajimura et al., “Polarization and weak decays of ⇤ hypernuclei produced by the
(⇡+, K+) reaction on 12C,” Phys. Lett. B, vol. 282, pp. 293–298, 1992.

[72] A. Ramos, E. van Meijgaard, C. Bennhold, and B. K. Jennings, “Asymmetries in
the weak decay of polarized hypernuclei,” Nucl. Phys. A, vol. 544, pp. 703–730,
1992.

[73] C. Chumillas, G. Garbarino, A. Parreño, and A. Ramos, “Two-pion-exchange in
the non-mesonic weak decay of ⇤-hypernuclei,” Phys. Lett. B, vol. 657, pp. 180–
186, 2007.

[74] C. Barbero and A. Mariano, “� meson exchange e↵ect on non-mesonic hypernuclear
weak decay observables,” Phys. Rev. C, vol. 73, p. 024309, 2006.

[75] M. H. Partovi and E. L. Lomon, “Field-theoretical nucleon-nucleon potential,” Phys.
Rev. D, vol. 2, pp. 1999–2032, 1970.



110 Bibliography

[76] M. H. Partovi and E. L. Lomon, “�-exchange potential for nucleon-nucleon scatter-
ing,” Phys. Rev. D, vol. 5, pp. 1192–1205, 1972.

[77] A. D. Jackson, D. O. Riska, and B. Verwest, “Meson exchange model for the nucleon-
nucleon interaction,” Nucl. Phys. A, vol. 249, pp. 397–444, 1975.

[78] G. E. Brown and A. D. Jackson, The nucleon-nucleon interaction. North-Holland,
1976.

[79] R. V. Mau, Mesons in Nuclei, Vol I. North-Holland, 1979.

[80] M. Lacobme et al., “Parametrization of the paris n-n potential,” Phys. Rev. C,
vol. 21, pp. 861–873, 1980.

[81] R. Machleidt, “The meson theory of nuclear forces and nuclear structure,” Adv.
Nucl. Phys., vol. 19, pp. 189–376, 1989.

[82] R. Machleidt, K. Holinde, and C. Elster, “The bonn meson-exchange model for the
nucleon—nucleon interaction,” Phys. Rep., vol. 149, pp. 1–89, 1987.

[83] S. Weinberg, “Nonlinear realizations of chiral symmetry,” Phys. Rev., vol. 166,
pp. 1568–1577, 1968.

[84] S. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological lagrangians.
I,” Phys. Rev., vol. 177, pp. 2239–2247, 1969.

[85] C. G. Callan, S. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological
lagrangians. II,” Phys. Rev. Lett., vol. 177, pp. 2247–2250, 1969.

[86] S. Weinberg, “Phenomenological lagrangians,” Physica A, vol. 96, pp. 327–340,
1979.

[87] J. Gasser and H. Leutwyler, “Chiral perturbation theory to one loop,” Annals Phys.,
vol. 158, pp. 142–210, 1984.

[88] J. Gasser and H. Leutwyler, “Chiral perturbation theory: expansions in the mass
of the strange quark,” Nucl. Phys. B, vol. 250, pp. 465–516, 1985.

[89] E. Jenkins and A. Manohar, “Baryon chiral perturbation theory using a heavy
fermion lagrangian,” Phys. Lett. B, vol. 255, pp. 558–562, 1991.

[90] E. Epelbaum, “Nuclear physics from QCD: state of the art and open challenges,”
PoS Confinement 14, 2012.

[91] E. Jenkins, “Hyperon non-leptonic decays in chiral perturbation theory,” Nucl.
Phys. B, vol. 375, pp. 561–581, 1992.

[92] R. Springer, “Heavy baryon chiral perturbation theory and the weak nonleptonic
p-wave decays of the baryon octet,” Phys. Lett. B, vol. 461, pp. 167–174, 1999.



Bibliography 111

[93] J. F. Donoghue, E. Golovich, and B. R. Holstein, Dynamics of the Standard Model.
Cambridge Univ. Press, 1992.

[94] V. G. J. Stoks and T. A. Rijken, “Soft-core baryon-baryon potentials for the com-
plete baryon octet,” Phys. Rev. C, vol. 59, pp. 3009–3020, 1999.

[95] V. G. J. Stoks, T. A. Rijken, and Y. Yamamoto, “Soft-core hyperon-nucleon poten-
tials,” Phys. Rev. C, vol. 59, pp. 21–40, 1999.

[96] A. Nogga, “Faddeev-yakubovsky calculations for A = 4 hypernuclear systems,”
Nucl. Phys. A, vol. 754, pp. 36c–42c, 2005.

[97] E. Oset, H. Toki, M. Mizobe, and T. T. Takahashi, “� exchange in the NN interac-
tion within the chiral unitary approach,” Prog. Theor. Phys., vol. 103, pp. 351–365,
2000.

[98] N. Kaiser, R. Brockmann, and W. Weise, “Peripheral nucleon-nucleon phase shifts
and chiral symmetry,” Nucl. Phys. A, vol. 625, pp. 758–788, 1997.

[99] G. Passarino and M. Veltman, “One-loop corrections for e+e annihilation into µ+µ�

in the weinberg model,” Nucl. Phys. B, vol. 160, pp. 151–207, 1979.

[100] T. A. Rijken, M. M. Nagels, and Y. Yamamoto, “Baryon-baryon interactions—
nijmegen extended-soft-core models—,” Prog. Theor. Phys. Suppl., vol. 185, pp. 14–
71, 2010.

[101] S. Bufalino, “Experimental status of the weak decay of ⇤ hypernuclei,” XI Interna-
tional Conference on Hypernuclear and Strange Particle Physics (HYP2012), 2012.

[102] H. Noumi et al., Proceedings of the IV International Symposium on Weak and Elec-
tromagnetic Interactions in Nuclei. World Scientific, 1995.

[103] S. Ajimura et al., “Asymmetry in the nonmesonic weak decay of polarized 5
⇤He

hypernuclei,” Phys. Rev. Lett., vol. 84, pp. 4052–4055, 2000.

[104] T. Maruta et al., “Proton asymmetry in non-mesonic weak decay of light hypernu-
clei,” Nucl. Phys. A, vol. 754, pp. 168c–172c, 2005.

[105] H. Noumi et al., “Hypernuclear weak decay of 12
⇤ C and 1

⇤B,” Phys. Rev. C, vol. 52,
pp. 2936–2945, 1995.

[106] H. Outa et al., “Mesonic and non-mesonic decay widths of 12
⇤ C,” Nucl. Phys. A,

vol. 670, pp. 281c–284c, 2000.

[107] J. H. Kim et al., “Neutron energy spectra from the nonmesonic weak decay of 12
⇤ C

and 89
⇤ Y hypernuclei,” Phys. Rev. C, vol. 68, p. 065201, 2003.

[108] http://seal.web.cern.ch/seal/snapshot/work packages/mathlibs/minuit/.
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